Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 84(12): 2382-2396.e9, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38906116

ABSTRACT

The construction of synthetic gene circuits requires the rational combination of multiple regulatory components, but predicting their behavior can be challenging due to poorly understood component interactions and unexpected emergent behaviors. In eukaryotes, chromatin regulators (CRs) are essential regulatory components that orchestrate gene expression. Here, we develop a screening platform to investigate the impact of CR pairs on transcriptional activity in yeast. We construct a combinatorial library consisting of over 1,900 CR pairs and use a high-throughput workflow to characterize the impact of CR co-recruitment on gene expression. We recapitulate known interactions and discover several instances of CR pairs with emergent behaviors. We also demonstrate that supervised machine learning models trained with low-dimensional amino acid embeddings accurately predict the impact of CR co-recruitment on transcriptional activity. This work introduces a scalable platform and machine learning approach that can be used to study how networks of regulatory components impact gene expression.


Subject(s)
Chromatin , Gene Expression Regulation, Fungal , Gene Regulatory Networks , Saccharomyces cerevisiae , Synthetic Biology , Transcription, Genetic , Chromatin/metabolism , Chromatin/genetics , Synthetic Biology/methods , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , High-Throughput Screening Assays/methods , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Supervised Machine Learning , Chromatin Assembly and Disassembly , Transcription Factors/metabolism , Transcription Factors/genetics
2.
Cell Chem Biol ; 31(4): 712-728.e9, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38029756

ABSTRACT

There is a need to discover and develop non-toxic antibiotics that are effective against metabolically dormant bacteria, which underlie chronic infections and promote antibiotic resistance. Traditional antibiotic discovery has historically favored compounds effective against actively metabolizing cells, a property that is not predictive of efficacy in metabolically inactive contexts. Here, we combine a stationary-phase screening method with deep learning-powered virtual screens and toxicity filtering to discover compounds with lethality against metabolically dormant bacteria and favorable toxicity profiles. The most potent and structurally distinct compound without any obvious mechanistic liability was semapimod, an anti-inflammatory drug effective against stationary-phase E. coli and A. baumannii. Integrating microbiological assays, biochemical measurements, and single-cell microscopy, we show that semapimod selectively disrupts and permeabilizes the bacterial outer membrane by binding lipopolysaccharide. This work illustrates the value of harnessing non-traditional screening methods and deep learning models to identify non-toxic antibacterial compounds that are effective in infection-relevant contexts.

3.
Nature ; 626(7997): 177-185, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38123686

ABSTRACT

The discovery of novel structural classes of antibiotics is urgently needed to address the ongoing antibiotic resistance crisis1-9. Deep learning approaches have aided in exploring chemical spaces1,10-15; these typically use black box models and do not provide chemical insights. Here we reasoned that the chemical substructures associated with antibiotic activity learned by neural network models can be identified and used to predict structural classes of antibiotics. We tested this hypothesis by developing an explainable, substructure-based approach for the efficient, deep learning-guided exploration of chemical spaces. We determined the antibiotic activities and human cell cytotoxicity profiles of 39,312 compounds and applied ensembles of graph neural networks to predict antibiotic activity and cytotoxicity for 12,076,365 compounds. Using explainable graph algorithms, we identified substructure-based rationales for compounds with high predicted antibiotic activity and low predicted cytotoxicity. We empirically tested 283 compounds and found that compounds exhibiting antibiotic activity against Staphylococcus aureus were enriched in putative structural classes arising from rationales. Of these structural classes of compounds, one is selective against methicillin-resistant S. aureus (MRSA) and vancomycin-resistant enterococci, evades substantial resistance, and reduces bacterial titres in mouse models of MRSA skin and systemic thigh infection. Our approach enables the deep learning-guided discovery of structural classes of antibiotics and demonstrates that machine learning models in drug discovery can be explainable, providing insights into the chemical substructures that underlie selective antibiotic activity.


Subject(s)
Anti-Bacterial Agents , Deep Learning , Drug Discovery , Animals , Humans , Mice , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/classification , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/toxicity , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus aureus/drug effects , Neural Networks, Computer , Algorithms , Vancomycin-Resistant Enterococci/drug effects , Disease Models, Animal , Skin/drug effects , Skin/microbiology , Drug Discovery/methods , Drug Discovery/trends
4.
Nat Microbiol ; 8(6): 1004-1005, 2023 06.
Article in English | MEDLINE | ID: mdl-37268773
5.
Cell Syst ; 14(6): 525-542.e9, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37348466

ABSTRACT

The design choices underlying machine-learning (ML) models present important barriers to entry for many biologists who aim to incorporate ML in their research. Automated machine-learning (AutoML) algorithms can address many challenges that come with applying ML to the life sciences. However, these algorithms are rarely used in systems and synthetic biology studies because they typically do not explicitly handle biological sequences (e.g., nucleotide, amino acid, or glycan sequences) and cannot be easily compared with other AutoML algorithms. Here, we present BioAutoMATED, an AutoML platform for biological sequence analysis that integrates multiple AutoML methods into a unified framework. Users are automatically provided with relevant techniques for analyzing, interpreting, and designing biological sequences. BioAutoMATED predicts gene regulation, peptide-drug interactions, and glycan annotation, and designs optimized synthetic biology components, revealing salient sequence characteristics. By automating sequence modeling, BioAutoMATED allows life scientists to incorporate ML more readily into their work.


Subject(s)
Algorithms , Machine Learning
6.
Nat Commun ; 11(1): 5058, 2020 10 07.
Article in English | MEDLINE | ID: mdl-33028819

ABSTRACT

While synthetic biology has revolutionized our approaches to medicine, agriculture, and energy, the design of completely novel biological circuit components beyond naturally-derived templates remains challenging due to poorly understood design rules. Toehold switches, which are programmable nucleic acid sensors, face an analogous design bottleneck; our limited understanding of how sequence impacts functionality often necessitates expensive, time-consuming screens to identify effective switches. Here, we introduce Sequence-based Toehold Optimization and Redesign Model (STORM) and Nucleic-Acid Speech (NuSpeak), two orthogonal and synergistic deep learning architectures to characterize and optimize toeholds. Applying techniques from computer vision and natural language processing, we 'un-box' our models using convolutional filters, attention maps, and in silico mutagenesis. Through transfer-learning, we redesign sub-optimal toehold sensors, even with sparse training data, experimentally validating their improved performance. This work provides sequence-to-function deep learning frameworks for toehold selection and design, augmenting our ability to construct potent biological circuit components and precision diagnostics.


Subject(s)
Biotechnology/methods , Deep Learning , Genetic Engineering/methods , Riboswitch/genetics , Synthetic Biology/methods , Base Sequence/genetics , Computer Simulation , Datasets as Topic , Genome, Human/genetics , Genome, Viral/genetics , Humans , Models, Genetic , Mutagenesis , Natural Language Processing , Structure-Activity Relationship
7.
Nat Biomed Eng ; 4(6): 601-609, 2020 06.
Article in English | MEDLINE | ID: mdl-32284553

ABSTRACT

In organ transplantation, infection and rejection are major causes of graft loss. They are linked by the net state of immunosuppression. To diagnose and treat these conditions earlier, and to improve long-term patient outcomes, refined strategies for the monitoring of patients after graft transplantation are needed. Here, we show that a fast and inexpensive assay based on CRISPR-Cas13 accurately detects BK polyomavirus DNA and cytomegalovirus DNA from patient-derived blood and urine samples, as well as CXCL9 messenger RNA (a marker of graft rejection) at elevated levels in urine samples from patients experiencing acute kidney transplant rejection. The assay, which we adapted for lateral-flow readout, enables-via simple visualization-the post-transplantation monitoring of common opportunistic viral infections and of graft rejection, and should facilitate point-of-care post-transplantation monitoring.


Subject(s)
CRISPR-Cas Systems , Graft Rejection/virology , Opportunistic Infections/diagnosis , Pathology, Molecular/methods , Biomarkers/blood , Biomarkers/urine , Chemokine CXCL9/blood , Chemokine CXCL9/urine , Clustered Regularly Interspaced Short Palindromic Repeats , Cytomegalovirus/genetics , Cytomegalovirus/isolation & purification , Cytomegalovirus Infections/diagnosis , DNA, Viral/blood , DNA, Viral/genetics , DNA, Viral/urine , Humans , Kidney , Kidney Diseases/virology , Kidney Transplantation/adverse effects , Male , Middle Aged , Point-of-Care Testing , Polyomavirus/genetics , Polyomavirus/isolation & purification , Polyomavirus Infections/diagnosis , Postoperative Complications/diagnosis , RNA, Messenger , Tumor Virus Infections/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...