Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
bioRxiv ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38464179

ABSTRACT

Background: RhCMV/SIV vaccines protect ∼59% of vaccinated rhesus macaques against repeated limiting-dose intra-rectal exposure with highly pathogenic SIVmac239M, but the exact mechanism responsible for the vaccine efficacy is not known. It is becoming evident that complex interactions exist between gut microbiota and the host immune system. Here we aimed to investigate if the rhesus gut microbiome impacts RhCMV/SIV vaccine-induced protection. Methods: Three groups of 15 rhesus macaques naturally pre-exposed to RhCMV were vaccinated with RhCMV/SIV vaccines. Rectal swabs were collected longitudinally both before SIV challenge (after vaccination) and post challenge and were profiled using 16S rRNA based microbiome analysis. Results: We identified ∼2,400 16S rRNA amplicon sequence variants (ASVs), representing potential bacterial species/strains. Global gut microbial profiles were strongly associated with each of the three vaccination groups, and all animals tended to maintain consistent profiles throughout the pre-challenge phase. Despite vaccination group differences, using newly developed compositional data analysis techniques we identified a common gut microbial signature predictive of vaccine protection outcome across the three vaccination groups. Part of this microbial signature persisted even after SIV challenge. We also observed a strong correlation between this microbial signature and an early signature derived from whole blood transcriptomes in the same animals. Conclusions: Our findings indicate that changes in gut microbiomes are associated with RhCMV/SIV vaccine-induced protection and early host response to vaccination in rhesus macaques.

2.
Bioinformatics ; 40(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38478395

ABSTRACT

MOTIVATION: Currently there is a lack of efficient computational pipelines/tools for conducting simultaneous genome mapping of pathogen-derived and host reads from single cell RNA sequencing (scRNAseq) output from pathogen-infected cells. Contemporary options include processes involving multiple steps and/or running multiple computational tools, increasing user operations time. RESULTS: To address the need for new tools to directly map and quantify pathogen and host sequence reads from within an infected cell from scRNAseq datasets in a single operation, we have built a python package, called scPathoQuant. scPathoQuant extracts sequences that were not aligned to the primary host genome, maps them to a pathogen genome of interest (here as demonstrated for viral pathogens), quantifies total reads mapping to the entire pathogen, quantifies reads mapping to individual pathogen genes, and finally integrates pathogen sequence counts into matrix files that are used by standard single cell pipelines for downstream analyses with only one command. We demonstrate that scPathoQuant provides a scRNAseq viral and host genome-wide sequence read abundance analysis that can differentiate and define multiple viruses in a single sample scRNAseq output. AVAILABILITY AND IMPLEMENTATION: The SPQ package is available software accessible at https://github.com/galelab/scPathoQuant (DOI 10.5281/zenodo.10463670) with test codes and datasets available https://github.com/galelab/Whitmore_scPathoQuant_testSets (DOI 10.5281/zenodo.10463677) to serve as a resource for the community.


Subject(s)
Genome , Software , Sequence Analysis, DNA , Chromosome Mapping , High-Throughput Nucleotide Sequencing
3.
bioRxiv ; 2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37873381

ABSTRACT

Zika virus (ZikV) infection during pregnancy can cause congenital Zika syndrome (CZS) and neurodevelopmental delay in non-microcephalic infants, of which the pathogenesis remains poorly understood. We utilized an established pigtail macaque maternal-to-fetal ZikV infection/exposure model to study fetal brain pathophysiology of CZS manifesting from ZikV exposure in utero. We found prenatal ZikV exposure led to profound disruption of fetal myelin, with extensive downregulation in gene expression for key components of oligodendrocyte maturation and myelin production. Immunohistochemical analyses revealed marked decreases in myelin basic protein intensity and myelinated fiber density in ZikV-exposed animals. At the ultrastructural level, the myelin sheath in ZikV-exposed animals showed multi-focal decompaction consistent with perturbation or remodeling of previously formed myelin, occurring concomitant with dysregulation of oligodendrocyte gene expression and maturation. These findings define fetal neuropathological profiles of ZikV-linked brain injury underlying CZS resulting from ZikV exposure in utero. Because myelin is critical for cortical development, ZikV-related perturbations in oligodendrocyte function may have long-term consequences on childhood neurodevelopment, even in the absence of overt microcephaly.

4.
Sci Immunol ; 8(85): eadg0033, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37506197

ABSTRACT

Type I interferons (IFN-I) are critical mediators of innate control of viral infections but also drive the recruitment of inflammatory cells to sites of infection, a key feature of severe coronavirus disease 2019. Here, IFN-I signaling was modulated in rhesus macaques (RMs) before and during acute SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection using a mutated IFN-α2 (IFN-modulator; IFNmod), which has previously been shown to reduce the binding and signaling of endogenous IFN-I. IFNmod treatment in uninfected RMs was observed to induce a modest up-regulation of only antiviral IFN-stimulated genes (ISGs); however, in SARS-CoV-2-infected RMs, IFNmod reduced both antiviral and inflammatory ISGs. IFNmod treatment resulted in a potent reduction in SARS-CoV-2 viral loads both in vitro in Calu-3 cells and in vivo in bronchoalveolar lavage (BAL), upper airways, lung, and hilar lymph nodes of RMs. Furthermore, in SARS-CoV-2-infected RMs, IFNmod treatment potently reduced inflammatory cytokines, chemokines, and CD163+ MRC1- inflammatory macrophages in BAL and expression of Siglec-1 on circulating monocytes. In the lung, IFNmod also reduced pathogenesis and attenuated pathways of inflammasome activation and stress response during acute SARS-CoV-2 infection. Using an intervention targeting both IFN-α and IFN-ß pathways, this study shows that, whereas early IFN-I restrains SARS-CoV-2 replication, uncontrolled IFN-I signaling critically contributes to SARS-CoV-2 inflammation and pathogenesis in the moderate disease model of RMs.


Subject(s)
COVID-19 , Interferon Type I , Animals , Interferon Type I/pharmacology , SARS-CoV-2 , Macaca mulatta , Virus Replication , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Inflammation/drug therapy
5.
Front Virol ; 32023.
Article in English | MEDLINE | ID: mdl-37383986

ABSTRACT

Zika virus (ZIKV) is a mosquito-borne flavivirus that causes an acute febrile illness. ZIKV can be transmitted between sexual partners and from mother to fetus. Infection is strongly associated with neurologic complications in adults, including Guillain-Barré syndrome and myelitis, and congenital ZIKV infection can result in fetal injury and congenital Zika syndrome (CZS). Development of an effective vaccine is imperative to protect against ZIKV vertical transmission and CZS. Recombinant Vesicular Stomatitis virus (rVSV) is a highly effective and safe vector for the delivery of foreign immunogens for vaccine purposes. Here, we evaluate an rVSV vaccine expressing the full length pre-membrane (prM) and ZIKV envelope (E) proteins (VSV-ZprME), shown to be immunogenic in murine models of ZIKV infection, for its capacity to induce immune responses in nonhuman primates. Moreover, we assess the efficacy of the rVSVΔM-ZprME vaccine in the protection of pigtail macaques against ZIKV infection. Administration of the rVSVΔM-ZprME vaccine was safe, but it did not induce robust anti-ZIKV T-cell responses, IgM or IgG antibodies, or neutralizing antibodies in most animals. Post ZIKV challenge, animals that received the rVSVΔM control vaccine lacking ZIKV antigen had higher levels of plasma viremia compared to animals that received the rVSVΔM-ZprME vaccine. Anti-ZIKV neutralizing Ab titers were detected in a single animal that received the rVSVΔM-ZprME vaccine that was associated with reduced plasma viremia. The overall suboptimal ZIKV-specific cellular and humoral responses post-immunization indicates the rVSVΔM-ZprME vaccine did not elicit an immune response in this pilot study. However, recall antibody response to the rVSVΔM-ZprME vaccine indicates it may be immunogenic and further developments to the vaccine construct could enhance its potential as a vaccine candidate in a nonhuman primate pre-clinical model.

6.
bioRxiv ; 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36324810

ABSTRACT

Type-I interferons (IFN-I) are critical mediators of innate control of viral infections, but also drive recruitment of inflammatory cells to sites of infection, a key feature of severe COVID-19. Here, and for the first time, IFN-I signaling was modulated in rhesus macaques (RMs) prior to and during acute SARS-CoV-2 infection using a mutated IFNα2 (IFN-modulator; IFNmod), which has previously been shown to reduce the binding and signaling of endogenous IFN-I. In SARS-CoV-2-infected RMs, IFNmod reduced both antiviral and inflammatory ISGs. Notably, IFNmod treatment resulted in a potent reduction in (i) SARS-CoV-2 viral load in Bronchoalveolar lavage (BAL), upper airways, lung, and hilar lymph nodes; (ii) inflammatory cytokines, chemokines, and CD163+MRC1-inflammatory macrophages in BAL; and (iii) expression of Siglec-1, which enhances SARS-CoV-2 infection and predicts disease severity, on circulating monocytes. In the lung, IFNmod also reduced pathogenesis and attenuated pathways of inflammasome activation and stress response during acute SARS-CoV-2 infection. This study, using an intervention targeting both IFN-α and IFN-ß pathways, shows that excessive inflammation driven by type 1 IFN critically contributes to SARS-CoV-2 pathogenesis in RMs, and demonstrates the potential of IFNmod to limit viral replication, SARS-CoV-2 induced inflammation, and COVID-19 severity.

7.
Cell Host Microbe ; 30(9): 1207-1218.e7, 2022 09 14.
Article in English | MEDLINE | ID: mdl-35981532

ABSTRACT

Strain 68-1 rhesus cytomegalovirus expressing simian immunodeficiency virus (SIV) antigens (RhCMV/SIV) primes MHC-E-restricted CD8+ T cells that control SIV replication in 50%-60% of the vaccinated rhesus macaques. Whether this unconventional SIV-specific immunity and protection is unique to rhesus macaques or RhCMV or is intrinsic to CMV remains unknown. Here, using cynomolgus CMV vectors expressing SIV antigens (CyCMV/SIV) and Mauritian cynomolgus macaques, we demonstrate that the induction of MHC-E-restricted CD8+ T cells requires matching CMV to its host species. RhCMV does not elicit MHC-E-restricted CD8+ T cells in cynomolgus macaques. However, cynomolgus macaques vaccinated with species-matched 68-1-like CyCMV/SIV mounted MHC-E-restricted CD8+ T cells, and half of the vaccinees stringently controlled SIV post-challenge. Protected animals manifested a vaccine-induced IL-15 transcriptomic signature that is associated with efficacy in rhesus macaques. These findings demonstrate that the ability of species-matched CMV vectors to elicit MHC-E-restricted CD8+ T cells that are required for anti-SIV efficacy is conserved in nonhuman primates, and these data support the development of HCMV/HIV for a prophylactic HIV vaccine.


Subject(s)
AIDS Vaccines , Cytomegalovirus Infections , Cytomegalovirus Vaccines , SAIDS Vaccines , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , CD8-Positive T-Lymphocytes , Cytomegalovirus/genetics , Interleukin-15 , Macaca fascicularis , Macaca mulatta
8.
Retrovirology ; 19(1): 15, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35804422

ABSTRACT

BACKGROUND: Innate immunity and type 1 interferon (IFN) defenses are critical for early control of HIV infection within CD4 + T cells. Despite these defenses, some acutely infected cells silence viral transcription to become latently infected and form the HIV reservoir in vivo. Latently infected cells persist through antiretroviral therapy (ART) and are a major barrier to HIV cure. Here, we evaluated innate immunity and IFN responses in multiple T cell models of HIV latency, including established latent cell lines, Jurkat cells latently infected with a reporter virus, and a primary CD4 + T cell model of virologic suppression. RESULTS: We found that while latently infected T cell lines have functional RNA sensing and IFN signaling pathways, they fail to induce specific interferon-stimulated genes (ISGs) in response to innate immune activation or type 1 IFN treatment. Jurkat cells latently infected with a fluorescent reporter HIV similarly demonstrate attenuated responses to type 1 IFN. Using bulk and single-cell RNA sequencing we applied a functional genomics approach and define ISG expression dynamics in latent HIV infection, including HIV-infected ART-suppressed primary CD4 + T cells. CONCLUSIONS: Our observations indicate that HIV latency and viral suppression each link with cell-intrinsic defects in specific ISG induction. We identify a set of ISGs for consideration as latency restriction factors whose expression and function could possibly mitigate establishing latent HIV infection.


Subject(s)
HIV Infections , Interferon Type I , Antiviral Agents , CD4-Positive T-Lymphocytes , Humans , Immunity, Innate , Interferon Type I/metabolism , Virus Latency
9.
Commun Biol ; 5(1): 243, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35304593

ABSTRACT

Zika virus infection can result in devastating pregnancy outcomes when it crosses the placental barrier. For human pregnancies, the mechanisms of vertical transmission remain enigmatic. Utilizing a human placenta-cotyledon perfusion model, we examined Zika virus exposure in the absence of maternal factors. To distinguish responses related to viral infection vs. recognition, we evaluated cotyledons perfused with either active or inactivated Zika virus. Active Zika virus exposure resulted in infection, cell death and syncytium injury. Pathology corresponded with transcriptional changes related to inflammation and innate immunity. Inactive Zika virus exposure also led to syncytium injury and related changes in gene expression but not cell death. Our observations reveal pathologies and innate immune responses that are dependent on infection or virus placenta interactions independent of productive infection. Importantly, our findings indicate that Zika virus can infect and compromise placentas in the absence of maternal humoral factors that may be protective.


Subject(s)
Pregnancy Complications, Infectious , Zika Virus Infection , Zika Virus , Female , Humans , Infectious Disease Transmission, Vertical , Placenta , Pregnancy , Pregnancy Complications, Infectious/pathology , Zika Virus/physiology
10.
Pediatr Dev Pathol ; 25(4): 388-396, 2022.
Article in English | MEDLINE | ID: mdl-34904460

ABSTRACT

BACKGROUND: Innervation of aganglionic rectum in Hirschsprung disease derives from extrinsic nerves which project from cell bodies located outside the bowel wall and markers that distinguish extrinsic from intrinsic innervation are diagnostically useful. Myelin protein zero (MPZ) is a putative marker of extrinsic glial cells which could distinguish mucosal innervation in aganglionic vs ganglionic colon. METHODS: Sections and protein blots from ganglionic and aganglionic colon were immunolabeled with MPZ-specific antibodies. RESULTS: Immunolabeling of MPZ with a chicken polyclonal or mouse monoclonal antibody confirmed glial specificity and reliably labeled hypertrophic submucosal nerves in Hirschsprung disease. In contrast, a rabbit polyclonal antibody strongly labeled extrinsic and intrinsic nerves, including most mucosal branches. Immunoblots showed MPZ is expressed in mucosal glial cells, albeit at lower levels than in extrinsic nerves, and that the rabbit antibody is more sensitive that the other two probes. Unfortunately, none of these antibodies consistently distinguished mucosal innervation in aganglionic vs ganglionic rectum. CONCLUSIONS: The results suggest that (a) glial cell myelin protein zero expression is influenced more by location (mucosa vs submucosa) than the extrinsic vs intrinsic origin of the accompanied nerves and (b) myelin protein zero immunohistochemistry has limited value as a diagnostic adjunct for Hirschsprung disease.


Subject(s)
Hirschsprung Disease , Animals , Biomarkers , Colon/pathology , Hirschsprung Disease/pathology , Humans , Immunohistochemistry , Mice , Mucous Membrane/metabolism , Mucous Membrane/pathology , Myelin P0 Protein , Rabbits , Rectum/pathology
11.
Trends Neurosci ; 42(11): 757-759, 2019 11.
Article in English | MEDLINE | ID: mdl-31495452

ABSTRACT

Neurotropic viral infection can result in complications underscored by persistent T cell presence in the brain linked with cognitive decline. A recent study by Garber et al. showed that sustained T cell production of interferon (IFN)-γ mediating microglia activation triggers cognitive decline during recovery from Zika virus (ZIKV) or West Nile virus (WNV) infection.


Subject(s)
Cognitive Dysfunction , Flavivirus , West Nile Fever , West Nile virus , Zika Virus Infection , Zika Virus , Humans , Memory Disorders , Microglia , T-Lymphocytes
12.
J Exp Med ; 216(10): 2302-2315, 2019 10 07.
Article in English | MEDLINE | ID: mdl-31413072

ABSTRACT

Zika virus (ZIKV) infection during pregnancy causes congenital abnormalities, including microcephaly. However, rates vary widely, and the contributing risk factors remain unclear. We examined the serum antibody response to ZIKV and other flaviviruses in Brazilian women giving birth during the 2015-2016 outbreak. Infected pregnancies with intermediate or higher ZIKV antibody enhancement titers were at increased risk to give birth to microcephalic infants compared with those with lower titers (P < 0.0001). Similarly, analysis of ZIKV-infected pregnant macaques revealed that fetal brain damage was more frequent in mothers with higher enhancement titers. Thus, features of the maternal antibodies are associated with and may contribute to the genesis of ZIKV-associated microcephaly.


Subject(s)
Antibodies, Viral/immunology , Maternal-Fetal Exchange/immunology , Microcephaly/immunology , Pregnancy Complications, Infectious/immunology , Zika Virus Infection/immunology , Zika Virus/immunology , Animals , Brain/embryology , Brain/immunology , Brain/pathology , Female , Fetus/embryology , Fetus/immunology , Fetus/pathology , Humans , K562 Cells , Macaca mulatta , Macaca nemestrina , Microcephaly/pathology , Pregnancy , Pregnancy Complications, Infectious/pathology , Zika Virus Infection/pathology
13.
Nat Commun ; 9(1): 3371, 2018 08 22.
Article in English | MEDLINE | ID: mdl-30135445

ABSTRACT

The immunological and virological events that contribute to the establishment of Zika virus (ZIKV) infection in humans are unclear. Here, we show that robust cellular innate immune responses arising early in the blood and tissues in response to ZIKV infection are significantly stronger in males and correlate with increased viral persistence. In particular, early peripheral blood recruitment of plasmacytoid dendritic cells and higher production of monocyte chemoattractant protein (MCP-1) correspond with greater viral persistence and tissue dissemination. We also identify non-classical monocytes as primary in vivo targets of ZIKV infection in the blood and peripheral lymph node. These results demonstrate the potential differences in ZIKV pathogenesis between males and females and a key role for early cellular innate immune responses in the blood in viral dissemination and ZIKV pathogenesis.


Subject(s)
Immunity, Innate/physiology , Macaca nemestrina/immunology , Macaca nemestrina/virology , Zika Virus/immunology , Animals , Chemokine CCL2/metabolism , Macaca nemestrina/metabolism , Zika Virus Infection/immunology , Zika Virus Infection/metabolism
14.
Nat Med ; 24(3): 368-374, 2018 03.
Article in English | MEDLINE | ID: mdl-29400709

ABSTRACT

Zika virus (ZIKV) is a flavivirus with teratogenic effects on fetal brain, but the spectrum of ZIKV-induced brain injury is unknown, particularly when ultrasound imaging is normal. In a pregnant pigtail macaque (Macaca nemestrina) model of ZIKV infection, we demonstrate that ZIKV-induced injury to fetal brain is substantial, even in the absence of microcephaly, and may be challenging to detect in a clinical setting. A common and subtle injury pattern was identified, including (i) periventricular T2-hyperintense foci and loss of fetal noncortical brain volume, (ii) injury to the ependymal epithelium with underlying gliosis and (iii) loss of late fetal neuronal progenitor cells in the subventricular zone (temporal cortex) and subgranular zone (dentate gyrus, hippocampus) with dysmorphic granule neuron patterning. Attenuation of fetal neurogenic output demonstrates potentially considerable teratogenic effects of congenital ZIKV infection even without microcephaly. Our findings suggest that all children exposed to ZIKV in utero should receive long-term monitoring for neurocognitive deficits, regardless of head size at birth.


Subject(s)
Fetus/virology , Pregnancy Complications, Infectious/physiopathology , Zika Virus Infection/virology , Zika Virus/pathogenicity , Animals , Disease Models, Animal , Female , Fetus/physiopathology , Humans , Macaca nemestrina/virology , Microcephaly/diagnostic imaging , Microcephaly/physiopathology , Microcephaly/virology , Neurogenesis/genetics , Pregnancy , Pregnancy Complications, Infectious/diagnostic imaging , Pregnancy Complications, Infectious/virology , Zika Virus/genetics , Zika Virus Infection/genetics , Zika Virus Infection/physiopathology
15.
Am J Obstet Gynecol ; 218(4): 438.e1-438.e16, 2018 04.
Article in English | MEDLINE | ID: mdl-29475580

ABSTRACT

BACKGROUND: Most early preterm births are associated with intraamniotic infection and inflammation, which can lead to systemic inflammation in the fetus. The fetal inflammatory response syndrome describes elevations in the fetal interleukin-6 level, which is a marker for inflammation and fetal organ injury. An understanding of the effects of inflammation on fetal cardiac development may lead to insight into the fetal origins of adult cardiovascular disease. OBJECTIVE: The purpose of this study was to determine whether the fetal inflammatory response syndrome is associated with disruptions in gene networks that program fetal cardiac development. STUDY DESIGN: We obtained fetal cardiac tissue after necropsy from a well-described pregnant nonhuman primate model (pigtail macaque, Macaca nemestrina) of intrauterine infection (n=5) and controls (n=5). Cases with the fetal inflammatory response syndrome (fetal plasma interleukin-6 >11 pg/mL) were induced by either choriodecidual inoculation of a hypervirulent group B streptococcus strain (n=4) or intraamniotic inoculation of Escherichia coli (n=1). RNA and protein were extracted from fetal hearts and profiled by microarray and Luminex (Millipore, Billerica, MA) for cytokine analysis, respectively. Results were validated by quantitative reverse transcriptase polymerase chain reaction. Statistical and bioinformatics analyses included single gene analysis, gene set analysis, Ingenuity Pathway Analysis (Qiagen, Valencia, CA), and Wilcoxon rank sum. RESULTS: Severe fetal inflammation developed in the context of intraamniotic infection and a disseminated bacterial infection in the fetus. Interleukin-6 and -8 in fetal cardiac tissues were elevated significantly in fetal inflammatory response syndrome cases vs controls (P<.05). A total of 609 probe sets were expressed differentially (>1.5-fold change, P<.05) in the fetal heart (analysis of variance). Altered expression of select genes was validated by quantitative reverse transcriptase polymerase chain reaction that included several with known functions in cardiac injury, morphogenesis, angiogenesis, and tissue remodeling (eg, angiotensin I converting enzyme 2, STEAP family member 4, natriuretic peptide A, and secreted frizzled-related protein 4; all P<.05). Multiple gene sets and pathways that are involved in cardiac morphogenesis and vasculogenesis were downregulated significantly by gene set and Ingenuity Pathway Analysis (hallmark transforming growth factor beta signaling, cellular morphogenesis during differentiation, morphology of cardiovascular system; all P<.05). CONCLUSION: Disruption of gene networks for cardiac morphogenesis and vasculogenesis occurred in the preterm fetal heart of nonhuman primates with preterm labor, intraamniotic infection, and severe fetal inflammation. Inflammatory injury to the fetal heart in utero may contribute to the development of heart disease later in life. Development of preterm labor therapeutics must also target fetal inflammation to lessen organ injury and potential long-term effects on cardiac function.


Subject(s)
Fetal Diseases/metabolism , Myocardium/metabolism , Systemic Inflammatory Response Syndrome/metabolism , Angiotensin-Converting Enzyme 2 , Animals , Atrial Natriuretic Factor/genetics , Biomarkers/metabolism , Chorioamnionitis/metabolism , Down-Regulation , Female , Heart/microbiology , Interleukin-6/metabolism , Interleukin-8/metabolism , Macaca nemestrina , Membrane Proteins/genetics , Microarray Analysis , Models, Animal , Obstetric Labor, Premature , Oxidoreductases/genetics , Peptidyl-Dipeptidase A/genetics , Pregnancy , Proto-Oncogene Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction , Up-Regulation
16.
Nat Med ; 22(11): 1256-1259, 2016 11.
Article in English | MEDLINE | ID: mdl-27618651

ABSTRACT

We describe the development of fetal brain lesions after Zika virus (ZIKV) inoculation in a pregnant pigtail macaque. Periventricular lesions developed within 10 d and evolved asymmetrically in the occipital-parietal lobes. Fetal autopsy revealed ZIKV in the brain and significant cerebral white matter hypoplasia, periventricular white matter gliosis, and axonal and ependymal injury. Our observation of ZIKV-associated fetal brain lesions in a nonhuman primate provides a model for therapeutic evaluation.


Subject(s)
Brain/diagnostic imaging , Fetus/diagnostic imaging , Pregnancy Complications, Infectious/diagnostic imaging , Zika Virus Infection/diagnostic imaging , Animals , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Brain/metabolism , Brain/pathology , Brain/virology , Choline/metabolism , Creatine/metabolism , Echoencephalography , Female , Fetus/metabolism , Fetus/pathology , Fetus/virology , Glutamic Acid/metabolism , Glutamine/metabolism , Inositol/metabolism , Macaca nemestrina , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Pregnancy , Pregnancy Complications, Infectious/metabolism , Pregnancy Complications, Infectious/pathology , RNA, Viral/metabolism , Ultrasonography, Prenatal , Zika Virus/genetics , Zika Virus Infection/metabolism , Zika Virus Infection/pathology
17.
Cell Host Microbe ; 19(2): 254-66, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26867183

ABSTRACT

Pandemic influenza viruses modulate proinflammatory responses that can lead to immunopathogenesis. We present an extensive and systematic profiling of lipids, metabolites, and proteins in respiratory compartments of ferrets infected with either 1918 or 2009 human pandemic H1N1 influenza viruses. Integrative analysis of high-throughput omics data with virologic and histopathologic data uncovered relationships between host responses and phenotypic outcomes of viral infection. Proinflammatory lipid precursors in the trachea following 1918 infection correlated with severe tracheal lesions. Using an algorithm to infer cell quantity changes from gene expression data, we found enrichment of distinct T cell subpopulations in the trachea. There was also a predicted increase in inflammatory monocytes in the lung of 1918 virus-infected animals that was sustained throughout infection. This study presents a unique resource to the influenza research community and demonstrates the utility of an integrative systems approach for characterization of lipid metabolism alterations underlying respiratory responses to viruses.


Subject(s)
Influenza A Virus, H1N1 Subtype/physiology , Influenza, Human/metabolism , Lipid Metabolism , Animals , Disease Models, Animal , Ferrets , Gene Expression , Host-Pathogen Interactions , Humans , Influenza, Human/epidemiology , Influenza, Human/genetics , Influenza, Human/pathology , Lipids/chemistry , Lung/metabolism , Lung/pathology , Lung/virology , Metabolomics
18.
J Virol ; 90(5): 2240-53, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26656717

ABSTRACT

UNLABELLED: The 1918-1919 influenza pandemic remains the single greatest infectious disease outbreak in the past century. Mouse and nonhuman primate infection models have shown that the 1918 virus induces overly aggressive innate and proinflammatory responses. To understand the response to viral infection and the role of individual 1918 genes on the host response to the 1918 virus, we examined reassortant avian viruses nearly identical to the pandemic 1918 virus (1918-like avian virus) carrying either the 1918 hemagglutinin (HA) or PB2 gene. In mice, both genes enhanced 1918-like avian virus replication, but only the mammalian host adaptation of the 1918-like avian virus through reassortment of the 1918 PB2 led to increased lethality. Through the combination of viral genetics and host transcriptional profiling, we provide a multidimensional view of the molecular mechanisms by which the 1918 PB2 gene drives viral pathogenicity. We demonstrate that 1918 PB2 enhances immune and inflammatory responses concomitant with increased cellular infiltration in the lung. We also show for the first time, that 1918 PB2 expression results in the repression of both canonical and noncanonical Wnt signaling pathways, which are crucial for inflammation-mediated lung regeneration and repair. Finally, we utilize regulatory enrichment and network analysis to define the molecular regulators of inflammation, epithelial regeneration, and lung immunopathology that are dysregulated during influenza virus infection. Taken together, our data suggest that while both HA and PB2 are important for viral replication, only 1918 PB2 exacerbates lung damage in mice infected with a reassortant 1918-like avian virus. IMPORTANCE: As viral pathogenesis is determined in part by the host response, understanding the key host molecular driver(s) of virus-mediated disease, in relation to individual viral genes, is a promising approach to host-oriented drug efforts in preventing disease. Previous studies have demonstrated the importance of host adaptive genes, HA and PB2, in mediating disease although the mechanisms by which they do so are still poorly understood. Here, we combine viral genetics and host transcriptional profiling to show that although both 1918 HA and 1918 PB2 are important mediators of efficient viral replication, only 1918 PB2 impacts the pathogenicity of an avian influenza virus sharing high homology to the 1918 pandemic influenza virus. We demonstrate that 1918 PB2 enhances deleterious inflammatory responses and the inhibition of regeneration and repair functions coordinated by Wnt signaling in the lungs of infected mice, thereby promoting virus-associated disease.


Subject(s)
Influenza A Virus, H1N1 Subtype/enzymology , Influenza A Virus, H1N1 Subtype/pathogenicity , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/virology , RNA-Dependent RNA Polymerase/metabolism , Viral Proteins/metabolism , Virulence Factors/metabolism , Wnt Signaling Pathway/immunology , Animals , Cell Line , Disease Models, Animal , Female , Gene Expression Profiling , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Inflammation/pathology , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Lung/pathology , Lung/virology , Mice, Inbred BALB C , RNA-Dependent RNA Polymerase/genetics , Reassortant Viruses/enzymology , Reassortant Viruses/pathogenicity , Viral Proteins/genetics , Virulence , Virulence Factors/genetics
19.
BMC Genomics ; 15: 1161, 2014 Dec 22.
Article in English | MEDLINE | ID: mdl-25534508

ABSTRACT

BACKGROUND: The recent emergence of a novel coronavirus in the Middle East (designated MERS-CoV) is a reminder of the zoonotic and pathogenic potential of emerging coronaviruses in humans. Clinical features of Middle East respiratory syndrome (MERS) include atypical pneumonia and progressive respiratory failure that is highly reminiscent of severe acute respiratory syndrome (SARS) caused by SARS-CoV. The host response is a key component of highly pathogenic respiratory virus infection. Here, we computationally analyzed gene expression changes in a human airway epithelial cell line infected with two genetically distinct MERS-CoV strains obtained from human patients, MERS-CoV SA 1 and MERS-CoV Eng 1. RESULTS: Using topological techniques, including persistence homology and filtered clustering, we performed a comparative transcriptional analysis of human Calu-3 cell host responses to the different MERS-CoV strains, with MERS-CoV Eng 1 inducing early kinetic changes, between 3 and 12 hours post infection, compared to MERS-CoV SA 1. Robust transcriptional changes distinguished the two MERS-CoV strains predominantly at the late time points. Combining statistical analysis of infection and cytokine-stimulated Calu-3 transcriptomics, we identified differential innate responses, including up-regulation of extracellular remodeling genes following MERS-CoV Eng 1 infection and differential pro-inflammatory responses. CONCLUSIONS: Through our genomics-based approach, we found topological differences in the kinetics and magnitude of the host response to MERS-CoV SA 1 and MERS-CoV Eng 1, with differential expression of innate immune and pro-inflammatory responsive genes as a result of IFN, TNF and IL-1α signaling. Predicted activation for STAT3 mediating gene expression relevant for epithelial cell-to-cell adherens and junction signaling in MERS-CoV Eng 1 infection suggest that these transcriptional differences may be the result of amino acid differences in viral proteins known to modulate innate immunity during MERS-CoV infection.


Subject(s)
Cytokines/pharmacology , Gene Expression Profiling , Genomics , Host-Pathogen Interactions/immunology , Immunity, Innate , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/physiology , Cell Line , Humans , Immunity, Innate/drug effects , Inflammation/virology , Middle East Respiratory Syndrome Coronavirus/isolation & purification , STAT3 Transcription Factor/metabolism , Time Factors
20.
Nat Biotechnol ; 32(12): 1250-5, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25402615

ABSTRACT

The domestic ferret (Mustela putorius furo) is an important animal model for multiple human respiratory diseases. It is considered the 'gold standard' for modeling human influenza virus infection and transmission. Here we describe the 2.41 Gb draft genome assembly of the domestic ferret, constituting 2.28 Gb of sequence plus gaps. We annotated 19,910 protein-coding genes on this assembly using RNA-seq data from 21 ferret tissues. We characterized the ferret host response to two influenza virus infections by RNA-seq analysis of 42 ferret samples from influenza time-course data and showed distinct signatures in ferret trachea and lung tissues specific to 1918 or 2009 human pandemic influenza virus infections. Using microarray data from 16 ferret samples reflecting cystic fibrosis disease progression, we showed that transcriptional changes in the CFTR-knockout ferret lung reflect pathways of early disease that cannot be readily studied in human infants with cystic fibrosis disease.


Subject(s)
Ferrets/genetics , Genome , Influenza, Human/genetics , Sequence Analysis, DNA , Animals , Base Sequence , Chromosome Mapping , Disease Models, Animal , High-Throughput Nucleotide Sequencing , Humans , Influenza, Human/transmission , Influenza, Human/virology , Molecular Sequence Annotation , Molecular Sequence Data , Orthomyxoviridae/genetics , Orthomyxoviridae/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...