Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
Nanoscale Horiz ; 9(3): 416-426, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38224292

ABSTRACT

Memristive devices have been demonstrated to exhibit quantum conductance effects at room temperature. In these devices, a detailed understanding of the relationship between electrochemical processes and ionic dynamic underlying the formation of atomic-sized conductive filaments and corresponding electronic transport properties in the quantum regime still represents a challenge. In this work, we report on quantum conductance effects in single memristive Ag nanowires (NWs) through a combined experimental and simulation approach that combines advanced classical molecular dynamics (MD) algorithms and quantum transport simulations (DFT). This approach provides new insights on quantum conductance effects in memristive devices by unravelling the intrinsic relationship between electronic transport and atomic dynamic reconfiguration of the nanofilment, by shedding light on deviations from integer multiples of the fundamental quantum of conductance depending on peculiar dynamic trajectories of nanofilament reconfiguration and on conductance fluctuations relying on atomic rearrangement due to thermal fluctuations.

2.
Sci Rep ; 13(1): 17003, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37813937

ABSTRACT

Memristive devices that rely on redox-based resistive switching mechanism have attracted great attention for the development of next-generation memory and computing architectures. However, a detailed understanding of the relationship between involved materials, interfaces, and device functionalities still represents a challenge. In this work, we analyse the effect of electrode metals on resistive switching functionalities of NbOx-based memristive cells. For this purpose, the effect of Au, Pt, Ir, TiN, and Nb top electrodes was investigated in devices based on amorphous NbOx grown by anodic oxidation on a Nb substrate exploited also as counter electrode. It is shown that the choice of the metal electrode regulates electronic transport properties of metal-insulator interfaces, strongly influences the electroforming process, and the following resistive switching characteristics. Results show that the electronic blocking character of Schottky interfaces provided by Au and Pt metal electrodes results in better resistive switching performances. It is shown that Pt represents the best choice for the realization of memristive cells when the NbOx thickness is reduced, making possible the realization of memristive cells characterised by low variability in operating voltages, resistance states and with low device-to-device variability. These results can provide new insights towards a rational design of redox-based memristive cells.

3.
Nat Nanotechnol ; 18(12): 1430-1438, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37666941

ABSTRACT

Dirac materials are characterized by the emergence of massless quasiparticles in their low-energy excitation spectrum that obey the Dirac Hamiltonian. Known examples of Dirac materials are topological insulators, d-wave superconductors, graphene, and Weyl and Dirac semimetals, representing a striking range of fundamental properties with potential disruptive applications. However, none of the Dirac materials identified so far shows metallic character. Here, we present evidence for the formation of free-standing molybdenene, a two-dimensional material composed of only Mo atoms. Using MoS2 as a precursor, we induced electric-field-assisted molybdenene growth under microwave irradiation. We observe the formation of millimetre-long whiskers following screw-dislocation growth, consisting of weakly bonded molybdenene sheets, which, upon exfoliation, show metallic character, with an electrical conductivity of ~940 S m-1. Molybdenene when hybridized with two-dimensional h-BN or MoS2, fetch tunable optical and electronic properties. As a proof of principle, we also demonstrate applications of molybdenene as a surface-enhanced Raman spectroscopy platform for molecular sensing, as a substrate for electron imaging and as a scanning probe microscope cantilever.

4.
ACS Nano ; 17(13): 11994-12039, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37382380

ABSTRACT

Memristive technology has been rapidly emerging as a potential alternative to traditional CMOS technology, which is facing fundamental limitations in its development. Since oxide-based resistive switches were demonstrated as memristors in 2008, memristive devices have garnered significant attention due to their biomimetic memory properties, which promise to significantly improve power consumption in computing applications. Here, we provide a comprehensive overview of recent advances in memristive technology, including memristive devices, theory, algorithms, architectures, and systems. In addition, we discuss research directions for various applications of memristive technology including hardware accelerators for artificial intelligence, in-sensor computing, and probabilistic computing. Finally, we provide a forward-looking perspective on the future of memristive technology, outlining the challenges and opportunities for further research and innovation in this field. By providing an up-to-date overview of the state-of-the-art in memristive technology, this review aims to inform and inspire further research in this field.

5.
Adv Mater ; 35(37): e2301924, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37199224

ABSTRACT

Artificial neurons and synapses are considered essential for the progress of the future brain-inspired computing, based on beyond von Neumann architectures. Here, a discussion on the common electrochemical fundamentals of biological and artificial cells is provided, focusing on their similarities with the redox-based memristive devices. The driving forces behind the functionalities and the ways to control them by an electrochemical-materials approach are presented. Factors such as the chemical symmetry of the electrodes, doping of the solid electrolyte, concentration gradients, and excess surface energy are discussed as essential to understand, predict, and design artificial neurons and synapses. A variety of two- and three-terminal memristive devices and memristive architectures are presented and their application for solving various problems is shown. The work provides an overview of the current understandings on the complex processes of neural signal generation and transmission in both biological and artificial cells and presents the state-of-the-art applications, including signal transmission between biological and artificial cells. This example is showcasing the possibility for creating bioelectronic interfaces and integrating artificial circuits in biological systems. Prospectives and challenges of the modern technology toward low-power, high-information-density circuits are highlighted.


Subject(s)
Brain , Synapses , Synapses/physiology , Neurons/physiology , Electrodes
6.
Phys Chem Chem Phys ; 25(21): 14766-14777, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37145117

ABSTRACT

Memristive devices based on the resistive switching mechanism are continuously attracting attention in the framework of neuromorphic computing and next-generation memory devices. Here, we report on a comprehensive analysis of the resistive switching properties of amorphous NbOx grown by anodic oxidation. Besides a detailed chemical, structural and morphological analysis of the involved materials and interfaces, the mechanism of switching in Nb/NbOx/Au resistive switching cells is discussed by investigating the role of metal-metal oxide interfaces in regulating electronic and ionic transport mechanisms. The resistive switching was found to be related to the formation/rupture of conductive nanofilaments in the NbOx layer under the action of an applied electric field, facilitated by the presence of an oxygen scavenger layer at the Nb/NbOx interface. Electrical characterization including device-to-device variability revealed an endurance >103 full-sweep cycles, retention >104 s, and multilevel capabilities. Furthermore, the observation of quantized conductance supports the physical mechanism of switching based on the formation of atomic-scale conductive filaments. Besides providing new insights into the switching properties of NbOx, this work also highlights the perspective of anodic oxidation as a promising method for the realization of resistive switching cells.

7.
ACS Appl Mater Interfaces ; 15(14): 18528-18536, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36989142

ABSTRACT

Thin layers introduced between a metal electrode and a solid electrolyte can significantly alter the transport of mass and charge at the interfaces and influence the rate of electrode reactions. C films embedded in functional materials can change the chemical properties of the host, thereby altering the functionality of the whole device. Using X-ray spectroscopies, here we demonstrate that the chemical and electronic structures in a representative redox-based resistive switching (RS) system, Ta2O5/Ta, can be tuned by inserting a graphene or ultrathin amorphous C layer. The results of the orbitalwise analyses of synchrotron Ta L3-edge, C K-edge, and O K-edge X-ray absorption spectroscopy showed that the C layers between Ta2O5 and Ta are significantly oxidized to form COx and, at the same time, oxidize the Ta layers with different degrees of oxidation depending on the distance: full oxidation at the nearest 5 nm Ta and partial oxidation in the next 15 nm Ta. The depth-resolved information on the electronic structure for each layer further revealed a significant modification of the band alignments due to C insertion. Full oxidation of the Ta metal near the C interlayer suggests that the oxygen-vacancy-related valence change memory mechanism for the RS can be suppressed, thereby changing the RS functionalities fundamentally. The knowledge on the origin of C-enhanced surfaces can be applied to other metal/oxide interfaces and used for the advanced design of memristive devices.

8.
ACS Appl Mater Interfaces ; 14(47): 53027-53037, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36396122

ABSTRACT

Memristive devices relying on redox-based resistive switching mechanisms represent promising candidates for the development of novel computing paradigms beyond von Neumann architecture. Recent advancements in understanding physicochemical phenomena underlying resistive switching have shed new light on the importance of an appropriate selection of material properties required to optimize the performance of devices. However, despite great attention has been devoted to unveiling the role of doping concentration, impurity type, adsorbed moisture, and catalytic activity at the interfaces, specific studies concerning the effect of the counter electrode in regulating the electronic flow in memristive cells are scarce. In this work, the influence of the metal-insulator Schottky interfaces in electrochemical metallization memory (ECM) memristive cell model systems based on single-crystalline ZnO nanowires (NWs) is investigated following a combined experimental and modeling approach. By comparing and simulating the electrical characteristics of single NW devices with different contact configurations and by considering Ag and Pt electrodes as representative of electrochemically active and inert electrodes, respectively, we highlight the importance of an appropriate choice of electrode materials by taking into account the Schottky barrier height and interface chemistry at the metal-insulator interfaces. In particular, we show that a clever choice of metal-insulator interfaces allows to reshape the hysteretic conduction characteristics of the device and to increase the device performance by tuning its resistance window. These results obtained from single NW-based devices provide new insights into the selection criteria for materials and interfaces in connection with the design of advanced ECM cells.

9.
RSC Adv ; 12(22): 14235-14245, 2022 May 05.
Article in English | MEDLINE | ID: mdl-35558855

ABSTRACT

Electrochemical metallization memory (ECM) devices have been made by sub-stoichiometric deposition of a tantalum oxide switching film (Ta2O5-x ) using sputtering. We investigated the influence of zirconium as the active top electrode material in the lithographically fabricated ECM devices. A simple capacitor like (Pt/Zr/Ta2O5-x /Pt) structure represented the resistive switching memory. A cyclic voltammetry measurement demonstrated the electrochemical process of the memory device. The I-V characteristics of ECMs show stable bipolar resistive switching properties with reliable endurance and retention. The resistive switching mechanism results from the formation and rupture of a conductive filament characteristic of ECM. Our results suggest that Zr can be considered a potential active electrode in the ECMs for the next generation of nonvolatile nanoelectronics. We successfully showed that the ECM device can work under AC pulses to emulate the essential characteristics of an artificial synapse by further improvements.

10.
Adv Mater ; 34(32): e2201248, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35404522

ABSTRACT

Quantum effects in novel functional materials and new device concepts represent a potential breakthrough for the development of new information processing technologies based on quantum phenomena. Among the emerging technologies, memristive elements that exhibit resistive switching, which relies on the electrochemical formation/rupture of conductive nanofilaments, exhibit quantum conductance effects at room temperature. Despite the underlying resistive switching mechanism having been exploited for the realization of next-generation memories and neuromorphic computing architectures, the potentialities of quantum effects in memristive devices are still rather unexplored. Here, a comprehensive review on memristive quantum devices, where quantum conductance effects can be observed by coupling ionics with electronics, is presented. Fundamental electrochemical and physicochemical phenomena underlying device functionalities are introduced, together with fundamentals of electronic ballistic conduction transport in nanofilaments. Quantum conductance effects including quantum mode splitting, stability, and random telegraph noise are analyzed, reporting experimental techniques and challenges of nanoscale metrology for the characterization of memristive phenomena. Finally, potential applications and future perspectives are envisioned, discussing how memristive devices with controllable atomic-sized conductive filaments can represent not only suitable platforms for the investigation of quantum phenomena but also promising building blocks for the realization of integrated quantum systems working in air at room temperature.

11.
Adv Mater ; 34(3): e2105022, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34695257

ABSTRACT

Redox-based resistive random access memories (ReRAMs) are based on electrochemical processes of oxidation and reduction within the devices. The selection of materials and material combinations strongly influence the related nanoscale processes, playing a crucial role in resistive switching properties and functionalities. To date, however, comprehensive studies on device design accounting for a combination of factors such as electrodes, electrolytes, and capping layer materials related to their thicknesses and interactions are scarce. In this work, the impact of materials' configuration on interfacial redox reactions in HfO2 -based electrochemical metallization memory (ECM) and valence-change memory (VCM) systems is reported. The redox processes are studied by cyclic voltammetry, and the corresponding resistive switching characteristics are investigated. In ECM cells, the overall cell resistance depends on the electrocatalytic activity of the counter electrode. Nonetheless, the capping layer material further influences the cell resistance and the SET and RESET voltages. In VCM systems, the influence of the electrode material configuration is also pronounced, and is capable of modulating the active resistive switching interface. For both types of memory cells, the switching behavior changes significantly with variation of the oxide thickness. The results present important materials selection criteria for rationale design of ReRAM cells for various memristive applications.

12.
ACS Nano ; 15(11): 17214-17231, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34730935

ABSTRACT

Resistive switching (RS) devices are emerging electronic components that could have applications in multiple types of integrated circuits, including electronic memories, true random number generators, radiofrequency switches, neuromorphic vision sensors, and artificial neural networks. The main factor hindering the massive employment of RS devices in commercial circuits is related to variability and reliability issues, which are usually evaluated through switching endurance tests. However, we note that most studies that claimed high endurances >106 cycles were based on resistance versus cycle plots that contain very few data points (in many cases even <20), and which are collected in only one device. We recommend not to use such a characterization method because it is highly inaccurate and unreliable (i.e., it cannot reliably demonstrate that the device effectively switches in every cycle and it ignores cycle-to-cycle and device-to-device variability). This has created a blurry vision of the real performance of RS devices and in many cases has exaggerated their potential. This article proposes and describes a method for the correct characterization of switching endurance in RS devices; this method aims to construct endurance plots showing one data point per cycle and resistive state and combine data from multiple devices. Adopting this recommended method should result in more reliable literature in the field of RS technologies, which should accelerate their integration in commercial products.

13.
ACS Appl Mater Interfaces ; 12(43): 48773-48780, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33052645

ABSTRACT

Memristive devices based on electrochemical resistive switching effects have been proposed as promising candidates for in-memory computing and for the realization of artificial neural networks. Despite great efforts toward understanding the nanoionic processes underlying resistive switching phenomena, comprehension of the effect of competing redox processes on device functionalities from the materials perspective still represents a challenge. In this work, we experimentally and theoretically investigate the concurring reactions of silver and moisture and their impact on the electronic properties of a single-crystalline ZnO nanowire (NW). A decrease in electronic conductivity due to surface adsorption of moisture is observed, whereas, at the same time, water molecules reduce the energy barrier for Ag+ ion migration on the NW surface, facilitating the conductive filament formation. By controlling the relative humidity, the ratio of intrinsic electronic conductivity and surface ionic conductivity can be tuned to modulate the device performance. The results achieved on a single-crystalline memristive model system shed new light on the dual nature of the mechanism of how moisture affects resistive switching behavior in memristive devices.

14.
Nat Nanotechnol ; 15(7): 510-511, 2020 07.
Article in English | MEDLINE | ID: mdl-32514009
15.
Faraday Discuss ; 213(0): 9-10, 2019 02 18.
Article in English | MEDLINE | ID: mdl-30724961
20.
Faraday Discuss ; 213(0): 29-40, 2019 02 18.
Article in English | MEDLINE | ID: mdl-30357246

ABSTRACT

Doping impurity atoms into semiconductor materials changes the resistance of the material. Selecting the atomic species of a dopant and the precise control of the number of dopant atoms in a unit volume can control the resistance to a desired value. The number of dopant atoms is usually controlled when the materials are synthesized. It can also be controlled after synthesizing by injecting dopant atoms using an ion implantation technique. This physical method has now enabled atom by atom implantation at the desired position. Here, we propose an additional technique, based on the electrochemical potential of dopant atoms in a material. The technique enables the dynamic control of the number of dopant atoms through the application of bias to the material. We demonstrate the controlled removal of dopant atoms using Ag2+δS and Ag-doped Ta2O5 as model materials. The change in resistance accompanying the removal of dopant atoms is also observed.

SELECTION OF CITATIONS
SEARCH DETAIL
...