Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Cardiovasc Med ; 10: 1221620, 2023.
Article in English | MEDLINE | ID: mdl-38034381

ABSTRACT

Background: An abdominal aortic aneurysm (AAA) is a life-threatening cardiovascular disease. Although its pathogenesis is still poorly understood, recent evidence suggests that AAA displays autoimmune disease characteristics. Particularly, T cells responding to AAA-related antigens in the aortic wall may contribute to an initial immune response. Single-cell RNA (scRNA) T cell receptor (TCR) and B cell receptor (BCR) sequencing is a powerful tool for investigating clonality. However, difficulties such as limited numbers of isolated cells must be considered during implementation and data analysis, making biological interpretation challenging. Here, we perform a representative single-cell immune repertoire analysis in experimental murine AAA and show a reliable bioinformatic processing pipeline highlighting opportunities and limitations of this approach. Methods: We performed scRNA TCR and BCR sequencing of isolated lymphocytes from the infrarenal aorta of male C57BL/6J mice 3, 7, 14, and 28 days after AAA induction via elastase perfusion of the aorta. Sham-operated mice at days 3 and 28 and non-operated mice served as controls. Results: Comparison of complementarity-determining region (CDR3) length distribution of 179 B cells and 796 T cells revealed neither differences between AAA and control nor between the disease stages. We found no clonal expansion of B cells in AAA. For T cells, we identified several clones in 11 of 16 AAA samples and one of eight control samples. Immune receptor repertoire comparison indicated that only a few clones were shared between the individual AAA samples. The most frequently used V-genes in the TCR beta chain in AAA were TRBV3, TRBV19, and the splicing variant TRBV12-2 + TRBV13-2. Conclusion: We found no clonal expansion of B cells but evidence for clonal expansion of T cells in elastase-induced AAA in mice. Our findings imply that a more precise characterization of TCR and BCR distribution requires a more extensive number of lymphocytes to prevent undersampling and potentially detect rare clones. Thus, further experiments are necessary to confirm our findings. In summary, this paper examines TCR and BCR sequencing results, identifies limitations and pitfalls, and offers guidance for future studies.

2.
Liver Int ; 42(5): 1185-1203, 2022 05.
Article in English | MEDLINE | ID: mdl-35129269

ABSTRACT

BACKGROUND AND AIMS: Leukocyte infiltration is a hallmark of hepatic inflammation. The Junctional Adhesion Molecule A (JAM-A) is a crucial regulator of leukocyte extravasation and is upregulated in human viral fibrosis. Reduced shear stress within hepatic sinusoids and the specific phenotype of liver sinusoidal endothelial cells (LSEC) cumulate in differing adhesion characteristics during liver fibrosis. The aim of this study was to define the functional role of cell-specific adhesion molecule JAM-A during hepatic fibrogenesis. METHODS: Complete, conditional (intestinal epithelial; endothelial) and bone marrow chimeric Jam-a knockout animals and corresponding C57Bl/6 wild-type animals were treated with carbon tetrachloride (CCl4 , 6 weeks). For functional analyses of JAM-A, comprehensive in vivo studies, co-culture models and flow-based adhesion assays were performed. RESULTS: Complete and bone marrow-derived Jam-a-/- animals showed aggravated fibrosis with increased non-sinusoidal, perivascular accumulation of CD11b+ F4/80+ monocyte-derived macrophages in contrast to wild-type mice. Despite being associated with disturbed epithelial barrier function, an intestinal epithelial Jam-a knockout did not affect fibrogenesis. In endothelial-specific Jam-a-/- animals, liver fibrosis was aggravated alongside sinusoid capillarization and hepatic stellate cell (HSC) activation. HSC activation is induced via Jam-a-/- LSEC-derived secretion of soluble factors. Sinusoid CD31 expression and hedgehog gene signalling were increased, but leukocyte infiltration and adhesion to LSECs remained unaffected. CONCLUSIONS: Our models decipher cell-specific JAM-A to exert crucial functions during hepatic fibrogenesis. JAM-A on bone marrow-derived cells regulates non-sinusoidal vascular immune cell recruitment, while endothelial JAM-A controls liver sinusoid capillarization and HSC quiescence.


Subject(s)
Junctional Adhesion Molecule A , Animals , Endothelial Cells/metabolism , Fibrosis , Hedgehog Proteins/metabolism , Hepatic Stellate Cells/metabolism , Humans , Junctional Adhesion Molecule A/metabolism , Liver/pathology , Liver Cirrhosis/pathology , Mice , Mice, Inbred C57BL
3.
TH Open ; 5(4): e533-e542, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34901735

ABSTRACT

The cause of atherothrombosis is rupture or erosion of atherosclerotic lesions, leading to an increased risk of myocardial infarction or stroke. Here, platelet activation plays a major role, leading to the release of bioactive molecules, for example, chemokines and coagulation factors, and to platelet clot formation. Several antiplatelet therapies have been developed for secondary prevention of cardiovascular events, in which anticoagulant drugs are often combined. Besides playing a role in hemostasis, platelets are also involved in inflammation. However, it is unclear whether current antiplatelet therapies also affect platelet immune functions. In this study, the possible anti-inflammatory effects of antiplatelet medications on chemokine release were investigated using enzyme-linked immunosorbent assay and on the chemotaxis of THP-1 cells toward platelet releasates. We found that antiplatelet medication acetylsalicylic acid (ASA) led to reduced chemokine (CC motif) ligand 5 (CCL5) and chemokine (CXC motif) ligand 4 (CXCL4) release from platelets, while leukocyte chemotaxis was not affected. Depending on the agonist, α IIb ß 3 and P2Y 12 inhibitors also affected CCL5 or CXCL4 release. The combination of ASA with a P2Y 12 inhibitor or a phosphodiesterase (PDE) inhibitor did not lead to an additive reduction in CCL5 or CXCL4 release. Interestingly, these combinations did reduce leukocyte chemotaxis. This study provides evidence that combined therapy of ASA and a P2Y 12 or PDE3 inhibitor can decrease the inflammatory leukocyte recruiting potential of the releasate of activated platelets.

4.
Atherosclerosis ; 310: 17-25, 2020 10.
Article in English | MEDLINE | ID: mdl-32877806

ABSTRACT

BACKGROUND AND AIMS: Platelets can release extracellular vesicles (EVs) upon stimulation with various agonists. Interestingly, platelets from patients with Glanzmann thrombasthenia have reduced EV release. These platelets lack functional αIIbß3 integrins, indicating that αIIbß3 integrin is critical in vesicle release. Integrin activation is central in platelet function and is associated with e.g. adhesion, aggregation and cytoskeletal rearrangement. However, while platelet activation pathways are widely known, the mechanisms underlying EV release remain uncharacterized. We investigated the role of integrin αIIbß3, phosphatidyl serine (PS) exposure, cytoskeletal rearrangement and their associated signalling pathways in EV release. METHODS: EVs were isolated from activated platelets. Platelet activation status was measured by multicolour flow cytometry. A panel of pharmacologic inhibitors was used to interfere in specific signalling pathways. EV release was quantified enzymatically based on membrane PS content and nanoparticle tracking analysis. In addition, real-time visualization of EV shedding with confocal microscopy and EVs with Cryo-TEM imaging was performed. RESULTS: Platelet activation with convulxin resulted in higher EV release than with activation by thrombin. Kinetic measurements indicated that EV release followed the pattern of αIIbß3 integrin activation and subsequent closure paralleled by PS exposure. Prevention of αIIbß3 activation with the inhibitor tirofiban dramatically suppressed EV release. Similar results were obtained using αIIbß3-deficient platelets from patients with Glanzmann thrombasthenia. Inhibition of actin cytoskeleton rearrangement decreased EV release, whereas inhibition of individual signalling targets upstream of cytoskeletal rearrangement showed no such effects. CONCLUSION: Platelet EV release requires three main events: integrin activation and closure, PS exposure, and cytoskeletal rearrangement.


Subject(s)
Extracellular Vesicles , Phosphatidylserines , Blood Platelets , Humans , Integrin beta3 , Platelet Activation , Platelet Glycoprotein GPIIb-IIIa Complex
5.
Bioconjug Chem ; 31(3): 948-955, 2020 03 18.
Article in English | MEDLINE | ID: mdl-32077689

ABSTRACT

Atherosclerosis is one of the leading causes of mortality in developed and developing countries. The onset of atherosclerosis development is accompanied by overexpression of several inflammatory chemokines. Neutralization of these chemokines by chemokine-binding agents attenuates atherosclerosis progression. Here, we studied structural binding features of the tick protein Evasin-3 to chemokine (C-X-C motif) ligand 1 (CXCL1). We showed that Evasin-3-bound CXCL1 is unable to activate the CXCR2 receptor, but retains affinity to glycosaminoglycans. This observation was exploited to detect inflammation by visualizing a group of closely related CXC-type chemokines deposited on cell walls in human endothelial cells and murine carotid arteries by a fluorescent Evasin-3 conjugate. This work highlights the applicability of tick-derived chemokine-binding conjugates as a platform for the development of new agents for inflammation imaging.


Subject(s)
Arthropod Proteins/metabolism , Carotid Artery Diseases/diagnostic imaging , Chemokines, CXC/metabolism , Endothelium, Vascular/metabolism , Ticks , Animals , Carotid Artery Diseases/metabolism , Glycosaminoglycans/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Inflammation/diagnostic imaging , Inflammation/metabolism , Mice
6.
J Extracell Vesicles ; 8(1): 1585163, 2019.
Article in English | MEDLINE | ID: mdl-30863515

ABSTRACT

Airway epithelial cells secrete extracellular vesicles (EVs) under basal conditions and when exposed to cigarette smoke extract (CSE). Getting insights into the composition of these EVs will help unravel their functions in homeostasis and smoking-induced pathology. Here, we characterized the proteomic composition of basal and CSE-induced airway epithelial EVs. BEAS-2B cells were left unexposed or exposed to 1% CSE for 24 h, followed by EV isolation using ultrafiltration and size exclusion chromatography. Isolated EVs were labelled with tandem mass tags and their proteomic composition was determined using nano-LC-MS/MS. Tissue factor (TF) activity was determined by a factor Xa generation assay, phosphatidylserine (PS) content by prothrombinase assay and thrombin generation using calibrated automated thrombogram (CAT). Nano-LC-MS/MS identified 585 EV-associated proteins with high confidence. Of these, 201 were differentially expressed in the CSE-EVs according to the moderated t-test, followed by false discovery rate (FDR) adjustment with the FDR threshold set to 0.1. Functional enrichment analysis revealed that 24 proteins of the pathway haemostasis were significantly up-regulated in CSE-EVs, including TF. Increased TF expression on CSE-EVs was confirmed by bead-based flow cytometry and was associated with increased TF activity. CSE-EVs caused faster and more thrombin generation in normal human plasma than control-EVs, which was partly TF-, but also PS-dependent. In conclusion, proteomic analysis allowed us to predict procoagulant properties of CSE-EVs which were confirmed in vitro. Cigarette smoke-induced EVs may contribute to the increased cardiovascular and respiratory risk observed in smokers.

7.
Sci Rep ; 8(1): 10647, 2018 Jul 13.
Article in English | MEDLINE | ID: mdl-30006564

ABSTRACT

Myocardial infarction (MI) is a major cause of death in Western countries and finding new strategies for its prevention and treatment is thus of high priority. In a previous study, we have demonstrated a pathophysiologic relevance for the heterophilic interaction of CCL5 and CXCL4 in the progression of atherosclerosis. A specifically designed compound (MKEY) to block this CCL5-CXCR4 interaction is investigated as a potential therapeutic in a model of myocardial ischemia/reperfusion (I/R) damage. 8 week-old male C57BL/6 mice were intravenously treated with MKEY or scrambled control (sMKEY) from 1 day before, until up to 7 days after I/R. By using echocardiography and intraventricular pressure measurements, MKEY treatment resulted in a significant decrease in infarction size and preserved heart function as compared to sMKEY-treated animals. Moreover, MKEY treatment significantly reduced the inflammatory reaction following I/R, as revealed by specific staining for neutrophils and monocyte/macrophages. Interestingly, MKEY treatment led to a significant reduction of citrullinated histone 3 in the infarcted tissue, showing that MKEY can prevent neutrophil extracellular trap formation in vivo. Disrupting chemokine heterodimers during myocardial I/R might have clinical benefits, preserving the therapeutic benefit of blocking specific chemokines, and in addition, reducing the inflammatory side effects maintaining normal immune defence.


Subject(s)
Cardiotonic Agents/therapeutic use , Chemokine CCL5/metabolism , Myocardial Infarction/drug therapy , Myocardial Reperfusion Injury/drug therapy , Peptides, Cyclic/therapeutic use , Platelet Factor 4/metabolism , Protein Multimerization/drug effects , Animals , Cardiotonic Agents/pharmacology , Chemokine CCL5/immunology , Disease Models, Animal , Drug Evaluation, Preclinical , Heart/drug effects , Heart/physiopathology , Humans , Male , Mice , Mice, Inbred C57BL , Myocardial Infarction/immunology , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/immunology , Myocardial Reperfusion Injury/physiopathology , Myocardium/immunology , Peptides, Cyclic/pharmacology , Platelet Factor 4/immunology , Protein Multimerization/immunology , Treatment Outcome
8.
J Vis Exp ; (134)2018 04 09.
Article in English | MEDLINE | ID: mdl-29683452

ABSTRACT

The recruitment of leukocytes upon injury or inflammation to sites of injury or tissue damage has been investigated during recent decades and has resulted in the concept of the leukocyte adhesion cascade. However, the exact molecular mechanisms involved in leukocyte recruitment have not yet been fully identified. Since leukocyte recruitment remains an important subject in the field of infection, inflammation, and (auto-) immune research, we present a straightforward laminar flow-based assay to study underlying mechanisms of the adhesion, de-adhesion, and transmigration of leukocytes under venous and arterial flow regimes. The in vitro assay can be used to study the molecular mechanisms that underlie the interactions between leukocytes and their cellular partners in different models of vascular inflammation. This protocol describes a laminar flow-based assay using a parallel-flow chamber and an inverted phase contrast microscope connected to a camera to study the interactions of leukocytes and endothelial cells or platelets, which can be visualized and recorded then analyzed offline. Endothelial cells, platelets, or leukocytes can be pretreated with inhibitors or antibodies to determine the role of specific molecules during this process. Shear conditions, i.e. arterial or venous shear stress, can be easily adapted by the viscosity and flow rate of the perfused fluids and the height of the channel.


Subject(s)
Endothelium, Vascular/cytology , Environment, Controlled , Leukocytes/cytology , Blood Platelets/metabolism , Cell Culture Techniques/methods , Endothelium, Vascular/metabolism , Humans , Leukocytes/metabolism
9.
Sci Rep ; 7(1): 15297, 2017 11 10.
Article in English | MEDLINE | ID: mdl-29127410

ABSTRACT

Appropriate isolation methods are essential for unravelling the relative contribution of extracellular vesicles (EVs) and the EV-free secretome to homeostasis and disease. We hypothesized that ultrafiltration followed by size exclusion chromatography (UF-SEC) provides well-matched concentrates of EVs and free secreted molecules for proteomic and functional studies. Conditioned media of BEAS-2B bronchial epithelial cells were concentrated on 10 kDa centrifuge filters, followed by separation of EVs and free protein using sepharose CL-4B SEC. Alternatively, EVs were isolated by ultracentrifugation. EV recovery was estimated by bead-coupled flow cytometry and tuneable resistive pulse sensing. The proteomic composition of EV isolates and SEC protein fractions was characterized by nano LC-MS/MS. UF-SEC EVs tended to have a higher yield and EV-to-protein rate of purity than ultracentrifugation EVs. UF-SEC EVs and ultracentrifugation EVs showed similar fold-enrichments for biological pathways that were distinct from those of UF-SEC protein. Treatment of BEAS-2B cells with UF-SEC protein, but not with either type of EV isolate increased the IL-8 concentration in the media whereas EVs, but not protein induced monocyte adhesion to endothelial cells. Thus, UF-SEC is a useful alternative for ultracentrifugation and allows comparing the proteomic composition and functional effects of EVs and free secreted molecules.


Subject(s)
Chromatography, Gel , Epithelial Cells/chemistry , Epithelial Cells/metabolism , Extracellular Vesicles/chemistry , Culture Media/chemistry , Humans , Sepharose/analogs & derivatives , Sepharose/chemistry , THP-1 Cells , Ultrafiltration
10.
J Extracell Vesicles ; 6(1): 1322454, 2017.
Article in English | MEDLINE | ID: mdl-28717419

ABSTRACT

Extracellular vesicles (EVs) are mediators of cell communication during health and disease, and abundantly released by platelets upon activation or during ageing. Platelet EVs exert modulatory effects on immune and vascular cells. Platelet EVs may modulate the function of vascular smooth muscle cells (SMC). Platelet EVs were isolated from platelet-rich plasma and incubated with SMC in order to assess binding, proliferation, migration and pro-inflammatory phenotype of the cells. Platelet EVs firmly bound to resting SMC through the platelet integrin αIIbß3, while binding also occurred in a CX3CL1-CX3CR1-dependent manner after cytokine stimulation. Platelet EVs increased SMC migration comparable to platelet derived growth factor or platelet factor 4 and induced SMC proliferation, which relied on CD40- and P-selectin interactions. Flow-resistant monocyte adhesion to platelet EV-treated SMC was increased compared with resting SMC. Again, this adhesion depended on integrin αIIbß3 and P-selectin, and to a lesser extent on CD40 and CX3CR1. Treatment of SMC with platelet EVs induced interleukin 6 secretion. Finally, platelet EVs induced a synthetic SMC morphology and decreased calponin expression. Collectively, these data indicate that platelet EVs exert a strong immunomodulatory activity on SMC. In particular, platelet EVs induce a switch towards a pro-inflammatory phenotype, stimulating vascular remodelling.

11.
J Cell Mol Med ; 21(8): 1523-1531, 2017 08.
Article in English | MEDLINE | ID: mdl-28211187

ABSTRACT

Platelets play an important role in the pathogenesis of vascular remodelling after injury. Junctional adhesion molecule A (JAM-A) was recently described to regulate platelet activation. Specific deletion of JAM-A from platelets resulted in increased reactivity and in accelerated progression of atherosclerosis. The aim of this study was to investigate the specific contribution of platelet-derived JAM-A to neointima formation after vascular injury. Mice with or without platelet-specific (tr)JAM-A-deficiency in an apolipoprotein e (apoe-/- ) background underwent wire-induced injury of the common carotid artery. Ex vivo imaging by two-photon microscopy revealed increased platelet coverage at the site of injury in trJAM-A-deficient mice. Cell recruitment assays showed increased adhesion of monocytic cells to activated JAM-A-deficient platelets than to control platelets. Inhibition of αM ß2 or GPIbα, but not of CD62P, suppressed those differences. Up to 4 weeks after wire injury, intimal neoplasia and neointimal cellular content were analysed. Neointimal lesion area was increased in trJAM-A-/- apoe-/- mice and the lesions showed an increased macrophage accumulation and proliferating smooth muscle cells compared with trJAM-A+/+ apoe-/- littermates 2 weeks, but not 4 weeks after injury. Re-endothelialization was decreased in trJAM-A-/- apoe-/- mice compared with controls 2 weeks after injury, yet it was complete in both groups after 4 weeks. A platelet gain of function by deletion of JAM-A accelerates neointima formation only during earlier phases after vascular injury, through an increased recruitment of mononuclear cells. Thus, the contribution of platelets might become less important when neointima formation progresses to later stages.


Subject(s)
Apolipoproteins E/genetics , Atherosclerosis/genetics , Carotid Artery Injuries/genetics , Cell Adhesion Molecules/genetics , Hyperlipidemias/genetics , Neointima/genetics , Receptors, Cell Surface/genetics , Animals , Apolipoproteins E/deficiency , Atherosclerosis/complications , Atherosclerosis/metabolism , Atherosclerosis/pathology , Blood Platelets/metabolism , Blood Platelets/pathology , Carotid Arteries/metabolism , Carotid Arteries/pathology , Carotid Artery Injuries/complications , Carotid Artery Injuries/metabolism , Carotid Artery Injuries/pathology , Cell Adhesion , Cell Adhesion Molecules/deficiency , Female , Gene Expression Regulation , Hyperlipidemias/complications , Hyperlipidemias/metabolism , Hyperlipidemias/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/metabolism , Monocytes/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Neointima/complications , Neointima/metabolism , Neointima/pathology , Receptors, Cell Surface/deficiency , Signal Transduction , Vascular Remodeling/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...