Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
J Med Chem ; 67(14): 11769-11788, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39013015

ABSTRACT

Here, we describe the development of the FGF21 analog zalfermin (NNC0194-0499, 15), intended for once-weekly sc dosing. Protein engineering was needed to address inherent druggability issues of the natural FGF21 hormone. Thus, deamidation of Asp121 was solved by mutation to glutamine, and oxidation of Met168 was solved by mutation to leucine. N-terminal region degradation by dipeptidyl peptidase IV was prevented by alanine residue elongation. To prevent inactivating metabolism by fibroblast activation protein and carboxypeptidase-like activity in the C-terminal region, and to achieve t1/2 extension (53 h in cynomolgus monkeys), we introduced a C18 fatty diacid at the penultimate position 180. The fatty diacid binds albumin in a reversible manner, such that the free fraction of zalfermin potently activates the FGF-receptor complex and retains receptor selectivity compared with FGF21, providing strong efficacy on body weight loss in diet-induced obese mice. Zalfermin is currently being clinically evaluated for the treatment of metabolic dysfunction-associated steatohepatitis.


Subject(s)
Fibroblast Growth Factors , Macaca fascicularis , Fibroblast Growth Factors/metabolism , Animals , Mice , Humans , Male , Proteolysis/drug effects , Mice, Obese , Mice, Inbred C57BL , Obesity/drug therapy , Obesity/metabolism
2.
J Pharmacol Toxicol Methods ; 118: 107221, 2022.
Article in English | MEDLINE | ID: mdl-36100059

ABSTRACT

BACKGROUND: The Göttingen Minipig is widely used in preclinical research and safety pharmacology, but standardisation of porcine electrocardiography (ECG) is lacking. The aim of this study was to investigate diurnal effects, change over time and choice of lead on ECG morphology and heart rate variability (HRV) in healthy and streptozotocin (STZ) induced diabetic Göttingen Minipigs. METHODS: Diabetes was experimentally induced using STZ in 11 Göttingen Minipigs (DIA). Seven controls (CON) were included. 24-h ECG was recorded at baseline and four months. Morphological parameters (QRS and T wave duration, P- and T-wave amplitude, PR and QT (Bazett's (QTcb) or Fridericia (QTcf) correction) intervals and ST segment), presence of cardiac arrhythmias, heart rate (HR) and HRV (time and frequency domain) were analysed. RESULTS: Four months after induction, DIA had decreased P-wave amplitude (P < 0.0001) and T-wave duration (P = 0.017), compared to CON. QTcb was lower in DIA, but not in CON. Both groups had decreased HR (P < 0.0001) and QRS duration (lead II, P = 0.04) and length of PR-segment increased (lead I and II, P < 0.01) while selected HRV parameters also increased (all P < 0.01). Time of day influenced HR, QRS duration, PR segment, ST segment, T- and P-wave amplitude and some parameters of HRV. Inter- and intra-observer variability of morphological measurements was low (<6%). CONCLUSION: ECG parameters were influenced by time setting, diurnal variation and lead. Some ECG and HRV changes were found in diabetic minipigs four months after STZ induction. The findings underline the need for standardisation of ECG and HRV in Göttingen Minipigs.


Subject(s)
Diabetes Mellitus , Electrocardiography , Animals , Swine , Heart Rate , Swine, Miniature , Streptozocin , Arrhythmias, Cardiac/chemically induced
3.
Nat Biotechnol ; 40(1): 103-109, 2022 01.
Article in English | MEDLINE | ID: mdl-34462588

ABSTRACT

Oral administration provides a simple and non-invasive approach for drug delivery. However, due to poor absorption and swift enzymatic degradation in the gastrointestinal tract, a wide range of molecules must be parenterally injected to attain required doses and pharmacokinetics. Here we present an orally dosed liquid auto-injector capable of delivering up to 4-mg doses of a bioavailable drug with the rapid pharmacokinetics of an injection, reaching an absolute bioavailability of up to 80% and a maximum plasma drug concentration within 30 min after dosing. This approach improves dosing efficiencies and pharmacokinetics an order of magnitude over our previously designed injector capsules and up to two orders of magnitude over clinically available and preclinical chemical permeation enhancement technologies. We administered the capsules to swine for delivery of clinically relevant doses of four commonly injected medications, including adalimumab, a GLP-1 analog, recombinant human insulin and epinephrine. These multi-day dosing experiments and oral administration in awake animal models support the translational potential of the system.


Subject(s)
Antibodies, Monoclonal , Antineoplastic Agents, Immunological , Administration, Oral , Animals , Biological Availability , Capsules , Immunotherapy , Peptides , Swine
4.
Sci Rep ; 11(1): 5983, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33727615

ABSTRACT

The potentially fatal cardiovascular effects of hypoglycaemia are not well understood and large animal models of the counter-regulatory responses and cardiovascular consequences of insulin-induced hypoglycaemia are needed to understand the mechanisms in humans. The aim of this study was to develop a human-like minipig model of hypoglycaemia including healthy and diabetic pigs to investigate endocrine, electrocardiographic and platelet effects. Hypoglycaemia was induced using a hyperinsulinaemic, hypoglycaemic clamp and an insulin bolus protocol. Plasma glucose, glucagon, C-peptide, insulin, epinephrine and platelet aggregation responses were measured before, during and after hypoglycaemia. Continuous electrocardiographic recordings were obtained. Hypoglycaemia at a plasma glucose concentration of 0.8-1.0 mM in the clamp induced 25-fold increase in epinephrine and sixfold and threefold increase in glucagon for healthy and diabetic pigs, respectively. The hypoglycaemic clamp induced QTc-interval prolongation and increase in cardiac arrhythmias. In the bolus approach, the non-diabetic group reached plasma glucose target of 1.5 mM and QTc-interval was prolonged after insulin injection, but before glucose nadir. The diabetic group did not reach hypoglycaemic target, but still demonstrated QTc-interval prolongation. These results demonstrate effects of hyperinsulinaemic hypoglycaemia closely resembling human physiology, indicating the minipig as a translational animal model of counter-regulatory endocrine and myocardial effects of hypoglycaemia.


Subject(s)
Congenital Hyperinsulinism/complications , Congenital Hyperinsulinism/veterinary , Heart Diseases/diagnosis , Heart Diseases/etiology , Swine Diseases/blood , Animals , Biomarkers/blood , Blood Glucose , Blood Platelets/metabolism , Blood Platelets/ultrastructure , Disease Management , Disease Models, Animal , Disease Susceptibility , Electrocardiography , Endocrine System/metabolism , Platelet Aggregation , Platelet Function Tests , Swine , Swine Diseases/diagnosis , Swine, Miniature , Symptom Assessment
5.
Sci Adv ; 7(4)2021 01.
Article in English | MEDLINE | ID: mdl-33523951

ABSTRACT

Alternative means for drug delivery are needed to facilitate drug adherence and administration. Microneedles (MNs) have been previously investigated transdermally for drug delivery. To date, drug loading into MNs has been limited by drug solubility in the polymeric blend. We designed a highly drug-loaded MN patch to deliver macromolecules and applied it to the buccal area, which allows for faster delivery than the skin. We successfully delivered 1-mg payloads of human insulin and human growth hormone to the buccal cavity of swine within 30 s. In addition, we conducted a trial in 100 healthy volunteers to assess potential discomfort associated with MNs when applied in the oral cavity, identifying the hard palate as the preferred application site. We envisage that MN patches applied on buccal surfaces could increase medication adherence and facilitate the painless delivery of biologics and other drugs to many, especially for the pediatric and elderly populations.

6.
Nat Commun ; 10(1): 5262, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31748525

ABSTRACT

Foreign body reaction (FBR) to implanted biomaterials and medical devices is common and can compromise the function of implants or cause complications. For example, in cell encapsulation, cellular overgrowth (CO) and fibrosis around the cellular constructs can reduce the mass transfer of oxygen, nutrients and metabolic wastes, undermining cell function and leading to transplant failure. Therefore, materials that mitigate FBR or CO will have broad applications in biomedicine. Here we report a group of zwitterionic, sulfobetaine (SB) and carboxybetaine (CB) modifications of alginates that reproducibly mitigate the CO of implanted alginate microcapsules in mice, dogs and pigs. Using the modified alginates (SB-alginates), we also demonstrate improved outcome of islet encapsulation in a chemically-induced diabetic mouse model. These zwitterion-modified alginates may contribute to the development of cell encapsulation therapies for type 1 diabetes and other hormone-deficient diseases.


Subject(s)
Alginates/chemistry , Betaine/analogs & derivatives , Cell Encapsulation/methods , Diabetes Mellitus, Type 1/therapy , Foreign-Body Reaction/prevention & control , Animals , Betaine/chemistry , Carbonic Acid , Cell Proliferation , Diabetes Mellitus, Experimental , Dogs , Fibrosis , Islets of Langerhans Transplantation/methods , Mice , Rats , Swine
7.
Diabetologia ; 62(9): 1689-1700, 2019 09.
Article in English | MEDLINE | ID: mdl-31139852

ABSTRACT

AIMS/HYPOTHESIS: Adopting a diet containing indigestible fibre compounds such as prebiotics to fuel advantageous bacteria has proven beneficial for alleviating inflammation. The effect of the microbial changes on autoimmunity, however, remains unknown. We studied the effects of prebiotic xylooligosaccharides (XOS) on pancreatic islet and salivary gland inflammation in NOD mice and tested whether these were mediated by the gut microbiota. METHODS: Mother and offspring mice were fed an XOS-supplemented diet until diabetes onset or weaning and were compared with a control-fed group. Diabetes incidence was monitored, insulitis and sialadenitis were scored in histological sections from adult mice, and several metabolic and immune variables were analysed in mice before the development of diabetes. Gut barrier function was assessed using an in vivo FITC-dextran permeability test. The importance of XOS-mediated gut microbial changes were evaluated in antibiotic-treated mice fed either XOS or control diet or given a faecal microbiota transplant from test animals. RESULTS: Diabetes onset was delayed in the XOS-fed mice, which also had fewer cellular infiltrations in their pancreatic islets and salivary glands. Interestingly, insulitis was most reduced in the XOS-fed groups when the mice were also treated with an antibiotic cocktail. There was no difference in sialadenitis between the dietary groups treated with antibiotics; the mice were protected by microbiota depletion regardless of diet. Faecal microbiota transplantation was not able to transfer protection. No major differences in glucose-insulin regulation, glucagon-like peptide-1, or short-chain fatty acid production were related to the XOS diet. The XOS diet did, however, reduce gut permeability markers in the small and large intestine. This was accompanied by a more anti-inflammatory environment locally and systemically, dominated by a shift from M1 to M2 macrophages, a higher abundance of activated regulatory T cells, and lower levels of induction of natural killer T cells and cytotoxic T cells. CONCLUSIONS/INTERPRETATION: Prebiotic XOS have microbiota-dependent effects on salivary gland inflammation and microbiota-independent effects on pancreatic islet pathology that are accompanied by an improved gut barrier that seems able to heighten control of intestinal diabetogenic antigens that have the potential to penetrate the mucosa to activate autoreactive immune responses.


Subject(s)
Gastrointestinal Microbiome/physiology , Prebiotics , Animals , Autoimmunity/physiology , Dietary Supplements , Female , Gastrointestinal Microbiome/drug effects , Glucuronates/therapeutic use , Mice , Mice, Inbred NOD , Oligosaccharides/therapeutic use
8.
Atherosclerosis ; 285: 55-63, 2019 06.
Article in English | MEDLINE | ID: mdl-31004968

ABSTRACT

BACKGROUND AND AIMS: The advantage of combining molecular and morphological imaging, e.g. positron emission tomography and magnetic resonance imaging (PET/MRI), is reflected in the increased use of these modalities as surrogate end-points in clinical trials. This study aimed at evaluating plaque inflammation using 18F-fluorodeoxyglucose (18F-FDG)-PET/MRI, and gene expression in a minipig model of atherosclerosis. METHODS: Göttingen Minipigs were fed for 60 weeks with fat/fructose/cholesterol-rich diet (FFC), chow (Control) or FFC-diet changed to chow midway (diet normalization group; DNO). In all groups, 18F-FDG-PET/MRI of the abdominal aorta was assessed midway and at study-end. The aorta was analyzed using histology and gene expression. RESULTS: At study-end, FFC had significantly higher FDG-uptake compared to Control (target-to-background maximal uptake, TBRMax (95% confidence interval) CITBRMax: 0.092; 7.32) and DNO showed significantly decreased uptake compared to FFC (CITBRMax: -5.94;-0.07). No difference was observed between DNO and Control (CITBRMax: -2.71; 4.11). FFC displayed increased atherosclerosis and gene expression of inflammatory markers, including vascular cell adhesion molecule 1 (VCAM-1), cluster of differentiation 68 (CD68), matrix metalloproteinase 9 (MMP9), cathepsin K (CTSK) and secreted phosphoprotein 1 (SPP1) compared to Control and DNO (all, p < 0.05). FDG-uptake correlated with gene expression of inflammatory markers, including CD68, ρs = 0.58; MMP9, ρs = 0.46; SPP1, ρs = 0.44 and CTSK, ρs = 0.49; (p ≤ 0.01 for all). CONCLUSIONS: In a model of atherosclerosis, 18F-FDG-PET/MRI technology allows for detection of inflammation in atherosclerotic plaques, consistent with increased inflammatory gene expression. Our findings corroborate clinical data and are important in pre-clinical drug development targeting plaque inflammation.


Subject(s)
Atherosclerosis/diagnostic imaging , Fluorodeoxyglucose F18 , Magnetic Resonance Imaging , Positron-Emission Tomography , Radiopharmaceuticals , Animals , Atherosclerosis/genetics , Correlation of Data , Disease Models, Animal , Gene Expression , Magnetic Resonance Imaging/methods , Male , Positron-Emission Tomography/methods , Swine , Swine, Miniature
9.
Science ; 363(6427): 611-615, 2019 02 08.
Article in English | MEDLINE | ID: mdl-30733413

ABSTRACT

Biomacromolecules have transformed our capacity to effectively treat diseases; however, their rapid degradation and poor absorption in the gastrointestinal (GI) tract generally limit their administration to parenteral routes. An oral biologic delivery system must aid in both localization and permeation to achieve systemic drug uptake. Inspired by the leopard tortoise's ability to passively reorient, we developed an ingestible self-orienting millimeter-scale applicator (SOMA) that autonomously positions itself to engage with GI tissue. It then deploys milliposts fabricated from active pharmaceutical ingredients directly through the gastric mucosa while avoiding perforation. We conducted in vivo studies in rats and swine that support the applicator's safety and, using insulin as a model drug, demonstrated that the SOMA delivers active pharmaceutical ingredient plasma levels comparable to those achieved with subcutaneous millipost administration.


Subject(s)
Administration, Oral , Drug Delivery Systems/instrumentation , Insulin/administration & dosage , Macromolecular Substances/administration & dosage , Animals , Insulin/blood , Intestinal Absorption , Macromolecular Substances/blood , Polyesters , Rats , Stainless Steel , Swine
10.
Sci Transl Med ; 10(467)2018 11 14.
Article in English | MEDLINE | ID: mdl-30429357

ABSTRACT

Oral administration of therapeutic peptides is hindered by poor absorption across the gastrointestinal barrier and extensive degradation by proteolytic enzymes. Here, we investigated the absorption of orally delivered semaglutide, a glucagon-like peptide-1 analog, coformulated with the absorption enhancer sodium N-[8-(2-hydroxybenzoyl) aminocaprylate] (SNAC) in a tablet. In contrast to intestinal absorption usually seen with small molecules, clinical and preclinical dog studies revealed that absorption of semaglutide takes place in the stomach, is confined to an area in close proximity to the tablet surface, and requires coformulation with SNAC. SNAC protects against enzymatic degradation via local buffering actions and only transiently enhances absorption. The mechanism of absorption is shown to be compound specific, transcellular, and without any evidence of effect on tight junctions. These data have implications for understanding how highly efficacious and specific therapeutic peptides could be transformed from injectable to tablet-based oral therapies.


Subject(s)
Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptides/pharmacology , Intestinal Absorption , Stomach/physiology , Administration, Oral , Adolescent , Adult , Aged , Animals , Cell Membrane/drug effects , Cell Membrane/metabolism , Dogs , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Gastric Mucosa/drug effects , Gastric Mucosa/ultrastructure , Glucagon-Like Peptide 1/analogs & derivatives , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptides/administration & dosage , Glucagon-Like Peptides/pharmacokinetics , Humans , Hydrogen-Ion Concentration , Male , Middle Aged , Rats , Stomach/drug effects , Time Factors , Young Adult
11.
JPEN J Parenter Enteral Nutr ; 42(2): 446-454, 2018 02.
Article in English | MEDLINE | ID: mdl-28786308

ABSTRACT

BACKGROUND: Minimal enteral nutrition (MEN) may induce a diet-dependent stimulation of gut adaptation following intestinal resection. Bovine colostrum is rich in growth factors, and we hypothesized that MEN with colostrum would stimulate intestinal adaptation, compared with formula, and would be well tolerated in patients with short bowel syndrome. METHODS: In experiment 1, 3-day-old piglets with 50% distal small intestinal resection were fed parenteral nutrition (PN, n = 10) or PN plus MEN given as either colostrum (PN-COL, n = 5) or formula (PN-FORM, n = 9) for 7 days. Intestinal nutrient absorption and histomorphometry were performed. In experiment 2, tolerance and feasibility of colostrum supplementation were tested in a pilot study on 5 infants who had undergone intestinal resection, and they were compared with 5 resected infants who served as controls. RESULTS: In experiment 1, relative wet-weight absorption and intestinal villus height were higher in PN-COL vs PN (53% vs 23% and 362 ± 13 vs 329 ± 7 µm, P < .05). Crypt depth and tissue protein synthesis were higher in PN-COL (233 ± 7 µm, 22%/d) and PN-FORM (262 ± 13 µm, 22%/d) vs PN (190 ± 4 µm, 9%/d, both P < .05). In experiment 2, enteral colostrum supplementation was well tolerated, and no infants developed clinical signs of cow's milk allergy. CONCLUSION: Minimal enteral nutrition feeding with bovine colostrum and formula induced similar intestinal adaptation after resection in piglets. Colostrum was well tolerated by newly resected infants, but the clinical indication for colostrum supplementation to infants subjected to intestinal resection remains to be determined.


Subject(s)
Adaptation, Physiological/physiology , Colostrum , Enteral Nutrition/methods , Intestinal Absorption/physiology , Postoperative Complications/prevention & control , Short Bowel Syndrome/surgery , Animals , Animals, Newborn , Disease Models, Animal , Feasibility Studies , Female , Humans , Infant , Infant, Newborn , Intestines/physiology , Intestines/surgery , Male , Pilot Projects , Swine
12.
JPEN J Parenter Enteral Nutr ; 41(8): 1293-1300, 2017 11.
Article in English | MEDLINE | ID: mdl-27503937

ABSTRACT

BACKGROUND: Exogenous glucagon-like peptide 2 (GLP-2) stimulates intestinal adaptation after resection in animal models of pediatric short bowel syndrome (SBS). It is unknown whether the molecular mechanisms of such GLP-2 effects are similar to those of postresection spontaneous adaptation. Using preterm pigs as a model, we hypothesized that GLP-2 treatment would change the intestinal proteome within the first week after resection, relative to individuals not resected or resected without GLP-2 treatment. MATERIALS AND METHODS: Two-day-old preterm pigs were subjected to resection of 50% distal small intestine and fed total parenteral nutrition without (SBS) or with GLP-2 infusion (3.5 µg/kg/h, SBS+GLP-2) for 5 days. The proteome of the remnant proximal intestine was compared among the SBS, SBS+GLP-2, and unresected pigs, through gel-based proteomics. RESULTS: Thirty-two proteins with differential expression were identified. Ten of these proteins were affected by the resection alone (ie, SBS vs unresected pigs). Five of these resection-responsive proteins and another 22 proteins were affected by GLP-2 infusion (ie, SBS+GLP-2 vs SBS or unresected pigs). Resection alone mainly affected cellular structural proteins, while the added GLP-2 treatment affected proteins involved in protein processing and the metabolism of protein, carbohydrate, and sulphur. CONCLUSION: In the first days following resection, proteins affected by resection plus GLP-2 treatment differed markedly from those affected by the spontaneous intestinal adaptation following resection alone. Whether more long-term GLP-2 treatment may affect the intestinal proteome following intestinal resection remains unknown.


Subject(s)
Glucagon-Like Peptide 2/pharmacology , Intestine, Small/drug effects , Short Bowel Syndrome/surgery , Adaptation, Physiological , Animals , Animals, Newborn , Dietary Carbohydrates/metabolism , Dietary Proteins/metabolism , Disease Models, Animal , Intestine, Small/metabolism , Parenteral Nutrition, Total , Sulfur/metabolism , Swine
13.
BMC Res Notes ; 9: 99, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26879530

ABSTRACT

BACKGROUND: A porcine model of haematogenous Staphylococcus aureus sepsis has previously been established in our research group. In these studies, pigs developed severe sepsis including liver dysfunction during a 48 h study period. As pigs were awake during the study, animal welfare was challenged by the severity of induced disease, which in some cases necessitated humane euthanasia. A pilot study was therefore performed in order to establish the sufficient inoculum concentration and application protocol needed to produce signs of liver dysfunction within limits of our pre-defined humane endpoints. METHODS: Four pigs received 1 × 10(8) cfu/kg BW of S. aureus, and two controls were sham inoculated with saline. A fixed infusion rate of 3 mL/min was used, while the inoculum concentration, i.e., the dose volume, was changed between the pigs. The following dose volumes were used: 10 mL (n = 1), 20 mL (n = 2), and 30 mL (n = 1), corresponding to infusion durations of 3.33, 6.66, and 10 min at dose rates of 3 × 10(7), 1.5 × 10(7), and 1 × 10(7) cfu/min/kg BW, respectively. Blood samples were drawn for complete blood count, clinical chemistry, and inflammatory markers before and every 6 h after inoculation. Prior to euthanasia, a galactose elimination capacity test was performed to assess liver function. Pigs were euthanised 48 h post inoculation for necropsy and histopathological evaluation. RESULTS: While infusion times of 6.66 min, and higher, did not induce liver dysfunction (n = 3), the infusion time of 3.33 min (n = 1) caused alterations in parameters similar to what had been seen in our previous studies, i.e., increasing bilirubin and aspartate aminotransferase, as well as histopathological occurrence of intravascular fibrin split products in the liver. This pig was however euthanised after 30 h, according to humane endpoints. CONCLUSIONS: A usable balance between scientific purpose and animal welfare could not be achieved, and we therefore find it hard to justify further use of this conscious porcine sepsis model. In order to make a model of translational relevance for human sepsis, we suggest that future model versions should use long-term anaesthesia.


Subject(s)
Animal Welfare , Consciousness , Sepsis/microbiology , Staphylococcal Infections/microbiology , Staphylococcus aureus/physiology , Animals , Biomarkers/metabolism , Disease Models, Animal , Female , Galactose/blood , Inflammation/pathology , Liver/physiopathology , Liver Function Tests , Sepsis/blood , Sepsis/pathology , Sepsis/physiopathology , Staphylococcal Infections/blood , Staphylococcal Infections/pathology , Staphylococcal Infections/physiopathology , Sus scrofa
14.
Clin Nutr ; 34(2): 219-28, 2015 Apr.
Article in English | MEDLINE | ID: mdl-24703629

ABSTRACT

BACKGROUND & AIMS: Rapid transition from total parenteral nutrition (TPN) to enteral feeding is a risk factor for necrotizing enterocolitis (NEC) in preterm infants. We hypothesized that partial enteral nutrition with colostrum, increased proportion of n-3 polyunsaturated fatty acids (PUFA), or exclusion of lipid in TPN would affect short term NEC sensitivity and liver function. METHODS: Preterm piglets were fed for three days after birth: 1) TPN with a standard lipid emulsion (Nutriflex Lipid Plus, TPN control group, n = 19), 2) PN plus bovine colostrum as partial enteral nutrition (PN/COL, n = 18), 3) TPN with fish oil (FO) lipids (Omegaven, TPN/FO, n = 19), or 4) TPN with no lipid (TPN/NL, n = 22). After TPN, piglets were fed formula for two days before tissue collection. RESULTS: None of the treatments had consistent effect on NEC incidence (∼40-50% across all groups), intestinal morphology and function, relative to TPN. In the liver, there were no signs of steatosis but PN/COL decreased the n-6 PUFA levels, leading to higher n-3/n-6 ratio, GGT activity, and plasma cholesterol and albumin levels, relative to TPN (all p < 0.05). TPN/FO increased the hepatic n-3 levels and n-3/n-6 ratio. TPN/NL treatment led to decreased hepatic n-6 level, n-3/n-6 ratio and bilirubin, albumin and triglycerides, and lowered blood clotting strength (-30%, TPN/NL vs. TPN/COL, p < 0.05). CONCLUSION: Partial enteral nutrition with colostrum, increased n-3 PUFAs in TPN, or removal of lipid from the TPN, all affect hepatic lipids and proteins in preterm neonates. These effects do not translate into improved hepatic function or NEC resistance, at least not short term.


Subject(s)
Enteral Nutrition/adverse effects , Enterocolitis, Necrotizing/diet therapy , Lipid Metabolism/drug effects , Liver/metabolism , Parenteral Nutrition/adverse effects , Animal Feed/adverse effects , Animals , Animals, Newborn , Colostrum , Disease Models, Animal , Enteral Nutrition/methods , Enterocolitis, Necrotizing/metabolism , Enterocolitis, Necrotizing/pathology , Fatty Acids, Omega-3/blood , Fatty Acids, Omega-6/blood , Fish Oils/administration & dosage , Fish Oils/adverse effects , Guinea Pigs , Liver/drug effects , Parenteral Nutrition/methods , Premature Birth/diet therapy , Treatment Outcome
15.
Am J Physiol Gastrointest Liver Physiol ; 307(12): G1147-68, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25342047

ABSTRACT

Intestinal failure (IF), due to short bowel syndrome (SBS), results from surgical resection of a major portion of the intestine, leading to reduced nutrient absorption and need for parenteral nutrition (PN). The incidence is highest in infants and relates to preterm birth, necrotizing enterocolitis, atresia, gastroschisis, volvulus, and aganglionosis. Patient outcomes have improved, but there is a need to develop new therapies for SBS and to understand intestinal adaptation after different diseases, resection types, and nutritional and pharmacological interventions. Animal studies are needed to carefully evaluate the cellular mechanisms, safety, and translational relevance of new procedures. Distal intestinal resection, without a functioning colon, results in the most severe complications and adaptation may depend on the age at resection (preterm, term, young, adult). Clinically relevant therapies have recently been suggested from studies in preterm and term PN-dependent SBS piglets, with or without a functional colon. Studies in rats and mice have specifically addressed the fundamental physiological processes underlying adaptation at the cellular level, such as regulation of mucosal proliferation, apoptosis, transport, and digestive enzyme expression, and easily allow exogenous or genetic manipulation of growth factors and their receptors (e.g., glucagon-like peptide 2, growth hormone, insulin-like growth factor 1, epidermal growth factor, keratinocyte growth factor). The greater size of rats, and especially young pigs, is an advantage for testing surgical procedures and nutritional interventions (e.g., PN, milk diets, long-/short-chain lipids, pre- and probiotics). Conversely, newborn pigs (preterm or term) and weanling rats provide better insights into the developmental aspects of treatment for SBS in infants owing to their immature intestines. The review shows that a balance among practical, economical, experimental, and ethical constraints will determine the choice of SBS model for each clinical or basic research question.


Subject(s)
Disease Models, Animal , Parenteral Nutrition, Total , Short Bowel Syndrome/physiopathology , Animals , Humans , Infant , Mice , Rats , Short Bowel Syndrome/therapy
16.
J Pediatr Gastroenterol Nutr ; 58(6): 694-702, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24399211

ABSTRACT

Neonatal short bowel syndrome following massive gut resection is associated with malabsorption of nutrients. The intestinotrophic factor glucagon-like peptide 2 (GLP-2) improves gut function in adult patients with short bowel syndrome, but its effect in pediatric patients remains unknown. Our objective was to test the efficacy of the long-acting synthetic human GLP-2 analogue, teduglutide (ALX-0600), in a neonatal piglet jejunostomy model. Two-day-old pigs were subjected to resection of 50% of the small intestine (distal part), and the remnant intestine was exteriorized on the abdominal wall as a jejunostomy. All pigs were given total parenteral nutrition for 7 days and a single daily injection of the following doses of teduglutide: 0.01 (n = 6), 0.02 (n = 6), 0.1 (n = 5), or 0.2 mg · kg · day (n = 6), and compared with placebo (n = 9). Body weight increment was similar for all 4 teduglutide groups but higher than placebo (P < 0.05). There was a dose-dependent increase in weight per length of the remnant intestine (P < 0.01) and fractional protein synthesis rate in the intestine was increased in the 0.2 mg · kg · day group versus placebo (P < 0.001); however, functional and structural endpoints including activity of digestive enzymes, absorption of enteral nutrients, and immunohistochemistry (Ki67, villin, FABP2, ChgA, and GLP-2R) were not affected by the treatment. Teduglutide induces trophicity on the remnant intestine but has limited acute effects on functional endpoints. Significant effects of teduglutide on gut function may require a longer adaptation period and/or a more frequent administration of the peptide. In perspective, GLP-2 or its analogues may be relevant to improve intestinal adaptation in pediatric patients with short bowel syndrome.


Subject(s)
Adaptation, Physiological/drug effects , Gastrointestinal Agents/therapeutic use , Glucagon-Like Peptide 2/therapeutic use , Intestine, Small/drug effects , Peptides/therapeutic use , Receptors, Glucagon/metabolism , Short Bowel Syndrome/drug therapy , Animals , Body Weight/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Gastrointestinal Agents/pharmacology , Glucagon-Like Peptide 2/pharmacology , Glucagon-Like Peptide-2 Receptor , Growth/drug effects , Intestine, Small/growth & development , Intestine, Small/metabolism , Jejunostomy , Organ Size/drug effects , Parenteral Nutrition, Total , Peptides/pharmacology , Protein Biosynthesis/drug effects , Short Bowel Syndrome/metabolism , Swine
17.
Am J Transl Res ; 5(6): 643-53, 2013.
Article in English | MEDLINE | ID: mdl-24093061

ABSTRACT

BACKGROUND: The specific mechanisms behind weight loss and comorbidity improvements in obese patients after Roux-en-Y gastric bypass (RYGBP) are still poorly understood. The aim of this study was to establish and evaluate the feasibility of a long-term survival RYGBP model in super obese Göttingen minipigs in order to improve the translational potential relative to current animal models. METHODS: Eleven Göttingen minipigs with diet-induced obesity underwent laparoscopic RYGBP and were followed up to 9 months after surgery. Intra- and post-operative complications, body weight (BW), food intake and necropsy data were recorded. RESULTS: Five minipigs survived without complications to the end of the study. Four minipigs developed surgical related complications and were euthanized while two minipigs died due to central venous catheter related complications. BW and food intake is reported for the six minipigs surviving longer than 4.5 months post-surgery. Weight loss and reduced food intake was seen in all minipigs. After 2-3 months of weight loss, weight regain was evident in all but two minipigs which seemed to continue losing weight. Necropsy revealed some variation in the length of the alimentary, biliary and common limb between minipigs. CONCLUSION: The use of obese Göttingen minipigs as a translational RYGBP model is feasible and has potential for the study of RYGBP-related changes in gut function, type-2 diabetes and appetite regulation. Still, the surgical procedure is technically highly demanding in obese Göttingen minipigs and the peri-operative animal care and follow up requires close monitoring.

18.
Am J Physiol Gastrointest Liver Physiol ; 305(4): G277-85, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23764891

ABSTRACT

Short bowel syndrome (SBS) is a frequent complication after intestinal resection in infants suffering from intestinal disease. We tested whether treatment with the intestinotrophic hormone glucagon-like peptide-2 (GLP-2) increases intestinal volume and function in the period immediately following intestinal resection in preterm pigs. Preterm pigs were fed enterally for 48 h before undergoing resection of 50% of the small intestine and establishment of a jejunostomy. Following resection, pigs were maintained on total parenteral nutrition (TPN) without (SBS, n = 8) or with GLP-2 treatment (3.5 µg/kg body wt per h, SBS+GLP-2, n = 7) and compared with a group of unresected preterm pigs (control, n = 5). After 5 days of TPN, all piglets were fed enterally for 24 h, and a nutrient balance study was performed. Intestinal resection was associated with markedly reduced endogenous GLP-2 levels. GLP-2 increased the relative absorption of wet weight (46 vs. 22%), energy (79 vs. 64%), and all macronutrients (all parameters P < 0.05). These findings were supported by a 200% increase in sucrase and maltase activities, a 50% increase in small intestinal epithelial volume (P < 0.05), as well as increased DNA and protein contents and increased total protein synthesis rate in SBS+GLP-2 vs. SBS pigs (+100%, P < 0.05). Following intestinal resection in preterm pigs, GLP-2 induced structural and functional adaptation, resulting in a higher relative absorption of fluid and macronutrients. GLP-2 treatment may be a promising therapy to enhance intestinal adaptation and improve digestive function in preterm infants with jejunostomy following intestinal resection.


Subject(s)
Glucagon-Like Peptide 2/pharmacology , Intestine, Small/drug effects , Intestine, Small/surgery , Premature Birth , Short Bowel Syndrome/drug therapy , Adaptation, Physiological , Animal Nutritional Physiological Phenomena , Animals , Animals, Newborn , Cell Proliferation/drug effects , DNA Replication/drug effects , Disease Models, Animal , Enteral Nutrition , Gestational Age , Glucagon-Like Peptide 2/blood , Humans , Intestinal Absorption/drug effects , Intestine, Small/growth & development , Intestine, Small/metabolism , Intestine, Small/pathology , Jejunostomy , Nutritional Status , Parenteral Nutrition, Total , Protein Biosynthesis/drug effects , Recombinant Proteins/pharmacology , Short Bowel Syndrome/blood , Short Bowel Syndrome/etiology , Short Bowel Syndrome/pathology , Short Bowel Syndrome/physiopathology , Sucrase/metabolism , Swine , Time Factors , Weight Gain/drug effects , alpha-Glucosidases/metabolism
19.
Biomed Res Int ; 2013: 926942, 2013.
Article in English | MEDLINE | ID: mdl-23738334

ABSTRACT

Consumption of isoflavones may prevent adiposity, hepatic steatosis, and dyslipidaemia. However, studies in the area are few and primarily with genistein. This study investigated the effects of formononetin and its synthetic analogue, 2-heptyl-formononetin (C7F), on lipid and cholesterol metabolism in C57BL/6J mice. The mice were fed a cholesterol-enriched diet for five weeks to induce hypercholesterolemia and were then fed either the cholesterol-enriched diet or the cholesterol-enriched diet-supplemented formononetin or C7F for three weeks. Body weight and composition, glucose homeostasis, and plasma lipids were compared. In another experiment, mice were fed the above diets for five weeks, and hepatic triglyceride accumulation and gene expression and histology of adipose tissue and liver were examined. Supplementation with C7F increased plasma HDL-cholesterol thereby increasing the plasma level of total cholesterol. Supplementation with formononetin did not affect plasma cholesterol but increased plasma triglycerides levels. Supplementation with formononetin and C7F induced hepatic steatosis. However, formononetin decreased markers of inflammation and liver injury. The development of hepatic steatosis was associated with deregulated expression of hepatic genes involved in lipid and lipoprotein metabolism. In conclusion, supplementation with formononetin and C7F to a cholesterol-enriched diet adversely affected lipid and lipoprotein metabolism in C57BL/6J mice.


Subject(s)
Cholesterol/blood , Fatty Liver/blood , Fatty Liver/chemically induced , Isoflavones/adverse effects , Absorptiometry, Photon , Adipocytes/drug effects , Adipocytes/metabolism , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Adipose Tissue, White/pathology , Animals , Body Composition/drug effects , Cholesterol, Dietary/pharmacology , Dietary Supplements , Fatty Liver/genetics , Fatty Liver/pathology , Glucose Tolerance Test , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Lipogenesis/drug effects , Lipogenesis/genetics , Lipolysis/drug effects , Lipolysis/genetics , Lipoproteins/genetics , Lipoproteins/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Oxidation-Reduction/drug effects , Protective Agents/pharmacology , Triglycerides/blood , Up-Regulation/drug effects , Weight Gain/drug effects
20.
Behav Brain Res ; 196(1): 139-43, 2009 Jan 03.
Article in English | MEDLINE | ID: mdl-18762217

ABSTRACT

Pharmacological compounds enhancing serotonergic tone significantly decrease food intake and are among the most clinically efficacious treatments for obesity. However, the central mechanisms through which serotonergic compounds modulate feeding behavior have not been fully defined. The primary relay center receiving visceral gastrointestinal information in the central nervous system is the nucleus of the solitary tract (NTS) in the caudal brainstem. Here we investigated whether the classic anorectic serotonin receptor agonist m-chloro-phenylpiperazine (mCPP) enhances the activity of metabolically sensitive NTS neurons. Using c-fos immunoreactivity (FOS-IR) as a marker of neuronal activation in rats, we observed that mCPP significantly and dose-dependently activated a discrete population of caudal NTS neurons at the level of the area postrema (AP). In particular, this pattern of FOS-IR induction was consistent with the location of catecholamine-containing neurons. Dual-labeling performed with FOS-IR and the catecholamine biosynthetic enzyme tyrosine hydroxylase (TH) revealed that mCPP induced FOS-IR in 83.7% of TH-IR containing neurons in the NTS at the level of the AP. The degree of activation of TH neurons was strongly negatively correlated with food intake. Moreover, this activation was specific to catecholamine neurons, with negligible induction of cocaine- and amphetamine-regulated transcript (CART), cholecystokinin (CCK), glucagon-like peptide 1 (GLP-1), or neurotensin neurons. NTS catecholaminergic neurons relay visceral gastrointestinal signals to both the lateral hypothalamus (LHA) and paraventricular nucleus of the hypothalamus (PVH), where these signals are integrated into autonomic and hormonal responses regulating food intake. The data presented here identify a novel mechanism through which a serotonin receptor agonist acting in the caudal brainstem may regulate ingestive behavior.


Subject(s)
Neurons/drug effects , Piperazines/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , Serotonin Receptor Agonists/pharmacology , Solitary Nucleus/drug effects , Animals , Cholecystokinin/metabolism , Eating/drug effects , Eating/physiology , Feeding Behavior/drug effects , Feeding Behavior/physiology , Glucagon-Like Peptide 1/metabolism , Immunohistochemistry , Male , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Neurotensin/metabolism , Piperazines/administration & dosage , Rats , Rats, Sprague-Dawley , Serotonin Receptor Agonists/administration & dosage , Solitary Nucleus/cytology , Solitary Nucleus/metabolism , Tyrosine 3-Monooxygenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL