Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters











Publication year range
1.
Molecules ; 29(17)2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39274872

ABSTRACT

This work presents the results of studying dilute aqueous solutions of commercial Ln(NO3)3 · xH2O salts with Ln = Ce-Lu using X-ray diffraction (XRD), IR spectroscopy, X-ray absorption spectroscopy (XAS: EXAFS/XANES), and pH measurements. As a reference point, XRD and XAS measurements for characterized Ln(NO3)3 · xH2O microcrystalline powder samples were performed. The local structure of Ln-nitrate complexes in 20 mM Ln(NO3)3 · xH2O aqueous solution was studied under total external reflection conditions and EXAFS geometry was applied to obtain high-quality EXAFS data for solutions with low concentrations of Ln3+ ions. Results obtained by EXAFS spectroscopy showed significant contraction of the first coordination sphere during the dissolution process for metal ions located in the middle of the lanthanide series. It was established that in Ln(NO3)3 · xH2O solutions with Ln = Ce, Sm, Gd, Yb (c = 134, 100, 50 and 20 mM) there are coordinated and, to a greater extent, non-coordinated nitrate groups with bidentate and predominantly monodentate bonds with Ln ions, the number of which increases upon transition from cerium to ytterbium. For the first time, the antibacterial and antifungal activity of Ln(NO3)3 · xH2O Ln = Ce, Sm, Gd, Tb, Yb solutions with different concentrations and pH was presented. Cross-relationships between the concentration of solutions and antimicrobial activity with the type of Ln = Ce, Sm, Gd, Tb, Yb were established, as well as the absence of biocidal properties of solutions with a concentration of 20 mM, except for Ln = Yb. The important role of experimental conditions in obtaining and interpreting the results was noted.

2.
J Contam Hydrol ; 266: 104400, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39024912

ABSTRACT

Sorption of Pu(VI) onto synthesized goethite under oxidizing and normal conditions was investigated, which revealed its pH dependence on different solid/liquid ratios. Pu speciation upon sorption on the solid phase was characterized via extended X-ray absorption fine structure (EXAFS) spectroscopy, while that in solution was assessed using ultraviolet-visible (UV-Vis) spectroscopy and liquid-liquid extraction. The obtained results demonstrate differences in plutonium behavior in the studied systems. Pu(VI) remains hexavalent on the goethite surface and in solution under oxidizing conditions. While Pu(IV) is stabilized on the mineral and Pu(V) is found in solution under normal conditions. This study provides the thermodynamic descriptions of these reactions.


Subject(s)
Oxidation-Reduction , Plutonium , Plutonium/chemistry , Adsorption , Minerals/chemistry , Iron Compounds/chemistry , Hydrogen-Ion Concentration , X-Ray Absorption Spectroscopy , Thermodynamics
3.
Inorg Chem ; 63(29): 13402-13412, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38973586

ABSTRACT

The crystal structure of ammonium polyuranates xUO3·yNH3·zH2O has been investigated. Powder X-ray diffraction (PXRD) has been employed to define single-phase samples within a series of synthesized compounds, which are further characterized by elemental analysis to ascertain the stoichiometry, revealing compositions of 3UO3·NH3·5H2O and 2UO3·NH3·3H2O. Analysis using extended X-ray absorption fine structure and vibrational spectroscopy has elucidated that both 3UO3·NH3·5H2O and 2UO3·NH3·3H2O possess a local structure similar to the metaschoepite─layered U(VI) oxohydroxide UO3·2H2O, but with H2O and NH4+ groups in the interlayers. The structures of ammonium polyuranates are solved from PXRD data, revealing their relationship to the U(VI) oxohydroxide with the established composition of NH4[(UO2)3O2(OH)3]·3H2O and NH4[(UO2)2O2(OH)]·2H2O for 3UO3·NH3·5H2O and 2UO3·NH3·H2O, respectively. These structures maintain the arrangement of U-O polyhedra as pentagonal bipyramids. However, disparities in lattice parameters, space group, and layer topology from UO3·2H2O emphasize significant structural modifications resulting from the substitution of water by ammonium. Moreover, the anion topology of the NH4[(UO2)2O2(OH)]·2H2O has no analogues among uranium oxohydroxide minerals. Notably, ammonium polyuranates, when compared, have minimal alterations in lattice parameters regardless of the presence of ammonia within the structure. The revealed results contribute valuable insights into the UO3-NH3-H2O system and hold potential applications in the field of nuclear power as ammonium polyuranates form during actinide precipitation in back-end of the nuclear fuel cycle and also serve as precursors in the fabrication of nuclear fuel.

4.
Materials (Basel) ; 17(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38255606

ABSTRACT

Mono-, di-, and trifluorophenyl substituted in different positions of amine fragments bis [2-[[(E)-((fluorophenyl)iminomethyl]-N-(p-tolylsulfonyl)anilino]zinc(II) complexes were synthesized. Their crystal structure, photo- and electroluminescent properties, and protistocidal, fungistatic, and antibacterial activities were studied. It has been shown that the introduction of fluorine atoms and an increase in their number in the ligand structure of the resulting metal complexes promote the luminescence quantum yields and values of performance and brightness in EL cells compared to their previously studied chlorine-substituted analogs.

5.
Inorg Chem ; 62(51): 21025-21035, 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38091513

ABSTRACT

Herein, neptunium(V) carbonates containing sodium or potassium cations were synthesized via chemical precipitation. Various techniques such as scanning electron microscopy, energy-dispersive X-ray spectroscopy, thermogravimetry combined with differential scanning calorimetry, X-ray diffraction, and X-ray absorption spectroscopy were used to analyze the microstructures and elemental compositions of these samples. The crystal structures of hydrated NaNpO2CO3·3H2O (P1, a = 4.3420(2) Å, b = 4.8962(2) Å, c = 10.0933(11) Å, α = 91.014(7)°, ß = 77.834(11)°, and γ = 90.004(10)°) and KNpO2CO3 (P63/mmc, a = b = 5.0994(2) Å, c = 10.2210(15) Å) were determined for the first time using the Rietveld method. The synthesized carbonates exhibited distinct structural features and decomposition behaviors, as demonstrated through thermogravimetry analysis, which revealed the presence of crystalline hydrate water in sodium neptunium(V) carbonate. Furthermore, calcium-containing neptunium(V) carbonates were synthesized and characterized. Samples with the general composition Ca0.5NpO2CO3 were obtained using the ion exchange method and chemical precipitation from solutions containing competing cations (Ca2+, Na+, K+, and Mg2+). The synthesis conditions notably affected the diffraction patterns of the obtained calcium neptunium(V) carbonates. This investigation enhances our understanding of the structural properties and thermodynamic stability of neptunium(V) carbonates in the presence of diverse cations commonly found under radioactive waste disposal conditions.

6.
J Synchrotron Radiat ; 30(Pt 6): 1114-1126, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37738030

ABSTRACT

X-ray absorption and emission spectroscopies nowadays are advanced characterization methods for fundamental and applied actinide research. One of the advantages of these methods is to reveal slight changes in the structural and electronic properties of radionuclides. The experiments are generally carried out at synchrotrons. However, considerable progress has been made to construct laboratory-based X-ray spectrometers for X-ray absorption and emission spectroscopies. Laboratory spectrometers are reliable, effective and accessible alternatives to synchrotrons, especially for actinide research, which allow dispensing with high costs of the radioactive sample transport and synchrotron time. Moreover, data from laboratory spectrometers, obtained within a reasonable time, are comparable with synchrotron results. Thereby, laboratory spectrometers can complement synchrotrons or can be used for preliminary experiments to find perspective samples for synchrotron experiments with better resolution. Here, the construction and implementation of an X-ray spectrometer (LomonosovXAS) in Johann-geometry at a radiochemistry laboratory is reported. Examples are given of the application of LomonosovXAS to actinide systems relevant to the chemistry of f-elements, the physical chemistry of nuclear power engineering and the long-term disposal of spent nuclear fuel.

7.
Environ Sci Technol ; 57(13): 5243-5251, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36940242

ABSTRACT

The sorption of Ce(III) on three abundant environmental minerals (goethite, anatase, and birnessite) was investigated. Batch sorption experiments using a radioactive 139Ce tracer were performed to investigate the key features of the sorption process. Differences in sorption kinetics and changes in oxidation states were found in the case of the sorption of Ce(III) on birnessite compared to that on other minerals. Speciation of cerium onto all of the studied minerals was investigated using spectral and microscopic methods: high-resolution transmission electron microscopy (HRTEM), electron energy loss spectroscopy (EELS), and X-ray absorption spectroscopy (XAS) in conjunction with theoretical calculations. It was found that during the sorption process onto birnessite, Ce(III) was oxidized to Ce(IV), while the Ce(III) on goethite and anatase surfaces remained unchanged. Oxidation of Ce(III) by sorption on birnessite was also accompanied by the formation of CeO2 nanoparticles on the mineral surface, which depended on the initial cerium concentration and pH value.


Subject(s)
Cerium , Minerals , Minerals/chemistry , Adsorption
8.
Sci Rep ; 13(1): 4088, 2023 03 11.
Article in English | MEDLINE | ID: mdl-36906622

ABSTRACT

Uranium oxide microparticles ingestion is one of the potential sources of internal radiation doses to the humans at accidental or undesirable releases of radioactive materials. It is important to predict the obtained dose and possible biological effect of these microparticles by studying uranium oxides transformations in case of their ingestion or inhalation. Using a combination of methods, a complex examination of structural changes of uranium oxides in the range from UO2 to U4O9, U3O8 and UO3 as well as before and after exposure of uranium oxides in simulated biological fluids: gastro-intestinal and lung-was carried out. Oxides were thoroughly characterized by Raman and XAFS spectroscopy. It was determined that the duration of expose has more influence on all oxides transformations. The greatest changes occurred in U4O9, that transformed into U4O9-y. UO2.05 and U3O8 structures became more ordered and UO3 did not undergo significant transformation.


Subject(s)
Uranium Compounds , Uranium , Humans , Uranium/chemistry , Human Body , Oxides/chemistry
9.
Dalton Trans ; 52(4): 866-871, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36629146

ABSTRACT

A design of Pt(IV) prodrugs with tumor cell targeting moieties leading to increased selectivity is of interest. Herein, we designed a novel Pt(IV) prodrugs with COX-inhibitor naproxen, long-chain hydrophobic stearic acid moiety and biotin as axial ligands. We have established that for Pt(IV) prodrugs with biotin and naproxen or stearate in axial position, the lipophilicity rather than biotin receptors expression is the main factor of cytotoxicity. We also monitored the reduction speed of Pt(IV) prodrug 3 with naproxen and biotin in axial positions in A549 cells using XANES and demonstrated that the prodrug gradually releases cisplatin within 20 hours of incubation.


Subject(s)
Antineoplastic Agents , Prodrugs , Prodrugs/chemistry , Antineoplastic Agents/chemistry , Naproxen , Biotin/chemistry , Cisplatin/pharmacology , Cell Line, Tumor
10.
Int J Mol Sci ; 23(23)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36499583

ABSTRACT

New azomethine compounds of 2-(N-tosylamino)benzaldehyde or 5-chloro-2-(N-tosylamino)benzaldehyde and the corresponding chlorine-substituted anilines, zinc(II) complexes based on them have been synthesized. The structures of azomethines and their complexes were determined by elemental analysis, IR, 1H NMR, X-ray spectroscopy, and X-ray diffraction. It is found that all ZnL2 complexes have a tetrahedral structure according to XAFS and X-ray diffraction data. The photoluminescent properties of azomethines and zinc complexes in methylene chloride solution and in solid form have been studied. It is shown that the photoluminescence quantum yields of solid samples of the complexes are an order of magnitude higher compared to the solutions and range from 11.34% to 48.3%. The thermal properties of Zn(II) complexes were determined by thermal gravimetric analysis (TGA) and differential scanning calorimetry. The TGA curves of all the compounds suggest their high thermal stability up to temperatures higher than 290 °C. The electrochemical properties of all complexes were investigated by the cyclic voltammetry method. The multilayered devices ITO/PEDOT:PSS/NPD/Zn complex/ TPBI/LiF/Al with wide electroluminescence (EL) color range spanning the range from bluish-green (494 nm) to green (533 nm) and the high values of brightness, current and power efficiency were fabricated. The biological activity of azomethines and zinc complexes has been studied. In the case of complexes, the protistocidal activity of the zinc complex with azomethine of 5-chloro-2-(N-tosylamino)benzaldehyde with 4-chloroaniline was two times higher than the activity of the reference drug toltrazuril.


Subject(s)
Thiosemicarbazones , Zinc , Zinc/chemistry , Chlorine , Thiosemicarbazones/chemistry , Luminescence , Chlorides , Halogens
11.
Inorg Chem ; 61(37): 14705-14717, 2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36047922

ABSTRACT

We report herein a Pt(IV) prodrug with metronidazole in axial positions Pt-Mnz. The nitroaromatic axial ligand was conjugated with a cisplatin scaffold to irreversibly reduce under hypoxic conditions, thereby retaining the Pt(IV) prodrug in the area of hypoxia. X-ray near-edge adsorption spectroscopy (XANES) on dried drug-preincubated tumor cell samples revealed a gradual release of cisplatin from the Pt-Mnz prodrug instead of rapid intracellular degradation. The ability of the prodrug to penetrate into three-dimensional (3D) spheroid cellular cultures was evaluated by a novel electrochemical assay via a platinum-coated carbon nanoelectrode, capable of single-cell measurements. Using a unique technique of electrochemical measurements in single tumor spheroids, we were able to both detect the real-time response of the axial ligand to hypoxia and establish the depth of penetration of the drug into the tumor model.


Subject(s)
Antineoplastic Agents , Prodrugs , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Carbon , Cell Line, Tumor , Cisplatin/chemistry , Humans , Hypoxia , Ligands , Metronidazole/pharmacology , Platinum/chemistry , Prodrugs/chemistry , Prodrugs/pharmacology
12.
Molecules ; 27(10)2022 May 12.
Article in English | MEDLINE | ID: mdl-35630592

ABSTRACT

A synthetic procedure for the synthesis of azacrown ethers with a combination of pendant arms has been developed and the synthesized ligand, characterized by various techniques, was studied. The prepared benzoazacrown ether with hybrid pendant arms and its complexes with copper and lead cations were studied in terms of biomedical applications. Similarly to a fully acetate analog, the new one binds both cations with close stability constants, despite the decrease in both constants. The calculated geometry of the complexes correlate with the data from X-ray absorption and NMR spectroscopy. Coordination of both cations differs due to the difference between the ionic radii. However, these chelation modes provide effective shielding of cations in both cases, that was shown by the stability of their complexes in the biologically relevant media towards transchelation and transmetallation.


Subject(s)
Chelating Agents , Copper , Cations , Copper/chemistry , Ligands , Pyridines/chemistry
13.
J Synchrotron Radiat ; 29(Pt 2): 288-294, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35254290

ABSTRACT

Extended X-ray absorption fine structure (EXAFS) is a comprehensive and usable method for characterizing the structures of various materials, including radioactive and nuclear materials. Unceasing discussions about the interpretation of EXAFS results for actinide nanoparticles (NPs) or colloids were still present during the last decade. In this study, new experimental data for PuO2 and CeO2 NPs with different average sizes were compared with published data on AnO2 NPs that highlight the best fit and interpretation of the structural data. In terms of the structure, PuO2, CeO2, ThO2, and UO2 NPs exhibit similar behaviors. Only ThO2 NPs have a more disordered and even partly amorphous structure, which results in EXAFS characteristics. The proposed new core-shell model for NPs with calculated effective coordination number perfectly fits the results of the variations in a metal-metal shell with a decrease in NP size.

14.
J Synchrotron Radiat ; 29(Pt 2): 303-314, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35254292

ABSTRACT

Understanding the speciation of technogenic uranium in natural systems is crucial for estimating U migration and bioavailability and for developing remediation strategies for contaminated territories. Reference EXAFS data of model laboratory-prepared uranium compounds (`standards') are necessary to analyze U-contaminated samples from nuclear legacy sites. To minimize errors associated with measurements on different synchrotrons, it is important not only to compare data obtained on environmentally contaminated samples with the literature but also with `standards' collected at the same beamline. Before recording the EXAFS spectra, all reference compounds were thoroughly characterized by Raman spectroscopy and powder X-ray diffraction. The U(VI) local molecular environments in the reference compounds, i.e. uranyl oxyhydroxides, phosphates, carbonates and uranates, were examined using XAFS. Based on the EXAFS fitting results obtained, including the nature of the bonding, interatomic distances and coordination numbers, parameters that are typical for a particular U compound were differentiated. Using data for `standards', U speciation in the sample of radioactively contaminated soil was determined to be a mixture of U oxyhydroxide and carbonate phases.


Subject(s)
Uranium , X-Ray Diffraction
15.
Phys Chem Chem Phys ; 23(38): 21729-21737, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34550143

ABSTRACT

Implantation and subsequent behaviour of heavy noble gases (Ar, Kr, and Xe) in few-layer graphene sheets and in nanodiamonds are studied both using computational methods and experimentally using X-ray absorption spectroscopy. X-ray absorption spectroscopy provides substantial support for Xe-vacancy (Xe-V) defects as main sites for Xe in nanodiamonds. It is shown that noble gases in thin graphene stacks distort the layers, forming bulges. The energy of an ion placed in between flat graphene sheets is notably lower than that in domains with high curvature. However, if the ion is trapped in the curved domain, considerable additional energy is required to displace it. This phenomenon is likely responsible for strong binding of noble gases implanted into disordered carbonaceous phase in meteorites (the Q-component).

17.
J Environ Radioact ; 229-230: 106539, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33493873

ABSTRACT

Sequential extraction tests were used to study partitioning of U in the bottom sediments of two reservoirs that have been used for the temporary storage of nuclear waste at the "Mining and Chemical Combine" (Zheleznogorsk, Krasnoyarsk region, Russia). Various sequential extraction protocols were applied to the bottom sediment samples and the results compared with those obtained for laboratory-prepared simulated samples with different speciation and partitioning, e.g., U(VI) sorbed onto various inorganic minerals and organic matter, as well as uranium oxides. The distributions of uranium in fractions extracted from simulated and actual contaminated samples were compared to shed light on the speciation of U in the bottom sediments. X-ray absorption spectroscopy, X-ray diffraction, and scanning electron microscopy were also used to analyze the partitioning of U in contaminated sediments. We also compared the results obtained using the spectroscopic and microscopic techniques, as well as sequential extraction.


Subject(s)
Radiation Monitoring , Uranium , Water Pollutants, Radioactive , Geologic Sediments , Russia , Uranium/analysis
18.
Environ Geochem Health ; 43(6): 2301-2315, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32794112

ABSTRACT

Metal speciation, linked directly to bioaccessibility and lability, is a key to be considered when assessing associated human and environmental health risks originated from anthropogenic activities. To identify the Zn and Cu speciation in the highly contaminated, technogenically transformed soils (Technosol) from the impact zone near the industrial sludge reservoirs of chemical plant (Siverskyi Donets River floodplain, southern Russia), the validity of the BCR sequential extraction procedure using the X-ray absorption fine-structure and X-ray powder diffraction (XRD) analyses was examined after each of the three stages. After the removal of exchange and carbonate-bonded Zn and Cu compounds from Technosol (first stage of extraction), the resulting residual soil showed enrichment in a great diversity of metal compounds, primarily with Me-S and Me-O bonds. The number of compounds with a higher solubility decreased at the subsequent stages of extraction. In the residual soil left over after extracting the first and second fractions, the dominant Zn-S bond appeared as würtzite (hexagonal ZnS) that made up more than 50%, while the Cu-S bond was almost completely represented only by chalcocite (Cu2S). The XRD analysis revealed the authigenic minerals of metals with S: sphalerite (cubic ZnS), würtzite (hexagonal ZnS), covellite (CuS) and bornite (Cu5FeS4). The scanning electron microscopy data confirmed that würtzite was the dominant form of Me with sulfur-containing and carbonate-containing minerals. The Zn-S bond was the main component (57%), whereas the Cu-O bond was dominant in the residual fraction (the fraction after the third-stage extraction). The results revealed that the composition of the residual fractions might include some of the most stable and hard-to-recover metal compounds of technogenic origin. Thus, the application of the novel instrumental methods, coupled with the chemical fractionation, revealed the incomplete selectivity of the extractants in the extraction of Zn and Cu in long-term highly contaminated soils.


Subject(s)
Copper/isolation & purification , Soil Pollutants/chemistry , Soil Pollutants/isolation & purification , Zinc/isolation & purification , Chemical Fractionation/methods , Copper/analysis , Copper/chemistry , Ferrous Compounds/chemistry , Humans , Microscopy, Electron, Scanning , Powders , Russia , Sewage , Soil/chemistry , Soil Pollutants/analysis , Spectrometry, X-Ray Emission , Sulfides/chemistry , X-Ray Absorption Spectroscopy , X-Ray Diffraction , Zinc/analysis , Zinc/chemistry , Zinc Compounds
19.
Materials (Basel) ; 13(20)2020 Oct 17.
Article in English | MEDLINE | ID: mdl-33080816

ABSTRACT

X-ray absorption near edge structure (XANES) spectra for protein layers adsorbed at liquid interfaces in a Langmuir trough have been recorded for the first time. We studied the parkin protein (so-called E3 ubiquitin ligase), which plays an important role in pathogenesis of Parkinson disease. Parkin contains eight Zn binding sites, consisting of cysteine and histidine residues in a tetracoordinated geometry. Zn K-edge XANES spectra were collected in the following two series: under mild radiation condition of measurements (short exposition time) and with high X-ray radiation load. XANES fingerprint analysis was applied to obtain information on ligand environments around zinc ions. Two types of zinc coordination geometry were identified depending on X-ray radiation load. We found that, under mild conditions, local zinc environment in our parkin preparations was very similar to that identified in hemoglobin, treated with a solution of ZnCl2 salt. Under high X-ray radiation load, considerable changes in the zinc site structure were observed; local zinc environment appeared to be almost identical to that defined in Zn-containing enzyme alkaline phosphatase. The formation of a similar metal site in unrelated protein molecules, observed in our experiments, highlights the significance of metal binding templates as essential structural modules in protein macromolecules.

20.
ACS Appl Mater Interfaces ; 12(40): 45122-45135, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-32902246

ABSTRACT

Extremely defect graphene oxide (dGO) is proposed as an advanced sorbent for treatment of radioactive waste and contaminated natural waters. dGO prepared using a modified Hummers oxidation procedure, starting from reduced graphene oxide (rGO) as a precursor, shows significantly higher sorption of U(VI), Am(III), and Eu(III) than standard graphene oxides (GOs). Earlier studies revealed the mechanism of radionuclide sorption related to defects in GO sheets. Therefore, explosive thermal exfoliation of graphite oxide was used to prepare rGO with a large number of defects and holes. Defects and holes are additionally introduced by Hummers oxidation of rGO, thus providing an extremely defect-rich material. Analysis of characterization by XPS, TGA, and FTIR shows that dGO oxygen functionalization is predominantly related to defects, such as flake edges and edge atoms of holes, whereas standard GO exhibits oxygen functional groups mostly on the planar surface. The high abundance of defects in dGO results in a 15-fold increase in sorption capacity of U(VI) compared to that in standard Hummers GO. The improved sorption capacity of dGO is related to abundant carboxylic group attached hole edge atoms of GO flakes as revealed by synchrotron-based extended X-ray absorption fine structure (EXAFS) and high-energy resolution fluorescence detected X-ray absorption near edge structure (HERFD-XANES) spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL