Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 69(20): 5702-5708, 2021 May 26.
Article in English | MEDLINE | ID: mdl-33977711

ABSTRACT

As emulsifiers become saturated on the surface of an emulsion droplet, any additional emulsifier migrates to the aqueous phase. Continuous phase surfactants have been shown to increase α-tocopherol efficacy, but it is unclear if this is the result of chemical or physical effects. The addition of α-tocopherol to an oil-in-water emulsion after homogenization resulted in a 70% increase of α-tocopherol in the continuous phase when sodium dodecyl sulfate (SDS) was at levels that were greater than the SDS critical micelle concentration. Conversely, when α-tocopherol was dissolved in the lipid before emulsification, continuous phase SDS concentrations did not increase. When SDS concentration led to an increase in the aqueous phase α-tocopherol, the oxidative stability of oil-in-water emulsions increased. Data indicated that the increased antioxidant activity was the result of surfactant micelles being able to decrease the prooxidant activity of α-tocopherol. Considering these results, surfactant micelles could be an important tool to increase the effectiveness of α-tocopherol.


Subject(s)
Antioxidants , Micelles , Emulsions , Sodium Dodecyl Sulfate , Surface-Active Agents , alpha-Tocopherol
2.
Food Chem ; 339: 127898, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-32871303

ABSTRACT

In this study, lipid oxidation evaluation methods were compared for a krill-oil-in-water emulsion system. With this aim, thiocyanate and DPPP (diphenyl-1-pyrenylphosphine) fluorescence methods were comparatively examined to determine primary oxidation products. 2-thiobarbituric acid reactive substances (TBARS), hexanal and propanal formation were also monitored as secondary oxidations products. All oxidation experiments were performed via both auto-oxidation at 45 °C and light-riboflavin induced photooxidation at 37 °C. The results have shown that thiocyanate method was not suitable to measure lipid hydroperoxides by the both in auto- and photo-oxidation systems. On the other hand, fluorescence intensity of samples containing the DPPP probe increased during incubation period which indicates the formation of lipid hydroperoxides could be detected via this method. TBARS, hexanal and propanal concentrations also increased during storage period and the formation kinetics of secondary oxidation products was confirmed that the DPPP fluorescence method was accurate and reliable at different environmental conditions.


Subject(s)
Emulsions/chemistry , Euphausiacea/chemistry , Oils/chemistry , Water/chemistry , Animals , Antioxidants/chemistry , Euphausiacea/metabolism , Organophosphorus Compounds/chemistry , Oxidation-Reduction , Particle Size , Pyrenes/chemistry , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet
3.
Food Chem ; 213: 457-461, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27451204

ABSTRACT

The influence of particle size and optical properties on the stability of fish oil-in-water emulsions to riboflavin-induced oxidation by blending different combinations of small (d=44nm) and large (d=216nm) lipid droplets was examined. Emulsion turbidity increased with increasing mean droplet diameter due to greater light scattering by larger particles. The influence of droplet size on the stability of the emulsions to riboflavin-induced lipid oxidation during storage at 20 or 37°C was measured. At 37°C, the rate of lipid hydroperoxide formation increased with decreasing droplet diameter, but there were no significant differences in propanal concentrations. At 20°C, both peroxide and propanal values indicated that the rate of oxidation increased with decreasing droplet size. These data show that riboflavin was more effective at promoting oxidation in nanoemulsions containing small droplets because light was able to penetrate more easily and generate reactive oxygen species.


Subject(s)
Emulsions/metabolism , Fish Oils/metabolism , Light , Particle Size , Riboflavin/metabolism , Water/metabolism , Animals , Emulsions/analysis , Fish Oils/analysis , Lipid Peroxides/analysis , Lipid Peroxides/metabolism , Oxidation-Reduction , Riboflavin/analysis , Water/analysis
4.
Food Funct ; 7(8): 3590-8, 2016 Aug 10.
Article in English | MEDLINE | ID: mdl-27443794

ABSTRACT

Krill oil is a unique source of omega-3 fatty acids since it is a mixture of phospholipids and triacylglycerols. Due to the presence of phospholipids, it can form oil-in-water emulsions without additional food additives. In this work, the physical stability of krill oil-in-water emulsions was determined at various pH values (3-7) and NaCl concentrations (50-1000 mM). The initial particle size ranged from 150 to 165 nm. The emulsions were the most stable at pH ≥ 5.0 and salt concentrations below 100 mM. Lipid oxidation was accelerated by iron and inhibited by Trolox and α-tocopherol. Trolox was a more effective antioxidant than α-tocopherol. α-Tocopherol had a better inhibitory effect when it was added after homogenization than when added to the lipid prior to homogenization. These results indicate that krill oil emulsions could represent a self-emulsifying, oxidatively stable source of omega-3 fatty acids that may be used in functional foods.


Subject(s)
Emulsions , Euphausiacea/chemistry , Fatty Acids, Omega-3/chemistry , Functional Food , Oils/chemistry , Animals , Antioxidants/chemistry , Chromans/chemistry , Hydrogen-Ion Concentration , Iron/chemistry , Lipid Metabolism , Oxidation-Reduction , Particle Size , Phospholipids/chemistry , Physical Phenomena , Tocopherols/chemistry
5.
J Agric Food Chem ; 63(42): 9333-40, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26452408

ABSTRACT

The food industry is interested in the utilization of nanoemulsions stabilized by natural emulsifiers, but little research has been conducted to determine the oxidative stability of such emulsions. In this study, two natural (lecithin and quillaja saponin) and two synthetic (Tween 80 and sodium dodecyl sulfate) surfactants were used to fabricate omega-3 nanoemulsion using high pressure homogenization (microfluidization). Initially, all the nanoemulsions contained small (d from 45 to 89 nm) and anionic (ζ-potential from -8 to -65 mV) lipid droplets (pH 7). The effect of pH, ionic strength, and temperature on the physical stability of the nanoemulsion system was examined. Nanoemulsion stabilized with Tween 80, quillaja saponin, or sodium dodecyl sulfate (SDS) exhibited no major changes in particle size or visible creaming in the pH range of 3 to 8. All nanoemulsions were relatively stable to salt addition (0 to 500 mM NaCl, pH 7.0). Nanoemulsions stabilized with SDS and quillaja saponin were stable to heating (30 to 90 °C). The impact of surfactant type on lipid oxidation was determined in the presence and absence of the singlet oxygen photosensitizers, riboflavin, and rose bengal. Riboflavin and rose bengal accelerated lipid oxidation when compare to samples without photosensitizers. Lipid hydroperoxide formation followed the order Tween 80 > SDS > lecithin > quillaja saponin, and propanal formation followed the order lecithin > Tween 80 > SDS > quillaja saponin at 37 °C for autoxidation. The same order of oxidative stability was observed in the presence of photosensitized oxidation promoted by riboflavin. Quillaja saponin consistently produced the most oxidatively stable emulsions, which could be due to its high free radical scavenging capacity.


Subject(s)
Fatty Acids, Omega-3/chemistry , Lecithins/chemistry , Plant Extracts/chemistry , Plant Oils/chemistry , Quillaja/chemistry , Surface-Active Agents/chemistry , Emulsions/chemistry , Light , Nanoparticles/chemistry , Osmolar Concentration , Oxidation-Reduction/radiation effects , Saponins/chemistry , Temperature
6.
J Agric Food Chem ; 63(6): 1819-24, 2015 Feb 18.
Article in English | MEDLINE | ID: mdl-25650525

ABSTRACT

Lipid oxidation is a serious problem for oil-containing food products because it negatively affects shelf life and nutritional composition. An antioxidant strategy commonly employed to prevent or delay oxidation in foods is to remove oxygen from the closed food-packaging system. An alternative technique is use of an edible oxygen scavenger to remove oxygen within the food. Ascorbic acid (AA) is a particularly promising antioxidant because of its natural label and multiple antioxidative functions. In this study, AA was tested as an oxygen scavenger in buffer and an oil-in-water (O/W) emulsion. The effects of transition metals on the ability of AA to scavenge oxygen were determined. Headspace oxygen decrease less than 1% in the medium-chain triacylglycerol (MCT) O/W emulsion system (pH 3 and 7). AA was able to almost completely remove dissolved oxygen (DO) in a buffered solution. Transition metals (Fe(2+) and Cu(+)) significantly accelerated the degradation of AA; however, iron and copper only increased DO depletion rates, by 10.6-16.4% from day 1 to 7, compared to the control. AA (2.5-20 mM) decreased DO in a 1% O/W emulsion system 32.0-64.0% and delayed the formation of headspace hexanal in the emulsion from 7 to over 20 days. This research shows that, when AA is used in an O/W emulsion system, oxidation of the emulsion system can be delay by multiple mechanisms.


Subject(s)
Antioxidants/pharmacology , Ascorbic Acid/pharmacology , Emulsions/chemistry , Lipid Peroxidation/drug effects , Chromatography, Gas , Copper/pharmacology , Food Technology , Iron/pharmacology , Lipid Peroxides/analysis , Oxidation-Reduction , Oxygen/analysis
7.
J Am Oil Chem Soc ; 89(4): 551-559, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22467958

ABSTRACT

The oils of some unconventional oilseeds (hemp, radish, terebinth, stinging nettle, laurel) were obtained by a cold-press method in which the total oil content, fatty acids, tocopherol isomers, some metal contents (Ca, Mg, Fe, Cu), antioxidant activity and oxidative stability were determined. The total oil content was determined ranging between 30.68 and 43.12%, and the oil samples had large amounts of unsaturated fatty acids, with oleic acid and linoleic acid. Of all the oils, terebinth seed oil had the highest α-tocopherol content (102.21 ± 1.01 mg/kg oil). Laurel oilseed had the highest antiradical activity in both the DPPH and ABTS assays. The peroxide value of the non-oxidized oils ranged between 0.51 and 3.73 mequiv O(2)/kg oil. The TBARS value of the non-oxidized oils ranged between 0.68 ± 0.02 and 6.43 ± 0.48 mmol MA equiv/g oil. At 110 °C, the Rancimat induction period of the oils ranged between 1.32 and 43.44 h. The infrared spectra of the samples were recorded by FTIR spectroscopy. The absorbance values of the spectrum bands were observed and it was determined that some of the chemical groups of oxidized oils caused changes in absorbance. As a result of the present research, the analyzed oils could be evaluated as an alternative to traditionally consumed vegetable oils or as additives to them.

SELECTION OF CITATIONS
SEARCH DETAIL
...