Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 11(1): 44, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38184639

ABSTRACT

Mammalian energy homeostasis is primarilly regulated by the hypothalamus and hindbrain, with the hippocampus, midbrain nuclei, and other regions implicated by evidence from human genetics studies. To understand how these non-canonical brain regions respond to imbalances in energy homeostasis, we performed two experiments examining the effects of different diets in male C57BL6 mice. In our first study, groups of six pair-housed mice were given access to chow, high-fat diet or fasted for 16 hours. In our subsequent study, two groups of 10 mice were single-housed and given access to chow or fasted for 24 h. We recorded food intake for each cage, the change in body weight for each animal, and collected hypothalamus, hippocampus, superior colliculus, inferior colliculus, frontal cortex, and zona incerta-centric samples. We performed bulk RNA sequencing on 185 samples and validated them by a series of quality control assessments including alignment quality and gene expression profiling. We believe these studies capture the transcriptomic effects of acute fasting and high-fat diet in the rodent brain and provide a valuable reference.


Subject(s)
Fasting , Obesity , RNA-Seq , Animals , Male , Mice , Brain , Diet , Mice, Inbred C57BL , Obesity/genetics
2.
Nat Genet ; 55(9): 1448-1461, 2023 09.
Article in English | MEDLINE | ID: mdl-37679419

ABSTRACT

Conventional measurements of fasting and postprandial blood glucose levels investigated in genome-wide association studies (GWAS) cannot capture the effects of DNA variability on 'around the clock' glucoregulatory processes. Here we show that GWAS meta-analysis of glucose measurements under nonstandardized conditions (random glucose (RG)) in 476,326 individuals of diverse ancestries and without diabetes enables locus discovery and innovative pathophysiological observations. We discovered 120 RG loci represented by 150 distinct signals, including 13 with sex-dimorphic effects, two cross-ancestry and seven rare frequency signals. Of these, 44 loci are new for glycemic traits. Regulatory, glycosylation and metagenomic annotations highlight ileum and colon tissues, indicating an underappreciated role of the gastrointestinal tract in controlling blood glucose. Functional follow-up and molecular dynamics simulations of lower frequency coding variants in glucagon-like peptide-1 receptor (GLP1R), a type 2 diabetes treatment target, reveal that optimal selection of GLP-1R agonist therapy will benefit from tailored genetic stratification. We also provide evidence from Mendelian randomization that lung function is modulated by blood glucose and that pulmonary dysfunction is a diabetes complication. Our investigation yields new insights into the biology of glucose regulation, diabetes complications and pathways for treatment stratification.


Subject(s)
Diabetes Mellitus, Type 2 , Glucose , Humans , Genome-Wide Association Study , Blood Glucose/genetics , Diabetes Mellitus, Type 2/genetics , Colon
3.
Nat Hum Behav ; 6(1): 155-163, 2022 01.
Article in English | MEDLINE | ID: mdl-34426670

ABSTRACT

Dietary intake is a major contributor to the global obesity epidemic and represents a complex behavioural phenotype that is partially affected by innate biological differences. Here, we present a multivariate genome-wide association analysis of overall variation in dietary intake to account for the correlation between dietary carbohydrate, fat and protein in 282,271 participants of European ancestry from the UK Biobank (n = 191,157) and Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (n = 91,114), and identify 26 distinct genome-wide significant loci. Dietary intake signals map exclusively to specific brain regions and are enriched for genes expressed in specialized subtypes of GABAergic, dopaminergic and glutamatergic neurons. We identified two main clusters of genetic variants for overall variation in dietary intake that were differently associated with obesity and coronary artery disease. These results enhance the biological understanding of interindividual differences in dietary intake by highlighting neural mechanisms, supporting functional follow-up experiments and possibly providing new avenues for the prevention and treatment of prevalent complex metabolic diseases.


Subject(s)
Diet , Genetic Loci , Obesity/genetics , Genome-Wide Association Study , Genotype , Humans , Nuclear Proteins/genetics , Phenotype , Polymorphism, Single Nucleotide
4.
Diabetes ; 70(9): 1945-1955, 2021 09.
Article in English | MEDLINE | ID: mdl-34176785

ABSTRACT

The dorsal vagal complex (DVC) in the hindbrain, composed of the area postrema, nucleus of the solitary tract, and dorsal motor nucleus of the vagus, plays a critical role in modulating satiety. The incretins glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) act directly in the brain to modulate feeding, and receptors for both are expressed in the DVC. Given the impressive clinical responses to pharmacologic manipulation of incretin signaling, understanding the central mechanisms by which incretins alter metabolism and energy balance is of critical importance. Here, we review recent single-cell approaches used to detect molecular signatures of GLP-1 and GIP receptor-expressing cells in the DVC. In addition, we discuss how current advancements in single-cell transcriptomics, epigenetics, spatial transcriptomics, and circuit mapping techniques have the potential to further characterize incretin receptor circuits in the hindbrain.


Subject(s)
Glucagon-Like Peptide-1 Receptor/metabolism , Receptors, Gastrointestinal Hormone/metabolism , Rhombencephalon/metabolism , Animals , Feeding Behavior/physiology , Gastric Inhibitory Polypeptide/metabolism , Glucagon-Like Peptide 1/metabolism , Humans , Single-Cell Analysis
5.
Bioinformatics ; 35(21): 4501-4503, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31070726

ABSTRACT

SUMMARY: INDRA-IPM (Interactive Pathway Map) is a web-based pathway map modeling tool that combines natural language processing with automated model assembly and visualization. INDRA-IPM contextualizes models with expression data and exports them to standard formats. AVAILABILITY AND IMPLEMENTATION: INDRA-IPM is available at: http://pathwaymap.indra.bio. Source code is available at http://github.com/sorgerlab/indra_pathway_map. The underlying web service API is available at http://api.indra.bio:8000. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Computers , Software , Natural Language Processing
SELECTION OF CITATIONS
SEARCH DETAIL
...