Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Metab ; 5(4): 660-676, 2023 04.
Article in English | MEDLINE | ID: mdl-37024754

ABSTRACT

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is known to contain an active-site cysteine residue undergoing oxidation in response to hydrogen peroxide, leading to rapid inactivation of the enzyme. Here we show that human and mouse cells expressing a GAPDH mutant lacking this redox switch retain catalytic activity but are unable to stimulate the oxidative pentose phosphate pathway and enhance their reductive capacity. Specifically, we find that anchorage-independent growth of cells and spheroids is limited by an elevation of endogenous peroxide levels and is largely dependent on a functional GAPDH redox switch. Likewise, tumour growth in vivo is limited by peroxide stress and suppressed when the GAPDH redox switch is disabled in tumour cells. The induction of additional intratumoural oxidative stress by chemo- or radiotherapy synergized with the deactivation of the GAPDH redox switch. Mice lacking the GAPDH redox switch exhibit altered fatty acid metabolism in kidney and heart, apparently in compensation for the lack of the redox switch. Together, our findings demonstrate the physiological and pathophysiological relevance of oxidative GAPDH inactivation in mammals.


Subject(s)
Cysteine , Glyceraldehyde-3-Phosphate Dehydrogenases , Humans , Animals , Mice , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Glyceraldehyde-3-Phosphate Dehydrogenases/chemistry , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Oxidation-Reduction , Cysteine/metabolism , Oxidative Stress , Hydrogen Peroxide/pharmacology , Mammals/metabolism
2.
Am J Physiol Lung Cell Mol Physiol ; 320(3): L356-L367, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33325804

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is characterized by a disturbed redox balance and increased production of reactive oxygen species (ROS), which is believed to contribute to epithelial injury and fibrotic lung scarring. The main pulmonary sources of ROS include mitochondria and NADPH oxidases (NOXs), of which the NOX4 isoform has been implicated in IPF. Non-receptor SRC tyrosine kinases (SFK) are important for cellular homeostasis and are often dysregulated in lung diseases. SFK activation by the profibrotic transforming growth factor-ß (TGF-ß) is thought to contribute to pulmonary fibrosis, but the relevant SFK isoform and its relationship to NOX4 and/or mitochondrial ROS in the context of profibrotic TGF-ß signaling is not known. Here, we demonstrate that TGF-ß1 can rapidly activate the SRC kinase FYN in human bronchial epithelial cells, which subsequently induces mitochondrial ROS (mtROS) production, genetic damage shown by the DNA damage marker γH2AX, and increased expression of profibrotic genes. Moreover, TGF-ß1-induced activation of FYN involves initial activation of NOX4 and direct cysteine oxidation of FYN, and both FYN and mtROS contribute to TGF-ß-induced induction of NOX4. NOX4 expression in lung tissues of IPF patients is positively correlated with disease severity, although FYN expression is down-regulated in IPF and does not correlate with disease severity. Collectively, our findings highlight a critical role for FYN in TGF-ß1-induced mtROS production, DNA damage response, and induction of profibrotic genes in bronchial epithelial cells, and suggest that altered expression and activation of NOX4 and FYN may contribute to the pathogenesis of pulmonary fibrosis.


Subject(s)
Bronchi/metabolism , Epithelial Cells/metabolism , Mitochondria/metabolism , NADPH Oxidase 4/metabolism , Proto-Oncogene Proteins c-fyn/metabolism , Signal Transduction , Transforming Growth Factor beta1/metabolism , Bronchi/pathology , Epithelial Cells/pathology , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Mitochondria/pathology , Oxidation-Reduction , Reactive Oxygen Species/metabolism
3.
BMC Pulm Med ; 20(1): 112, 2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32349726

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic, lethal disease of which the etiology is still not fully understood. Current treatment comprises two FDA-approved drugs that can slow down yet not stop or reverse the disease. As IPF pathology is associated with an altered redox balance, adding a redox modulating component to current therapy might exert beneficial effects. Quercetin is a dietary antioxidant with strong redox modulating capacities that is suggested to exert part of its antioxidative effects via activation of the redox-sensitive transcription factor Nrf2 that regulates endogenous antioxidant levels. Therefore, the aim of the present study was to investigate if the dietary antioxidant quercetin can exert anti-fibrotic effects in a mouse model of bleomycin-induced pulmonary fibrogenesis through Nrf2-dependent restoration of redox imbalance. METHODS: Homozygous Nrf2 deficient mice and their wildtype littermates were fed a control diet without or with 800 mg quercetin per kg diet from 7 days prior to a single 1 µg/2 µl per g BW bleomycin challenge until they were sacrificed 14 days afterwards. Lung tissue and plasma were collected to determine markers of fibrosis (expression of extracellular matrix genes and histopathology), inflammation (pulmonary gene expression and plasma levels of tumor necrosis factor-α (TNFα) and keratinocyte chemoattrachtant (KC)), and redox balance (pulmonary gene expression of antioxidants and malondialdehyde-dG (MDA)- DNA adducts). RESULTS: Mice fed the enriched diet for 7 days prior to the bleomycin challenge had significantly enhanced plasma and pulmonary quercetin levels (11.08 ± 0.73 µM versus 7.05 ± 0.2 µM) combined with increased expression of Nrf2 and Nrf2-responsive genes compared to mice fed the control diet in lung tissue. Upon bleomycin treatment, quercetin-fed mice displayed reduced expression of collagen (COL1A2) and fibronectin (FN1) and a tendency of reduced inflammatory lesions (2.8 ± 0.7 versus 1.9 ± 0.8). These beneficial effects were accompanied by reduced pulmonary gene expression of TNFα and KC, but not their plasma levels, and enhanced Nrf2-induced pulmonary antioxidant defences. In Nrf2 deficient mice, no effect of the dietary antioxidant on either histology or inflammatory lesions was observed. CONCLUSION: Quercetin exerts anti-fibrogenic and anti-inflammatory effects on bleomycin-induced pulmonary damage in mice possibly through modulation of the redox balance by inducing Nrf2. However, quercetin could not rescue the bleomycin-induced pulmonary damage indicating that quercetin alone cannot ameliorate the progression of IPF.


Subject(s)
Antioxidants/pharmacology , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Pulmonary Fibrosis/drug therapy , Quercetin/pharmacology , Animals , Bleomycin/toxicity , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Collagen/metabolism , Dietary Supplements , Disease Models, Animal , Lung/pathology , Malondialdehyde/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-E2-Related Factor 2/genetics , Pulmonary Fibrosis/chemically induced , Tumor Necrosis Factor-alpha/metabolism
4.
EMBO J ; 39(10): e105114, 2020 05 18.
Article in English | MEDLINE | ID: mdl-32246845

ABSTRACT

The SARS-CoV-2 pandemic affecting the human respiratory system severely challenges public health and urgently demands for increasing our understanding of COVID-19 pathogenesis, especially host factors facilitating virus infection and replication. SARS-CoV-2 was reported to enter cells via binding to ACE2, followed by its priming by TMPRSS2. Here, we investigate ACE2 and TMPRSS2 expression levels and their distribution across cell types in lung tissue (twelve donors, 39,778 cells) and in cells derived from subsegmental bronchial branches (four donors, 17,521 cells) by single nuclei and single cell RNA sequencing, respectively. While TMPRSS2 is strongly expressed in both tissues, in the subsegmental bronchial branches ACE2 is predominantly expressed in a transient secretory cell type. Interestingly, these transiently differentiating cells show an enrichment for pathways related to RHO GTPase function and viral processes suggesting increased vulnerability for SARS-CoV-2 infection. Our data provide a rich resource for future investigations of COVID-19 infection and pathogenesis.


Subject(s)
Bronchi/cytology , Gene Expression , Lung/cytology , Peptidyl-Dipeptidase A/genetics , Serine Endopeptidases/genetics , Single-Cell Analysis , Adult , Aging , Angiotensin-Converting Enzyme 2 , Bronchi/metabolism , COVID-19 , Cells, Cultured , Chronic Disease/epidemiology , Coronavirus Infections/genetics , Epithelial Cells/metabolism , Female , Gene Expression Profiling , Germany , Goblet Cells/metabolism , Humans , Lung/metabolism , Male , Middle Aged , Pandemics , Pneumonia, Viral/genetics , Reference Standards , Sequence Analysis, RNA , Sex Characteristics , Smoking , Tissue Banks
5.
Antioxid Redox Signal ; 31(14): 1092-1115, 2019 11 10.
Article in English | MEDLINE | ID: mdl-30793932

ABSTRACT

Significance: Idiopathic pulmonary fibrosis (IPF) is a progressive age-related lung disease with a median survival of only 3 years after diagnosis. The pathogenic mechanisms behind IPF are not clearly understood, and current therapeutic approaches have not been successful in improving disease outcomes. Recent Advances: IPF is characterized by increased production of reactive oxygen species (ROS), primarily by NADPH oxidases (NOXes) and mitochondria, as well as altered antioxidant defenses. Recent studies have identified the NOX isoform NOX4 as a key player in various important aspects of IPF pathology. In addition, mitochondrial dysfunction is thought to enhance pathological features of IPF, in part by increasing mitochondrial ROS (mtROS) production and altering cellular metabolism. Recent findings indicate reciprocal interactions between NOX enzymes and mitochondria, which affect regulation of NOX activity as well as mitochondrial function and mtROS production, and collectively promote epithelial injury and profibrotic signaling. Critical Issues and Future Directions: The precise molecular mechanisms by which ROS from NOX or mitochondria contribute to IPF pathology are not known. This review summarizes the current knowledge with respect to the various aspects of ROS imbalance in the context of IPF and its proposed roles in disease development, with specific emphasis on the importance of inappropriate NOX activation, mitochondrial dysfunction, and the emerging evidence of NOX-mitochondria cross-talk as important drivers in IPF pathobiology.


Subject(s)
Idiopathic Pulmonary Fibrosis/metabolism , Mitochondria/metabolism , NADPH Oxidases/metabolism , Oxidants/metabolism , Animals , Humans , Oxidation-Reduction , Reactive Oxygen Species/metabolism
6.
Nat Commun ; 9(1): 4522, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30375386

ABSTRACT

The Src kinase controls aspects of cell biology and its activity is regulated by intramolecular structural changes induced by protein interactions and tyrosine phosphorylation. Recent studies indicate that Src is additionally regulated by redox-dependent mechanisms, involving oxidative modification(s) of cysteines within the Src protein, although the nature and molecular-level impact of Src cysteine oxidation are unknown. Using a combination of biochemical and cell-based studies, we establish the critical importance of two Src cysteine residues, Cys-185 and Cys-277, as targets for H2O2-mediated sulfenylation (Cys-SOH) in redox-dependent kinase activation in response to NADPH oxidase-dependent signaling. Molecular dynamics and metadynamics simulations reveal the structural impact of sulfenylation of these cysteines, indicating that Cys-277-SOH enables solvent exposure of Tyr-416 to promote its (auto)phosphorylation, and that Cys-185-SOH destabilizes pTyr-527 binding to the SH2 domain. These redox-dependent Src activation mechanisms offer opportunities for development of Src-selective inhibitors in treatment of diseases where Src is aberrantly activated.


Subject(s)
Cysteine/metabolism , Proto-Oncogene Proteins pp60(c-src)/metabolism , Cell Line, Tumor , Humans , Hydrogen Peroxide/metabolism , Molecular Dynamics Simulation , Oxidation-Reduction , Phosphorylation , Protein Binding , Protein Structure, Tertiary , src Homology Domains
7.
J Allergy Clin Immunol ; 137(5): 1545-1556.e11, 2016 05.
Article in English | MEDLINE | ID: mdl-26597162

ABSTRACT

BACKGROUND: The IL-1 family member IL-33 plays a critical role in type 2 innate immune responses to allergens and is an important mediator of allergic asthma. The mechanisms by which allergens provoke epithelial IL-33 secretion are still poorly understood. OBJECTIVE: Based on previous findings indicating involvement of the NADPH oxidase dual oxidase 1 (DUOX1) in epithelial wound responses, we explored the potential involvement of DUOX1 in allergen-induced IL-33 secretion and potential alterations in airways of asthmatic patients. METHODS: Cultured human or murine airway epithelial cells or mice were subjected to acute challenge with Alternaria alternata or house dust mite, and secretion of IL-33 and activation of subsequent type 2 responses were determined. The role of DUOX1 was explored by using small interfering RNA approaches and DUOX1-deficient mice. Cultured nasal epithelial cells from healthy subjects or asthmatic patients were evaluated for DUOX1 expression and allergen-induced responses. RESULTS: In vitro or in vivo allergen challenge resulted in rapid airway epithelial IL-33 secretion, which depended critically on DUOX1-mediated activation of epithelial epidermal growth factor receptor and the protease calpain-2 through a redox-dependent mechanism involving cysteine oxidation within epidermal growth factor receptor and the tyrosine kinase Src. Primary nasal epithelial cells from patients with allergic asthma were found to express increased DUOX1 and IL-33 levels and demonstrated enhanced IL-33 secretion in response to allergen challenge compared with values seen in nasal epithelial cells from nonasthmatic subjects. CONCLUSION: Our findings implicate epithelial DUOX1 as a pivotal mediator of IL-33-dependent activation of innate airway type 2 immune responses to common airborne allergens and indicate that enhanced DUOX1 expression and IL-33 secretion might present important contributing features of allergic asthma.


Subject(s)
Allergens/immunology , Interleukin-33/immunology , NADPH Oxidases/immunology , Rhinitis, Allergic/immunology , Alternaria/immunology , Animals , Bronchoalveolar Lavage Fluid , Cell Line , Cells, Cultured , Dual Oxidases , Epithelial Cells/immunology , ErbB Receptors/immunology , Humans , Mice, Inbred C57BL , Mice, Knockout , NADPH Oxidases/genetics , Pyroglyphidae/immunology , RNA, Small Interfering/genetics
8.
Redox Biol ; 2: 436-46, 2014.
Article in English | MEDLINE | ID: mdl-24624333

ABSTRACT

The NADPH oxidase homolog dual oxidase 1 (DUOX1) plays an important role in innate airway epithelial responses to infection or injury, but the precise molecular mechanisms are incompletely understood and the cellular redox-sensitive targets for DUOX1-derived H2O2 have not been identified. The aim of the present study was to survey the involvement of DUOX1 in cellular redox signaling by protein S-glutathionylation, a major mode of reversible redox signaling. Using human airway epithelial H292 cells and stable transfection with DUOX1-targeted shRNA as well as primary tracheal epithelial cells from either wild-type or DUOX1-deficient mice, DUOX1 was found to be critical in ATP-stimulated transient production of H2O2 and increased protein S-glutathionylation. Using cell pre-labeling with biotin-tagged GSH and analysis of avidin-purified proteins by global proteomics, 61 S-glutathionylated proteins were identified in ATP-stimulated cells compared to 19 in untreated cells. Based on a previously established role of DUOX1 in cell migration, various redox-sensitive proteins with established roles in cytoskeletal dynamics and/or cell migration were evaluated for S-glutathionylation, indicating a critical role for DUOX1 in ATP-stimulated S-glutathionylation of ß-actin, peroxiredoxin 1, the non-receptor tyrosine kinase Src, and MAPK phosphatase 1. Overall, our studies demonstrate the importance of DUOX1 in epithelial redox signaling through reversible S-glutathionylation of a range of proteins, including proteins involved in cytoskeletal regulation and MAPK signaling pathways involved in cell migration.


Subject(s)
Glutathione/metabolism , Lung/metabolism , NADPH Oxidases/metabolism , Oxidation-Reduction , Trachea/metabolism , Animals , Cell Movement , Cells, Cultured , Dual Oxidases , Epithelial Cells/metabolism , Gene Expression Regulation , Humans , Lung/cytology , MAP Kinase Signaling System , Mice , NADPH Oxidases/genetics , Proteomics , Signal Transduction , Trachea/cytology
SELECTION OF CITATIONS
SEARCH DETAIL