Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 145(29): 15869-15878, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37449950

ABSTRACT

Designing new synthesis routes to fabricate highly thermally durable precious metal single-atom catalysts (SACs) is challenging in industrial applications. Herein, a general strategy is presented that starts from dual-metal nanocrystals (NCs), using bimetallic NCs as a facilitator to spontaneously convert a series of noble metals to single atoms on aluminum oxide. The metal single atoms are captured by cation defects in situ formed on the surface of the inverse spinel (AB2O4) structure, which process provides numerous anchoring sites, thus facilitating generation of the isolated metal atoms that contributes to the extraordinary thermodynamic stability. The Pd1/AlCo2O4-Al2O3 shows not only improved low-temperature activity but also unprecedented (hydro)thermal stability for CO and propane oxidation under harsh aging conditions. Furthermore, our strategy exhibits a small scaling-up effect by the simple physical mixing of commercial metal oxide aggregates with Al2O3. The good regeneration between oxidative and reductive atmospheres of these ionic palladium species makes this catalyst system of potential interest for emissions control.

2.
Chin Med ; 18(1): 79, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37381044

ABSTRACT

BACKGROUND: Yangqing Chenfei formula (YCF) is a traditional Chinese medicine formula for early-stage silicosis. However, the therapeutic mechanism is unclear. The purpose of this study was to determine the mechanism for the effects of YCF on early-stage experimental silicosis. METHODS: The anti-inflammatory and anti-fibrotic effects of YCF were determined in a silicosis rat model, which was established by intratracheal instillation of silica. The anti-inflammatory efficacy and molecular mechanisms of YCF were examined in a lipopolysaccharide (LPS)/interferon (IFN)-γ-induced macrophage inflammation model. Network pharmacology and transcriptomics were integrated to analyze the active components, corresponding targets, and anti-inflammatory mechanisms of YCF, and these mechanisms were validated in vitro. RESULTS: Oral administration of YCF attenuated the pathological changes, reduced inflammatory cell infiltration, inhibited collagen deposition, decreased the levels of inflammatory factors, and reduced the number of M1 macrophages in the lung tissue of rats with silicosis. YCF5, the effective fraction of YCF, significantly attenuated the inflammatory factors induced by LPS and IFN-γ in M1 macrophages. Network pharmacology analysis showed that YCF contained 185 active components and 988 protein targets, which were mainly associated with inflammation-related signaling pathways. Transcriptomic analysis showed that YCF regulated 117 reversal genes mainly associated with the inflammatory response. Integrative analysis of network pharmacology and transcriptomics indicated that YCF suppressed M1 macrophage-mediated inflammation by regulating signaling networks, including the mTOR, mitogen-activated protein kinases (MAPK), PI3K-Akt, NF-κB, and JAK-STAT signaling pathways. In vitro studies confirmed that the active components of YCF significantly decreased the levels of p-mTORC1, p-P38, and p-P65 by suppressing the activation of related-pathways. CONCLUSION: YCF significantly attenuated the inflammatory response in rats with silicosis via the suppression of macrophage M1 polarization by inhibiting a "multicomponent-multitarget-multipathway" network.

3.
Bioorg Med Chem Lett ; 92: 129385, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37339719

ABSTRACT

The c-MYC oncogene transcription factor has been implicated in cell cycle regulation controlling cell growth and proliferation. It is tightly regulated in normal cells, but has been shown to be deregulated in cancer cells, and is thus an attractive target for oncogenic therapies. Building upon previous SAR, a series of analogues containing benzimidazole core replacements were prepared and evaluated, leading to the identification of imidazopyridazine compounds that were shown to possess equivalent or improved c-MYC HTRF pEC50 values, lipophilicity, solubility, and rat pharmacokinetics. The imidazopyridazine core was therefore determined to be superior to the original benzimidazole core and a viable alternate for continued lead optimization and medicinal chemistry campaigns.


Subject(s)
Aminopyridines , Proto-Oncogene Proteins c-myc , Rats , Animals , Proto-Oncogene Proteins c-myc/metabolism , Gene Expression Regulation , Transcription Factors/metabolism , Benzimidazoles
4.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 34(11): 1161-1166, 2022 Nov.
Article in Chinese | MEDLINE | ID: mdl-36567559

ABSTRACT

OBJECTIVE: To investigate the effect of digoxin on bleomycin-induced pulmonary fibrosis in mice, and investigate its possible mechanism through in vitro and in vivo experiments. METHODS: (1) In vivo experiment: 60 C57/BL6J mice were randomly divided into control group, pulmonary fibrosis model group (model group), pirfenidone (300 mg/kg) group, digoxin 1.0 mg/kg and 0.2 mg/kg groups, with 12 mice in each group. The pulmonary fibrosis model of mice was reproduced by single intratracheal infusion of bleomycin (5 mg/kg). The control group was given the same amount of sterile normal saline. From the next day after modeling, each group was received corresponding drugs by intragastric administration once a day for 28 days. Control group and model group were given the same amount of normal saline. The mice were sacrificed and the lung tissue was collected to detect the lung coefficient. After hematoxylin-eosin (HE) and Masson staining, the lung tissue morphology and collagen changes were observed under light microscope. Immunohistochemistry was used to detect the positive expressions of α-smooth muscle actin (α-SMA) and extracellular matrix (ECM) collagen (COL-I and COL-III) in lung tissue. The protein expressions of ECM fibronectin (FN), transforming growth factor-ß (TGF-ß) and phosphorylation of Smad3 (p-Smad3) in lung tissue were detected by Western blotting. (2) In vitro experiment: human embryonic lung fibroblast-1 (HFL-1) cells were cultured and divided into blank control group, fibroblast activation model group (model group), pirfenidone (2.5 mmol/L) group and digoxin 100 nmol/L and 50 nmol/L groups when cell density reached 70%-90%. After 3-hour treatment with corresponding drugs, except blank control group, the other groups were treated with TGF-ß for 48 hours to establish fibroblast activation model. The expressions of α-SMA, FN and p-Smad3 proteins and the phosphorylations of phosphatidylinositol-3-kinase (PI3K)/Akt pathway proteins PI3K and Akt (p-PI3K, p-Akt) were detected by Western blotting. RESULTS: (1) In vivo, compared with the control group, the alveolar structure of mice in the model group was significantly damaged, a large number of inflammatory cells infiltrated, collagen deposition in the lung interstitium was increased, the deposition of ECM in the lung tissue was also increased, and the expressions of α-SMA, FN, TGF-ß and p-Smad3 protein were increased, indicating that the model of bleomycin-induced pulmonary fibrosis in mice was successfully prepared. Compared with the model group, digoxin significantly inhibited airway inflammation and collagen fiber deposition, reduced ECM deposition, and decreased the protein expressions of α-SMA, FN, TGF-ß and p-Smad3, while the effect was better than that of the pirfenidone group, and the digoxin 1.0 mg/kg group had a better effect except FN [α-SMA (A value): 5.37±1.10 vs. 9.51±1.66, TGF-ß protein (TGF-ß/GAPDH): 0.09±0.04 vs. 0.33±0.23, p-Smad3 protein (p-Smad3/GAPDH): 0.05±0.01 vs. 0.20±0.07, all P < 0.01]. (2) In vitro, compared with the blank control group, the expressions of FN, α-SMA, p-Smad3 and PI3K/Akt signaling proteins in the model group were increased, indicating that the fibroblast activation model induced by TGF-ß was successfully reproduced. Compared with the model group, digoxin significantly inhibited fibroblast activation, and decreased the expressions of FN, α-SMA, p-Smad3, and PI3K/Akt pathway proteins, moreover, the effect was better than that of the pirfenidone group, and decreased FN, SMA and p-Akt protein expressions were more obvious in digoxin 100 nmol/L group [FN protein (FN/GAPDH): 0.21±0.15 vs. 0.88±0.22, α-SMA protein (α-SMA/GAPDH): 0.20±0.01 vs. 0.50±0.08, p-Akt protein (p-Akt/GAPDH): 0.30±0.01 vs. 0.65±0.10, all P < 0.01]. CONCLUSIONS: Digoxin could suppress the pulmonary fibrosis in mice induced by bleomycin, which might be associated with the regulation of fibroblast activation via suppressing PI3K/Akt signaling pathway in a dose-dependent manner.


Subject(s)
Pulmonary Fibrosis , Mice , Humans , Animals , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/chemically induced , Proto-Oncogene Proteins c-akt/metabolism , Smad3 Protein/metabolism , Smad3 Protein/pharmacology , Digoxin/metabolism , Digoxin/pharmacology , Digoxin/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Saline Solution/therapeutic use , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/pharmacology , Transforming Growth Factor beta/therapeutic use , Fibroblasts/metabolism , Fibroblasts/pathology , Signal Transduction , Bleomycin/metabolism , Bleomycin/pharmacology , Bleomycin/therapeutic use , Collagen/metabolism , Collagen/pharmacology , Collagen/therapeutic use , Phosphatidylinositols/metabolism , Phosphatidylinositols/pharmacology , Phosphatidylinositols/therapeutic use , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology
5.
J Med Chem ; 65(21): 14391-14408, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36302181

ABSTRACT

E1A binding protein (p300) and CREB binding protein (CBP) are two highly homologous and multidomain histone acetyltransferases. These two proteins are involved in many cellular processes by acting as coactivators of a large number of transcription factors. Dysregulation of p300/CBP has been found in a variety of cancers and other diseases, and inhibition has been shown to decrease Myc expression. Herein, we report the identification of a series of highly potent, proline-based small-molecule p300/CBP histone acetyltransferase (HAT) inhibitors using DNA-encoded library technology in combination with high-throughput screening. The strategy of reducing ChromlogD and fluorination of metabolic soft spots was explored to improve the pharmacokinetic properties of potent p300 inhibitors. Fluorination of both cyclobutyl and proline rings of 22 led to not only reduced clearance but also improved cMyc cellular potency.


Subject(s)
CREB-Binding Protein , High-Throughput Screening Assays , Proline , Histone Acetyltransferases , Adenovirus E1A Proteins/metabolism , p300-CBP Transcription Factors , DNA , Technology
6.
Angew Chem Int Ed Engl ; 61(27): e202201655, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35429218

ABSTRACT

Improving the low-temperature water-resistance of methane combustion catalysts is of importance for industrial applications and it is challenging. A stepwise strategy is presented for the preparation of atomically dispersed tungsten species at the catalytically active site (Pd nanoparticles). After an activation process, a Pd-O-W1 -like nanocompound is formed on the PdO surface with an atomic scale interface. The resulting supported catalyst has much better water resistance than the conventional catalysts for methane combustion. The integrated characterization results confirm that catalytic combustion of methane involves water, proceeding via a hydroperoxyl-promoted reaction mechanism on the catalyst surface. The results of density functional theory calculations indicate an upshift of the d-band center of palladium caused by electron transfer from atomically dispersed tungsten, which greatly facilitates the adsorption and activation of oxygen on the catalyst.

7.
J Med Chem ; 64(21): 16056-16087, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34669409

ABSTRACT

Elevated expression of the c-MYC oncogene is one of the most common abnormalities in human cancers. Unfortunately, efforts to identify pharmacological inhibitors that directly target MYC have not yet yielded a drug-like molecule due to the lack of any known small molecule binding pocket in the protein, which could be exploited to disrupt MYC function. We have recently described a strategy to target MYC indirectly, where a screening effort designed to identify compounds that can rapidly decrease endogenous c-MYC protein levels in a MYC-amplified cell line led to the discovery of a compound series that phenocopies c-MYC knockdown by siRNA. Herein, we describe our medicinal chemistry program that led to the discovery of potent, orally bioavailable c-MYC-reducing compounds. The development of a minimum pharmacophore model based on empirical structure activity relationship as well as the property-based approach used to modulate pharmacokinetics properties will be highlighted.


Subject(s)
Drug Discovery , Proto-Oncogene Proteins c-myc/metabolism , Small Molecule Libraries/pharmacology , Animals , Area Under Curve , Cell Line, Tumor , Half-Life , Humans , Proto-Oncogene Proteins c-myc/genetics , Rats , Small Molecule Libraries/pharmacokinetics , Structure-Activity Relationship , Xenograft Model Antitumor Assays
8.
Cancer Cell ; 28(1): 57-69, 2015 Jul 13.
Article in English | MEDLINE | ID: mdl-26175415

ABSTRACT

Epigenetic dysregulation has emerged as an important mechanism in cancer. Alterations in epigenetic machinery have become a major focus for targeted therapies. The current report describes the discovery and biological activity of a cyclopropylamine containing inhibitor of Lysine Demethylase 1 (LSD1), GSK2879552. This small molecule is a potent, selective, orally bioavailable, mechanism-based irreversible inactivator of LSD1. A proliferation screen of cell lines representing a number of tumor types indicated that small cell lung carcinoma (SCLC) is sensitive to LSD1 inhibition. The subset of SCLC lines and primary samples that undergo growth inhibition in response to GSK2879552 exhibit DNA hypomethylation of a signature set of probes, suggesting this may be used as a predictive biomarker of activity.


Subject(s)
Antineoplastic Agents/administration & dosage , Benzoates/administration & dosage , Cyclopropanes/administration & dosage , DNA Methylation/drug effects , Enzyme Inhibitors/administration & dosage , Histone Demethylases/antagonists & inhibitors , Lung Neoplasms/drug therapy , Small Cell Lung Carcinoma/drug therapy , Administration, Oral , Animals , Antineoplastic Agents/pharmacology , Benzoates/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclopropanes/pharmacology , Enzyme Inhibitors/pharmacology , Epigenesis, Genetic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Histone Demethylases/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Molecular Sequence Data , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/pathology , Xenograft Model Antitumor Assays
9.
Molecules ; 18(6): 6969-89, 2013 Jun 14.
Article in English | MEDLINE | ID: mdl-23771059

ABSTRACT

12-Hydroxy-9(10-->20)-5aH-abeo-abieta-1(10),8(9),12(13)-triene-11,14-dione (quinone 2) served as the dienophile in numerous intermolecular Diels-Alder reactions. These cycloadditions were conducted either thermally (including microwave heating) or with Lewis acid activation. While most dienes reacted with quinone 2 in good chemical yield, others were incompatible under the experimental conditions used.


Subject(s)
Cycloaddition Reaction , Quinones/chemistry , Catalysis , Quinones/chemical synthesis
10.
Nature ; 492(7427): 108-12, 2012 Dec 06.
Article in English | MEDLINE | ID: mdl-23051747

ABSTRACT

In eukaryotes, post-translational modification of histones is critical for regulation of chromatin structure and gene expression. EZH2 is the catalytic subunit of the polycomb repressive complex 2 (PRC2) and is involved in repressing gene expression through methylation of histone H3 on lysine 27 (H3K27). EZH2 overexpression is implicated in tumorigenesis and correlates with poor prognosis in several tumour types. Additionally, somatic heterozygous mutations of Y641 and A677 residues within the catalytic SET domain of EZH2 occur in diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma. The Y641 residue is the most frequently mutated residue, with up to 22% of germinal centre B-cell DLBCL and follicular lymphoma harbouring mutations at this site. These lymphomas have increased H3K27 tri-methylation (H3K27me3) owing to altered substrate preferences of the mutant enzymes. However, it is unknown whether specific, direct inhibition of EZH2 methyltransferase activity will be effective in treating EZH2 mutant lymphomas. Here we demonstrate that GSK126, a potent, highly selective, S-adenosyl-methionine-competitive, small-molecule inhibitor of EZH2 methyltransferase activity, decreases global H3K27me3 levels and reactivates silenced PRC2 target genes. GSK126 effectively inhibits the proliferation of EZH2 mutant DLBCL cell lines and markedly inhibits the growth of EZH2 mutant DLBCL xenografts in mice. Together, these data demonstrate that pharmacological inhibition of EZH2 activity may provide a promising treatment for EZH2 mutant lymphoma.


Subject(s)
Indoles/pharmacology , Indoles/therapeutic use , Lymphoma, Follicular/drug therapy , Lymphoma, Large B-Cell, Diffuse/drug therapy , Mutation/genetics , Polycomb Repressive Complex 2/antagonists & inhibitors , Pyridones/pharmacology , Pyridones/therapeutic use , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Enhancer of Zeste Homolog 2 Protein , Gene Expression Regulation, Neoplastic/drug effects , Gene Silencing/drug effects , Histone Methyltransferases , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Histones/chemistry , Histones/metabolism , Humans , Lymphoma, Follicular/enzymology , Lymphoma, Follicular/genetics , Lymphoma, Follicular/pathology , Lymphoma, Large B-Cell, Diffuse/enzymology , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Methylation/drug effects , Mice , Neoplasm Transplantation , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Transcriptional Activation/drug effects , Transplantation, Heterologous
11.
ACS Med Chem Lett ; 3(12): 1091-6, 2012 Dec 13.
Article in English | MEDLINE | ID: mdl-24900432

ABSTRACT

The histone H3-lysine 27 (H3K27) methyltransferase EZH2 plays a critical role in regulating gene expression, and its aberrant activity is linked to the onset and progression of cancer. As part of a drug discovery program targeting EZH2, we have identified highly potent, selective, SAM-competitive, and cell-active EZH2 inhibitors, including GSK926 (3) and GSK343 (6). These compounds are small molecule chemical tools that would be useful to further explore the biology of EZH2.

12.
J Med Chem ; 51(19): 6055-66, 2008 Oct 09.
Article in English | MEDLINE | ID: mdl-18771254

ABSTRACT

A study that was designed to identify plausible replacements for highly basic guanidine moiety contained in potent MC4R agonists, as exemplified by 1, led to the discovery of initial nonguanidine lead 5. Propyl analog 23 was subsequently found to be equipotent to 5, whereas analogs bearing smaller and branched alkyl groups at the 3 position of the oxopiperazine template demonstrated reduced binding affinity and agonist potency for MC4R. Acylation of the NH2 group of the 4F-D-Phe residue of 3-propyl analog 23 significantly increased the binding affinity and the functional activity for MC4R. Analogs with neutral and weakly basic capping groups of the D-Phe residue exhibited excellent MC4R selectivity against MC1R whereas those with an amino acid had moderate MC4R/MC1R selectivity. We have also demonstrated that compound 35 showed promising oral bioavailability and a moderate oral half life and induced significant weight loss in a 28-day rat obesity model.


Subject(s)
Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/therapeutic use , Obesity/drug therapy , Piperazines/pharmacology , Piperazines/therapeutic use , Receptor, Melanocortin, Type 4/agonists , Administration, Oral , Animals , Anti-Obesity Agents/chemistry , Biological Availability , Diet , Disease Models, Animal , Dogs , Drug Design , Drug Evaluation, Preclinical , Eating/drug effects , Male , Molecular Conformation , Piperazines/chemistry , Rats , Stereoisomerism
13.
J Med Chem ; 49(15): 4745-61, 2006 Jul 27.
Article in English | MEDLINE | ID: mdl-16854081

ABSTRACT

The design, synthesis, and structure-activity relationships (SAR) of a series of novel proline and pyrrolidine based melanocortin receptor (MCR) agonists are described. To validate a conformationally constrained Arg-Nal dipeptide analogue strategy, we first synthesized and evaluated a test set of cis-(2R,4R)-proline analogues (21a-g). All of these compounds showed significant binding and agonist potency at the hMC1R, hMC3R, and hMC4R. Potent cis-(2S,4R)-pyrrolidine based MCR agonists (35a-g) were subsequently developed by means of this design approach. A SAR study directed toward probing the effect of the two chiral centers in the pyrrolidine ring on biological activity revealed the importance of the (S) absolute configuration at the 2-position for binding affinity, agonist potency, and receptor selectivity. Among the four sets of the pyrrolidine diastereomers investigated, analogues with the (2S,4R) configuration were the most potent agonists across the three receptors, followed by those possessing the (2S,4S) configuration.


Subject(s)
Dipeptides/chemistry , Proline/analogs & derivatives , Proline/chemical synthesis , Pyrrolidines/chemical synthesis , Receptors, Melanocortin/agonists , Binding, Competitive , Cell Line , Humans , Ligands , Molecular Conformation , Molecular Mimicry , Proline/pharmacology , Pyrrolidines/pharmacology , Stereoisomerism , Structure-Activity Relationship
14.
Bioorg Med Chem Lett ; 16(17): 4668-73, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-16766182

ABSTRACT

The design and synthesis of a series of potent 1,3,4-trisubstituted-2-oxopiperazine based MC4 agonists are described. The tripeptidomimetic analogs (12a,b and 23) and the dipeptidomimetic 27 displayed single-nanomolar binding affinity and agonist potency for MC4R and excellent selectivity for MC4R relative to MC1R.


Subject(s)
Drug Design , Guanidines/chemistry , Guanidines/pharmacology , Piperazines/chemistry , Piperazines/pharmacology , Receptor, Melanocortin, Type 4/agonists , Guanidines/chemical synthesis , Molecular Structure , Piperazines/chemical synthesis , Receptor, Melanocortin, Type 4/metabolism , Structure-Activity Relationship
15.
Bioorg Med Chem Lett ; 16(6): 1721-5, 2006 Mar 15.
Article in English | MEDLINE | ID: mdl-16376076

ABSTRACT

The first synthesis of Tic-D-Phe Psi[CH(2)-CH(2)] isostere is described, which features diastereoselective alkylation of the tricyclic lactam 14. The use of this novel dipeptide isostere in the development of melanocortin agonists has been demonstrated by the synthesis of peptidomimetic 7 and non-peptidic ligand 27. Both compounds displayed significant binding and agonist potency at the MC4R.


Subject(s)
Dipeptides/chemical synthesis , Dipeptides/metabolism , Phenylalanine/chemistry , Receptor, Melanocortin, Type 4/agonists , Alkylation , Dipeptides/chemistry , Humans , Lactams/chemistry , Ligands , Models, Molecular , Molecular Mimicry , Molecular Structure , Receptor, Melanocortin, Type 3/agonists , Stereoisomerism , Structure-Activity Relationship
16.
Bioorg Med Chem Lett ; 15(11): 2819-23, 2005 Jun 02.
Article in English | MEDLINE | ID: mdl-15911261

ABSTRACT

A series of proline based melanocortin ligands has been developed on the basis of initial piperazine leads by using a more conformationally rigid scaffold. A number of these novel ligands showed significant binding affinity for MC3 and MC4 receptors.


Subject(s)
Proline/chemistry , Receptors, Melanocortin/drug effects , Drug Design , Humans , Ligands , Proline/pharmacology , Receptors, Melanocortin/metabolism , Stereoisomerism
17.
J Org Chem ; 69(16): 5322-7, 2004 Aug 06.
Article in English | MEDLINE | ID: mdl-15287777

ABSTRACT

The synthesis of the ortho- and para-e isomers in the oxide-bridged 5-phenylmorphan series of rigid tetracyclic compounds was accomplished via rac-5-(2-fluoro-5-nitrophenyl)-2-methyl-2-azabicyclo[3.3.1]nonan-9beta-ol ((+/-)-10), an intermediate containing an aromatic nitro-activated fluorine atom. The fluorine atom was used as the leaving group for the formation of the strained tetracyclic trans-fused 5,6-ring system in rac-(1alpha,4aalpha,9aalpha)-1,3,4,9a-tetrahydro-2-methyl-6-nitro-2H-1,4a-propanobenzofuro[2,3-c]pyridine ((+/-)-11), although preference for cis ring fusion during the formation of tricyclic tetra- and hexahydrodibenzofurans has been well-documented. Single-crystal X-ray crystallographic study of the desired para-e isomer ((+/-)-2), as well as of two intermediates in its synthesis, provided assurance of the correct structures. The e-isomers are among the last of the 12 oxide-bridged 5-phenylmorphans to be synthesized. We envisioned the syntheses of these rigid, tetracyclic compounds in order to determine the three-dimensional pattern of a ligand that would enable interaction with opioid receptors as agonists or antagonists.


Subject(s)
Bridged-Ring Compounds , Molecular Probes/chemical synthesis , Morphinans/chemical synthesis , Receptors, Opioid/metabolism , Bridged-Ring Compounds/chemistry , Crystallography, X-Ray , Fluorine/chemistry , Molecular Structure , Stereoisomerism
18.
J Med Chem ; 47(10): 2624-34, 2004 May 06.
Article in English | MEDLINE | ID: mdl-15115403

ABSTRACT

In our efforts toward developing a nonselective ligand that would block the effects of stimulants such as methamphetamine at dopamine (DA), serotonin (5-HT), and norepinephrine (NE) transporters, we synthesized a series of 3-(3,4-dichlorophenyl)-1-indanamine derivatives. Two of the examined higher affinity compounds had a phenolic hydroxyl group enabling preparation of a medium to long chain carboxylic acid ester that might eventually be useful for a long-acting depot formulation. The in vitro data indicated that (-)-(1R,3S)-trans-3-(3,4-dichlorophenyl)-6-hydroxy-N-methyl-1-indanamine ((-)-(1R,3S)-11) displays high-affinity binding and potent inhibition of uptake at all three biogenic amine transporters. In vivo microdialysis experiments demonstrated that intravenous administration of (-)-(1R,3S)-11 to rats elevated extracellular DA and 5-HT in the nucleus accumbens in a dose-dependent manner. Pretreating rats with 0.5 mg/kg (-)-(1R,3S)-11 elevated extracellular DA and 5-HT by approximately 150% and reduced methamphetamine-induced neurotransmitter release by about 50%. Ex vivo autoradiography, however, demonstrated that iv administration of (-)-(1R,3S)-11 produced a dose-dependent, persistent occupation of 5-HT transporter binding sites but not DA transporter sites.


Subject(s)
Biogenic Amines/metabolism , Indans/chemical synthesis , Membrane Transport Proteins/metabolism , Animals , Autoradiography , Carrier Proteins/metabolism , Crystallography, X-Ray , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins , Extracellular Fluid/metabolism , In Vitro Techniques , Indans/chemistry , Indans/pharmacology , Ligands , Membrane Glycoproteins/metabolism , Molecular Structure , Nerve Tissue Proteins/metabolism , Norepinephrine Plasma Membrane Transport Proteins , Nucleus Accumbens/metabolism , Rats , Serotonin/metabolism , Serotonin Plasma Membrane Transport Proteins , Stereoisomerism , Structure-Activity Relationship , Symporters/metabolism
19.
Bioorg Med Chem ; 10(1): 175-83, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11738619

ABSTRACT

A series of compounds related to N-butyl-N-ethyl[2,5,6-trimethyl-7-(2,4,6-trimethylphenyl)pyrrolo[2,3-d]pyrimidin-4-yl]amine (1, antalarmin) have been prepared and evaluated for their CRHR1 binding affinity as the initial step in the development of selective high affinity hydrophilic nonpeptide corticotropin-releasing hormone type 1 receptor (CRHR1) antagonists. Calculated log P (Clog P) values were used to evaluate the rank order of hydrophilicity for these analogues. Introducing oxygenated functionalities (delta-hydroxy or bis-beta-ethereal) into 1 gave more hydrophilic compounds, which had good affinity for the receptor. Introducing an amino group or shortening the alkyl side chain was detrimental to CRHR1 affinity. The alcohol 4-[ethyl[2,5,6-trimethyl-7-(2,4,6-trimethylphenyl)pyrrolo[2,3-d]pyrimidin-4-yl]amino]butan-1-ol (3), bearing a terminal hydroxyl group on an N-alkyl side-chain, showed the highest CRHR1 binding affinity among these compounds (K(i)=0.68 nM), and is one of the highest affinity CRHR1 ligands known. Compounds 3-5, and 8, which are likely to be less lipophilic than 1, have high CRHR1 affinity and may be valuable probes to further study the CRH system.


Subject(s)
Pyrimidines/metabolism , Pyrroles/chemistry , Receptors, Corticotropin-Releasing Hormone/metabolism , Animals , Magnetic Resonance Spectroscopy , Male , Mass Spectrometry , Protein Binding , Pyrimidines/chemistry , Rats , Rats, Sprague-Dawley , Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors
20.
J Org Chem ; 61(23): 8169-8185, 1996 Nov 15.
Article in English | MEDLINE | ID: mdl-11667805

ABSTRACT

Concise syntheses of five tricyclic diterpenoids are reported. The key reaction in each synthesis is a cyclialkylation of a functionalized arene with a Lewis acid-activated conjugated dienone to generate a 6,7,6-fused tricycle.

SELECTION OF CITATIONS
SEARCH DETAIL
...