Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Sci Transl Med ; 15(690): eabk1900, 2023 04 05.
Article in English | MEDLINE | ID: mdl-37018415

ABSTRACT

Patients who receive chimeric antigen receptor (CAR)-T cells that are enriched in memory T cells exhibit better disease control as a result of increased expansion and persistence of the CAR-T cells. Human memory T cells include stem-like CD8+ memory T cell progenitors that can become either functional stem-like T (TSTEM) cells or dysfunctional T progenitor exhausted (TPEX) cells. To that end, we demonstrated that TSTEM cells were less abundant in infused CAR-T cell products in a phase 1 clinical trial testing Lewis Y-CAR-T cells (NCT03851146), and the infused CAR-T cells displayed poor persistence in patients. To address this issue, we developed a production protocol to generate TSTEM-like CAR-T cells enriched for expression of genes in cell replication pathways. Compared with conventional CAR-T cells, TSTEM-like CAR-T cells had enhanced proliferative capacity and increased cytokine secretion after CAR stimulation, including after chronic CAR stimulation in vitro. These responses were dependent on the presence of CD4+ T cells during TSTEM-like CAR-T cell production. Adoptive transfer of TSTEM-like CAR-T cells induced better control of established tumors and resistance to tumor rechallenge in preclinical models. These more favorable outcomes were associated with increased persistence of TSTEM-like CAR-T cells and an increased memory T cell pool. Last, TSTEM-like CAR-T cells and anti-programmed cell death protein 1 (PD-1) treatment eradicated established tumors, and this was associated with increased tumor-infiltrating CD8+CAR+ T cells producing interferon-γ. In conclusion, our CAR-T cell protocol generated TSTEM-like CAR-T cells with enhanced therapeutic efficacy, resulting in increased proliferative capacity and persistence in vivo.


Subject(s)
Immunotherapy, Adoptive , Neoplasms , Humans , Immunotherapy, Adoptive/methods , T-Lymphocytes , Cytokines/metabolism , Stem Cells/metabolism , Receptors, Antigen, T-Cell/metabolism
2.
Biomedicines ; 9(12)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34944614

ABSTRACT

Despite aggressive surgery, chemotherapy, and radiotherapy, survival of children and adolescents and young adults (AYAs) with sarcoma has not improved significantly in the past four decades. Immune checkpoint inhibitors (ICIs) are an exciting type of immunotherapy that offer new opportunities for the treatment of paediatric and AYA sarcomas. However, to date, most children do not derive a benefit from this type of treatment as a monotherapy. The immunosuppressive tumour microenvironment is a major barrier limiting their efficacy. Combinations of ICIs, such as anti-PD-1 therapy, with targeted molecular therapies that have immunomodulatory properties may be the key to breaking through immunosuppressive barriers and improving patient outcomes. Preclinical studies have indicated that several receptor tyrosine kinase inhibitors (RTKi) can alter the tumour microenvironment and boost the efficacy of anti-PD-1 therapy. A number of these combinations have entered phase-1/2 clinical trials, mostly in adults, and in most instances have shown efficacy with manageable side-effects. In this review, we discuss the status of ICI therapy in paediatric and AYA sarcomas and the rationale for co-treatment with RTKis. We highlight new opportunities for the integration of ICI therapy with RTK inhibitors, to improve outcomes for children with sarcoma.

3.
Cancers (Basel) ; 13(18)2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34572932

ABSTRACT

Sarcomas are a diverse group of bone and soft tissue tumors that account for over 10% of childhood cancers. Outcomes are particularly poor for children with refractory, relapsed, or metastatic disease. Chimeric antigen receptor T (CAR T) cells are an exciting form of adoptive cell therapy that potentially offers new hope for these children. In early trials, promising outcomes have been achieved in some pediatric patients with sarcoma. However, many children do not derive benefit despite significant expression of the targeted tumor antigen. The success of CAR T cell therapy in sarcomas and other solid tumors is limited by the immunosuppressive tumor microenvironment (TME). In this review, we provide an update of the CAR T cell therapies that are currently being tested in pediatric sarcoma clinical trials, including those targeting tumors that express HER2, NY-ESO, GD2, EGFR, GPC3, B7-H3, and MAGE-A4. We also outline promising new CAR T cells that are in pre-clinical development. Finally, we discuss strategies that are being used to overcome tumor-mediated immunosuppression in solid tumors; these strategies have the potential to improve clinical outcomes of CAR T cell therapy for children with sarcoma.

5.
Cell ; 184(5): 1330-1347.e13, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33636130

ABSTRACT

Osteoclasts are large multinucleated bone-resorbing cells formed by the fusion of monocyte/macrophage-derived precursors that are thought to undergo apoptosis once resorption is complete. Here, by intravital imaging, we reveal that RANKL-stimulated osteoclasts have an alternative cell fate in which they fission into daughter cells called osteomorphs. Inhibiting RANKL blocked this cellular recycling and resulted in osteomorph accumulation. Single-cell RNA sequencing showed that osteomorphs are transcriptionally distinct from osteoclasts and macrophages and express a number of non-canonical osteoclast genes that are associated with structural and functional bone phenotypes when deleted in mice. Furthermore, genetic variation in human orthologs of osteomorph genes causes monogenic skeletal disorders and associates with bone mineral density, a polygenetic skeletal trait. Thus, osteoclasts recycle via osteomorphs, a cell type involved in the regulation of bone resorption that may be targeted for the treatment of skeletal diseases.


Subject(s)
Bone Resorption/pathology , Osteoclasts/pathology , RANK Ligand/metabolism , Animals , Apoptosis , Bone Resorption/metabolism , Cell Fusion , Cells, Cultured , Humans , Macrophages/cytology , Mice , Osteochondrodysplasias/drug therapy , Osteochondrodysplasias/genetics , Osteochondrodysplasias/metabolism , Osteochondrodysplasias/pathology , Osteoclasts/metabolism , Signal Transduction
6.
J Clin Invest ; 130(7): 3391-3402, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32538896

ABSTRACT

Pediatric cancers, particularly high-risk solid tumors, urgently need effective and specific therapies. Their outlook has not appreciably improved in decades. Immunotherapies such as immune checkpoint inhibitors offer much promise, but most are only approved for use in adults. Though several hundred clinical trials have tested immune-based approaches in childhood cancers, few have been guided by biomarkers or clinical-grade assays developed to predict patient response and, ultimately, to help select those most likely to benefit. There is extensive evidence in adults to show that immune profiling has substantial predictive value, but few studies focus on childhood tumors, because of the relatively small disease population and restricted use of immune-based therapies. For instance, only one published study has retrospectively examined the immune profiles of pediatric brain tumors after immunotherapy. Furthermore, application and integration of advanced multiplex techniques has been extremely limited. Here, we review the current status of immune profiling of pediatric solid tumors, with emphasis on tumor types that represent enormous unmet clinical need, primarily in the context of immune checkpoint inhibitor therapy. Translating optimized and informative immune profiling into standard practice and access to personalized combination therapy will be critical if childhood cancers are to be treated effectively and affordably.


Subject(s)
Brain Neoplasms , Immunotherapy , Adult , Brain Neoplasms/classification , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Brain Neoplasms/therapy , Child , Humans
7.
Blood ; 134(1): 30-43, 2019 07 04.
Article in English | MEDLINE | ID: mdl-31023703

ABSTRACT

The era of targeted therapies has seen significant improvements in depth of response, progression-free survival, and overall survival for patients with multiple myeloma. Despite these improvements in clinical outcome, patients inevitably relapse and require further treatment. Drug-resistant dormant myeloma cells that reside in specific niches within the skeleton are considered a basis of disease relapse but remain elusive and difficult to study. Here, we developed a method to sequence the transcriptome of individual dormant myeloma cells from the bones of tumor-bearing mice. Our analyses show that dormant myeloma cells express a distinct transcriptome signature enriched for immune genes and, unexpectedly, genes associated with myeloid cell differentiation. These genes were switched on by coculture with osteoblastic cells. Targeting AXL, a gene highly expressed by dormant cells, using small-molecule inhibitors released cells from dormancy and promoted their proliferation. Analysis of the expression of AXL and coregulated genes in human cohorts showed that healthy human controls and patients with monoclonal gammopathy of uncertain significance expressed higher levels of the dormancy signature genes than patients with multiple myeloma. Furthermore, in patients with multiple myeloma, the expression of this myeloid transcriptome signature translated into a twofold increase in overall survival, indicating that this dormancy signature may be a marker of disease progression. Thus, engagement of myeloma cells with the osteoblastic niche induces expression of a suite of myeloid genes that predicts disease progression and that comprises potential drug targets to eradicate dormant myeloma cells.


Subject(s)
Multiple Myeloma/genetics , Multiple Myeloma/pathology , Neoplasm Recurrence, Local/genetics , Neoplastic Stem Cells/pathology , Stem Cell Niche/genetics , Animals , Humans , Mice , Neoplasm Recurrence, Local/pathology , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , Transcriptome , Axl Receptor Tyrosine Kinase
8.
Oncotarget ; 8(40): 68047-68058, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28978095

ABSTRACT

Melphalan is a cytotoxic chemotherapy used to treat patients with multiple myeloma (MM). Bone resorption by osteoclasts, by remodeling the bone surface, can reactivate dormant MM cells held in the endosteal niche to promote tumor development. Dormant MM cells can be reactivated after melphalan treatment; however, it is unclear whether melphalan treatment increases osteoclast formation to modify the endosteal niche. Melphalan treatment of mice for 14 days decreased bone volume and the endosteal bone surface, and this was associated with increases in osteoclast numbers. Bone marrow cells (BMC) from melphalan-treated mice formed more osteoclasts than BMCs from vehicle-treated mice, suggesting that osteoclast progenitors were increased. Melphalan also increased osteoclast formation in BMCs and RAW264.7 cells in vitro, which was prevented with the cell stress response (CSR) inhibitor KNK437. Melphalan also increased expression of the osteoclast regulator the microphthalmia-associated transcription factor (MITF), but not nuclear factor of activated T cells 1 (NFATc1). Melphalan increased expression of MITF-dependent cell fusion factors, dendritic cell-specific transmembrane protein (Dc-stamp) and osteoclast-stimulatory transmembrane protein (Oc-stamp) and increased cell fusion. Expression of osteoclast stimulator receptor activator of NFκB ligand (RANKL) was unaffected by melphalan treatment. These data suggest that melphalan stimulates osteoclast formation by increasing osteoclast progenitor recruitment and differentiation in a CSR-dependent manner. Melphalan-induced osteoclast formation is associated with bone loss and reduced endosteal bone surface. As well as affecting bone structure this may contribute to dormant tumor cell activation, which has implications for how melphalan is used to treat patients with MM.

9.
Blood ; 129(26): 3452-3464, 2017 06 29.
Article in English | MEDLINE | ID: mdl-28515094

ABSTRACT

Multiple myeloma (MM) is a plasma cell cancer that develops in the skeleton causing profound bone destruction and fractures. The bone disease is mediated by increased osteoclastic bone resorption and suppressed bone formation. Bisphosphonates used for treatment inhibit bone resorption and prevent bone loss but fail to influence bone formation and do not replace lost bone, so patients continue to fracture. Stimulating bone formation to increase bone mass and fracture resistance is a priority; however, targeting tumor-derived modulators of bone formation has had limited success. Sclerostin is an osteocyte-specific Wnt antagonist that inhibits bone formation. We hypothesized that inhibiting sclerostin would prevent development of bone disease and increase resistance to fracture in MM. Sclerostin was expressed in osteocytes from bones from naive and myeloma-bearing mice. In contrast, sclerostin was not expressed by plasma cells from 630 patients with myeloma or 54 myeloma cell lines. Mice injected with 5TGM1-eGFP, 5T2MM, or MM1.S myeloma cells demonstrated significant bone loss, which was associated with a decrease in fracture resistance in the vertebrae. Treatment with anti-sclerostin antibody increased osteoblast numbers and bone formation rate but did not inhibit bone resorption or reduce tumor burden. Treatment with anti-sclerostin antibody prevented myeloma-induced bone loss, reduced osteolytic bone lesions, and increased fracture resistance. Treatment with anti-sclerostin antibody and zoledronic acid combined increased bone mass and fracture resistance when compared with treatment with zoledronic acid alone. This study defines a therapeutic strategy superior to the current standard of care that will reduce fractures for patients with MM.


Subject(s)
Bone Density/drug effects , Bone Morphogenetic Proteins/antagonists & inhibitors , Fractures, Bone/prevention & control , Osteocytes/chemistry , Osteogenesis/drug effects , Adaptor Proteins, Signal Transducing , Animals , Antibodies/pharmacology , Antibodies/therapeutic use , Bone Morphogenetic Proteins/immunology , Cell Line, Tumor , Diphosphonates/therapeutic use , Genetic Markers/immunology , Humans , Imidazoles/therapeutic use , Mice , Multiple Myeloma/complications , Tumor Cells, Cultured , Zoledronic Acid
10.
Methods Mol Biol ; 1304: 145-60, 2016.
Article in English | MEDLINE | ID: mdl-25005074

ABSTRACT

Experimental autoimmune encephalitis (EAE), the animal model of multiple sclerosis (MS), has provided significant insight into the mechanisms that initiate and drive autoimmunity. Several central nervous system proteins and peptides have been used to induce disease, in a number of different mouse strains, to model the diverse clinical presentations of MS. In this chapter, we detail the materials and methods used to induce active and adoptive EAE. We focus on disease induction in the SJL/J, C57BL/6, and BALB/c mouse strains, using peptides derived from proteolipid protein, myelin basic protein, and myelin oligodendrocyte glycoprotein. We also include a protocol for the isolation of leukocytes from the spinal cord and brain for flow cytometric analysis.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/immunology , Animals , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/pathology , Leukocytes/immunology , Leukocytes/pathology , Mice , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
11.
Nat Commun ; 6: 8983, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26632274

ABSTRACT

Multiple myeloma is largely incurable, despite development of therapies that target myeloma cell-intrinsic pathways. Disease relapse is thought to originate from dormant myeloma cells, localized in specialized niches, which resist therapy and repopulate the tumour. However, little is known about the niche, and how it exerts cell-extrinsic control over myeloma cell dormancy and reactivation. In this study, we track individual myeloma cells by intravital imaging as they colonize the endosteal niche, enter a dormant state and subsequently become activated to form colonies. We demonstrate that dormancy is a reversible state that is switched 'on' by engagement with bone-lining cells or osteoblasts, and switched 'off' by osteoclasts remodelling the endosteal niche. Dormant myeloma cells are resistant to chemotherapy that targets dividing cells. The demonstration that the endosteal niche is pivotal in controlling myeloma cell dormancy highlights the potential for targeting cell-extrinsic mechanisms to overcome cell-intrinsic drug resistance and prevent disease relapse.


Subject(s)
Bone Remodeling/physiology , Multiple Myeloma/metabolism , Osteoclasts/physiology , Aged , Aged, 80 and over , Animals , Cell Line, Tumor , Coculture Techniques , Female , Humans , Male , Mice , Mice, Inbred Strains , Middle Aged , Osteoblasts/physiology
12.
J Innate Immun ; 7(1): 102-12, 2015.
Article in English | MEDLINE | ID: mdl-25277331

ABSTRACT

IRF8 (interferon-regulatory factor-8) plays a critical role in regulating myeloid cell differentiation. However, the role of this transcription factor in the development of Ly6C+ inflammatory monocytes and their migration to the infected brain has not been examined. We have previously shown that West Nile virus (WNV) infection of wild-type (WT) mice triggers a significant increase in numbers of Ly6C+ monocytes in the bone marrow. These cells traffic via the blood to the infected brain, where they give rise to proinflammatory macrophages. Here, we show that WNV-infected IRF8-deficient (IRF8-/-) mice had significantly reduced numbers of Ly6C+ monocytes in the periphery, with few of these cells found in the blood. Furthermore, low numbers of inflammatory monocyte-derived macrophages were observed in the brains of IRF8-/- mice throughout infection. Adoptive transfer of IRF8-/- Ly6C+ monocytes demonstrated that these cells were intrinsically unable to traffic to the inflamed brain. Low expression of the chemokine receptor CCR2 and integrin VLA-4 by IRF8-/- monocytes likely contributed to this defect, as the interactions between these proteins and their ligands are critical for monocyte egress and migration to inflammatory foci. These data highlight a critical role for IRF8 in inflammatory monocyte differentiation and migration during WNV infection.


Subject(s)
Brain/immunology , Cell Movement/immunology , Interferon Regulatory Factors/deficiency , Monocytes/immunology , West Nile Fever/immunology , West Nile virus/immunology , Animals , Antigens, Ly/genetics , Antigens, Ly/immunology , Brain/pathology , Brain/virology , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Movement/genetics , Inflammation/genetics , Inflammation/microbiology , Inflammation/pathology , Integrin alpha4beta1/genetics , Integrin alpha4beta1/immunology , Macrophages/immunology , Macrophages/pathology , Mice , Mice, Knockout , Monocytes/pathology , Receptors, CCR2/genetics , Receptors, CCR2/immunology , West Nile Fever/genetics , West Nile Fever/pathology
13.
Cell Immunol ; 291(1-2): 16-21, 2014.
Article in English | MEDLINE | ID: mdl-24709055

ABSTRACT

Monocyte development is a tightly regulated and multi-staged process, occurring through several defined progenitor cell intermediates. The key transcription factors, including PU.1, IRF8 and KLF4, growth factors, such as M-CSF and IL-34 and cytokines that drive monocyte development from hematopoietic progenitor cells are well defined. However, the molecular controls that direct differentiation into the Ly6C(hi) inflammatory and Ly6C(lo) monocyte subsets are yet to be completely elucidated. This review will provide a summary of the transcriptional regulation of monocyte development. We will also discuss how these molecular controls are also critical for microglial development despite their distinct haematopoetic origins. Furthermore, we will examine recent breakthroughs in defining mechanisms that promote differentiation of specific monocyte subpopulations.


Subject(s)
Monocytes/physiology , Animals , Cell Differentiation/physiology , Kruppel-Like Factor 4 , Mice , Monocytes/cytology , Stem Cells/cytology , Stem Cells/physiology , Transcription, Genetic
14.
Sci Transl Med ; 6(219): 219ra7, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24431111

ABSTRACT

Inflammatory monocyte-derived effector cells play an important role in the pathogenesis of numerous inflammatory diseases. However, no treatment option exists that is capable of modulating these cells specifically. We show that infused negatively charged, immune-modifying microparticles (IMPs), derived from polystyrene, microdiamonds, or biodegradable poly(lactic-co-glycolic) acid, were taken up by inflammatory monocytes, in an opsonin-independent fashion, via the macrophage receptor with collagenous structure (MARCO). Subsequently, these monocytes no longer trafficked to sites of inflammation; rather, IMP infusion caused their sequestration in the spleen through apoptotic cell clearance mechanisms and, ultimately, caspase-3-mediated apoptosis. Administration of IMPs in mouse models of myocardial infarction, experimental autoimmune encephalomyelitis, dextran sodium sulfate-induced colitis, thioglycollate-induced peritonitis, and lethal flavivirus encephalitis markedly reduced monocyte accumulation at inflammatory foci, reduced disease symptoms, and promoted tissue repair. Together, these data highlight the intricate interplay between scavenger receptors, the spleen, and inflammatory monocyte function and support the translation of IMPs for therapeutic use in diseases caused or potentiated by inflammatory monocytes.


Subject(s)
Inflammation/immunology , Inflammation/pathology , Microspheres , Monocytes/immunology , Animals , Apoptosis , Brain/pathology , Cell Movement , Cell Survival , Colitis/pathology , Colitis/prevention & control , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/prevention & control , Female , Inflammatory Bowel Diseases/pathology , Inflammatory Bowel Diseases/prevention & control , Kidney/pathology , Macrophages/metabolism , Macrophages/pathology , Mice , Mice, Inbred C57BL , Myocardium/pathology , Particle Size , Peritoneum/pathology , Polystyrenes/chemistry , Receptors, Immunologic/metabolism , Reperfusion Injury/prevention & control , Spleen/pathology , West Nile Fever
15.
Immunol Rev ; 255(1): 197-209, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23947356

ABSTRACT

As a group of disorders, autoimmunity ranks as the third most prevalent cause of morbidity and mortality in the Western World. However, the etiology of most autoimmune diseases remains unknown. Although genetic linkage studies support a critical underlying role for genetics, the geographic distribution of these disorders as well as the low concordance rates in monozygotic twins suggest that a combination of other factors including environmental ones are involved. Virus infection is a primary factor that has been implicated in the initiation of autoimmune disease. Infection triggers a robust and usually well-coordinated immune response that is critical for viral clearance. However, in some instances, immune regulatory mechanisms may falter, culminating in the breakdown of self-tolerance, resulting in immune-mediated attack directed against both viral and self-antigens. Traditionally, cross-reactive T-cell recognition, known as molecular mimicry, as well as bystander T-cell activation, culminating in epitope spreading, have been the predominant mechanisms elucidated through which infection may culminate in an T-cell-mediated autoimmune response. However, other hypotheses including virus-induced decoy of the immune system also warrant discussion in regard to their potential for triggering autoimmunity. In this review, we discuss the mechanisms by which virus infection and antiviral immunity contribute to the development of autoimmunity.


Subject(s)
Autoimmunity , Virus Diseases/immunology , Viruses/immunology , Animals , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Autoimmune Diseases/virology , Central Nervous System/immunology , Central Nervous System/pathology , Central Nervous System/virology , Humans , Virus Diseases/metabolism
16.
Indian J Med Res ; 138(5): 632-47, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24434318

ABSTRACT

Mosquito-borne flaviviruses are a major current and emerging threat, affecting millions of people worldwide. Global climate change, combined with increasing proximity of humans to animals and mosquito vectors by expansion into natural habitats, coupled with the increase in international travel, have resulted in significant spread and concomitant increase in the incidence of infection and severe disease. Although neuroinvasive disease has been well described for some viral infections such as Japanese Encephalitis virus (JEV) and West Nile virus (WNV), others such as dengue virus (DENV) have recently displayed an emerging pattern of neuroinvasive disease, distinct from the previously observed, systemically-induced encephalomyelopathy. In this setting, the immune response is a crucial component of host defence, in preventing viral dissemination and invasion of the central nervous system (CNS). However, subversion of the anti-viral activities of macrophages by flaviviruses can facilitate viral replication and spread, enhancing the intensity of immune responses, leading to severe immune-mediated disease which may be further exacerbated during the subsequent infection with some flaviviruses. Furthermore, in the CNS myeloid cells may be responsible for inducing specific inflammatory changes, which can lead to significant pathological damage during encephalitis. The interaction of virus and cells of the myeloid lineage is complex, and this interaction is likely responsible at least in part, for crucial differences between viral clearance and pathology. Recent studies on the role of myeloid cells in innate immunity and viral control, and the mechanisms of evasion and subversion used by flaviviruses are rapidly advancing our understanding of the immunopathological mechanisms involved in flavivirus encephalitis and will lead to the development of therapeutic strategies previously not considered.


Subject(s)
Encephalitis/immunology , Flavivirus Infections/immunology , Immunity, Innate , Macrophages/immunology , Animals , Dengue Virus/immunology , Dengue Virus/pathogenicity , Encephalitis/virology , Encephalitis Virus, Japanese/immunology , Encephalitis Virus, Japanese/pathogenicity , Flavivirus/immunology , Flavivirus/pathogenicity , Flavivirus Infections/transmission , Flavivirus Infections/virology , Humans , Myeloid Cells/immunology , West Nile virus/immunology , West Nile virus/pathogenicity
17.
J Neuroinflammation ; 9: 270, 2012 Dec 17.
Article in English | MEDLINE | ID: mdl-23244217

ABSTRACT

Monocytes are a heterogeneous population of bone marrow-derived cells that are recruited to sites of infection and inflammation in many models of human diseases, including those of the central nervous system (CNS). Ly6Chi/CCR2(hi) inflammatory monocytes have been identified as the circulating precursors of brain macrophages, dendritic cells and arguably microglia in experimental autoimmune encephalomyelitis; Alzheimer's disease; stroke; and more recently in CNS infection caused by Herpes simplex virus, murine hepatitis virus, Theiler's murine encephalomyelitis virus, Japanese encephalitis virus and West Nile virus. The precise differentiation pathways and functions of inflammatory monocyte-derived populations in the inflamed CNS remains a contentious issue, especially in regard to the existence of monocyte-derived microglia. Furthermore, the contributions of monocyte-derived subsets to viral clearance and immunopathology are not well-defined. Thus, understanding the pathways through which inflammatory monocytes migrate to the brain and their functional capacity within the CNS is critical to inform future therapeutic strategies. This review discusses some of the key aspects of inflammatory monocyte trafficking to the brain and addresses the role of these cells in viral encephalitis.


Subject(s)
Brain Infarction/pathology , Cytokines/metabolism , Encephalitis, Viral/pathology , Monocytes/pathology , Animals , Bone Marrow Cells/pathology , Brain Infarction/complications , Brain Infarction/immunology , Brain Infarction/virology , Cell Differentiation , Encephalitis, Viral/complications , Humans , Monocytes/classification , Monocytes/immunology
18.
J Neuroinflammation ; 9: 246, 2012 Oct 30.
Article in English | MEDLINE | ID: mdl-23111065

ABSTRACT

Infiltration of Ly6C(hi) monocytes from the blood is a hallmark of viral encephalitis. In mice with lethal encephalitis caused by West Nile virus (WNV), an emerging neurotropic flavivirus, inhibition of Ly6C(hi) monocyte trafficking into the brain by anti-very late antigen (VLA)-4 integrin antibody blockade at the time of first weight loss and leukocyte influx resulted in long-term survival of up to 60% of infected mice, with subsequent sterilizing immunity. This treatment had no effect on viral titers but appeared to be due to inhibition of Ly6C(hi) macrophage immigration. Although macrophages isolated from the infected brain induced WNV-specific CD4(+) T-cell proliferation, T cells did not directly contribute to pathology, but are likely to be important in viral control, as antibody-mediated T-cell depletion could not reproduce the therapeutic benefit of anti-VLA-4. Instead, 70% of infiltrating inflammatory monocyte-derived macrophages were found to be making nitric oxide (NO). Furthermore, aminoguanidine-mediated inhibition of induced NO synthase activity in infiltrating macrophages significantly prolonged survival, indicating involvement of NO in the immunopathology. These data show for the first time the therapeutic effects of temporally targeting pathogenic NO-producing macrophages during neurotropic viral encephalitis.


Subject(s)
Integrin alpha4beta1/immunology , Integrin alpha4beta1/metabolism , Macrophages/immunology , Macrophages/metabolism , West Nile Fever , Animals , Antigens, CD/metabolism , Brain/pathology , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Disease Models, Animal , Female , Gene Expression Regulation, Viral/physiology , Glial Fibrillary Acidic Protein/metabolism , Integrins/genetics , Integrins/metabolism , Lymphocyte Function-Associated Antigen-1/genetics , Lymphocyte Function-Associated Antigen-1/metabolism , Macrophages/virology , Mice , Mice, Inbred C57BL , Neutrophil Infiltration/immunology , Nitric Oxide Synthase Type II , West Nile Fever/immunology , West Nile Fever/metabolism , West Nile Fever/pathology
19.
Nat Biotechnol ; 30(12): 1217-24, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23159881

ABSTRACT

Aberrant T-cell activation underlies many autoimmune disorders, yet most attempts to induce T-cell tolerance have failed. Building on previous strategies for tolerance induction that exploited natural mechanisms for clearing apoptotic debris, we show that antigen-decorated microparticles (500-nm diameter) induce long-term T-cell tolerance in mice with relapsing experimental autoimmune encephalomyelitis. Specifically, intravenous infusion of either polystyrene or biodegradable poly(lactide-co-glycolide) microparticles bearing encephalitogenic peptides prevents the onset and modifies the course of the disease. These beneficial effects require microparticle uptake by marginal zone macrophages expressing the scavenger receptor MARCO and are mediated in part by the activity of regulatory T cells, abortive T-cell activation and T-cell anergy. Together these data highlight the potential for using microparticles to target natural apoptotic clearance pathways to inactivate pathogenic T cells and halt the disease process in autoimmunity.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/prevention & control , Immune Tolerance , Myelin Proteolipid Protein/administration & dosage , Myelin Proteolipid Protein/immunology , T-Lymphocytes/immunology , Animals , Autoantigens/administration & dosage , Biotechnology , Clonal Anergy , Female , Infusions, Intravenous , Interleukin-10/immunology , Lymphocyte Activation , Mice , Microspheres , Peptide Fragments/administration & dosage , Peptide Fragments/immunology , Polyglactin 910 , Polystyrenes , T-Lymphocytes, Regulatory/immunology
20.
J Immunol ; 187(5): 2405-17, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21821796

ABSTRACT

Ag-specific tolerance is a highly desired therapy for immune-mediated diseases. Intravenous infusion of protein/peptide Ags linked to syngeneic splenic leukocytes with ethylene carbodiimide (Ag-coupled splenocytes [Ag-SP]) has been demonstrated to be a highly efficient method for inducing peripheral, Ag-specific T cell tolerance for treatment of autoimmune disease. However, little is understood about the mechanisms underlying this therapy. In this study, we show that apoptotic Ag-SP accumulate in the splenic marginal zone, where their uptake by F4/80(+) macrophages induces production of IL-10, which upregulates the expression of the immunomodulatory costimulatory molecule PD-L1 that is essential for Ag-SP tolerance induction. Ag-SP infusion also induces T regulatory cells that are dispensable for tolerance induction but required for long-term tolerance maintenance. Collectively, these results indicate that Ag-SP tolerance recapitulates how tolerance is normally maintained in the hematopoietic compartment and highlight the interplay between the innate and adaptive immune systems in the induction of Ag-SP tolerance. To our knowledge, we show for the first time that tolerance results from the synergistic effects of two distinct mechanisms, PD-L1-dependent T cell-intrinsic unresponsiveness and the activation of T regulatory cells. These findings are particularly relevant as this tolerance protocol is currently being tested in a Phase I/IIa clinical trial in new-onset relapsing-remitting multiple sclerosis.


Subject(s)
Immune Tolerance/immunology , Macrophages/immunology , Myelin Proteolipid Protein/immunology , Peptide Fragments/immunology , Spleen/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Antigens/immunology , Apoptosis/immunology , B7-1 Antigen/biosynthesis , B7-1 Antigen/immunology , B7-H1 Antigen , Cell Separation , Encephalomyelitis, Autoimmune, Experimental/immunology , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Immunohistochemistry , Interleukin-10/biosynthesis , Interleukin-10/immunology , Lymphocyte Activation/immunology , Lymphocytes/immunology , Macrophage Activation/immunology , Macrophages/metabolism , Membrane Glycoproteins/biosynthesis , Membrane Glycoproteins/immunology , Mice , Mice, Inbred C57BL , Peptides/immunology , Spleen/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...