Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Mol Psychiatry ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783053

ABSTRACT

Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorders (ASD) are strongly associated with educational attainment (EA), but little is known about their genetic relationship with school performance and whether these links are explained, in part, by the genetic liability of EA. Here, we aim to dissect the polygenic contribution of ADHD and ASD to school performance, early manifestation of psychopathology and other psychiatric disorders and related traits by their relationship with EA. To do so, we tested the association of polygenic scores for EA, ADHD and ASD with school performance, assessed whether the contribution of the genetic liability of ADHD and ASD to school performance is influenced by the genetic liability of EA, and evaluated the role of EA in the genetic overlap between ADHD and ASD with early manifestation of psychopathology and other psychiatric disorders and related traits in a sample of 4,278 school-age children. The genetic liability for ADHD and ASD dissected by their relationship with EA show differences in their association with school performance and early manifestation of psychopathology, partly mediated by ADHD and ASD symptoms. Genetic variation with concordant effects in ASD and EA contributes to better school performance, while the genetic variation with discordant effects in ADHD or ASD and EA is associated with poor school performance and higher rates of emotional and behavioral problems. Our results strongly support the usage of the genetic load for EA to dissect the genetic and phenotypic heterogeneity of ADHD and ASD, which could help to fill the gap of knowledge of mechanisms underlying educational outcomes.

2.
EBioMedicine ; 103: 105086, 2024 May.
Article in English | MEDLINE | ID: mdl-38580523

ABSTRACT

BACKGROUND: Alcohol consumption is associated with numerous negative social and health outcomes. These associations may be direct consequences of drinking, or they may reflect common genetic factors that influence both alcohol consumption and other outcomes. METHODS: We performed exploratory phenome-wide association studies (PheWAS) of three of the best studied protective single nucleotide polymorphisms (SNPs) in genes encoding ethanol metabolising enzymes (ADH1B: rs1229984-T, rs2066702-A; ADH1C: rs698-T) using up to 1109 health outcomes across 28 phenotypic categories (e.g., substance-use, mental health, sleep, immune, cardiovascular, metabolic) from a diverse 23andMe cohort, including European (N ≤ 2,619,939), Latin American (N ≤ 446,646) and African American (N ≤ 146,776) populations to uncover new and perhaps unexpected associations. These SNPs have been consistently implicated by both candidate gene studies and genome-wide association studies of alcohol-related behaviours but have not been investigated in detail for other relevant phenotypes in a hypothesis-free approach in such a large cohort of multiple ancestries. To provide insight into potential causal effects of alcohol consumption on the outcomes significant in the PheWAS, we performed univariable two-sample and one-sample Mendelian randomisation (MR) analyses. FINDINGS: The minor allele rs1229984-T, which is protective against alcohol behaviours, showed the highest number of PheWAS associations across the three cohorts (N = 232, European; N = 29, Latin American; N = 7, African American). rs1229984-T influenced multiple domains of health. We replicated associations with alcohol-related behaviours, mental and sleep conditions, and cardio-metabolic health. We also found associations with understudied traits related to neurological (migraines, epilepsy), immune (allergies), musculoskeletal (fibromyalgia), and reproductive health (preeclampsia). MR analyses identified evidence of causal effects of alcohol consumption on liability for 35 of these outcomes in the European cohort. INTERPRETATION: Our work demonstrates that polymorphisms in genes encoding alcohol metabolising enzymes affect multiple domains of health beyond alcohol-related behaviours. Understanding the underlying mechanisms of these effects could have implications for treatments and preventative medicine. FUNDING: MVJ, NCK, SBB, SSR and AAP were supported by T32IR5226 and 28IR-0070. SSR was also supported by NIDA DP1DA054394. NCK and RBC were also supported by R25MH081482. ASH was supported by funds from NIAAA K01AA030083. JLMO was supported by VA 1IK2CX002095. JLMO and JJMM were also supported by NIDA R21DA050160. JJMM was also supported by the Kavli Postdoctoral Award for Academic Diversity. EGA was supported by K01MH121659 from the NIMH/NIH, the Caroline Wiess Law Fund for Research in Molecular Medicine and the ARCO Foundation Young Teacher-Investigator Fund at Baylor College of Medicine. MSA was supported by the Instituto de Salud Carlos III and co-funded by the European Union Found: Fondo Social Europeo Plus (FSE+) (P19/01224, PI22/00464 and CP22/00128).


Subject(s)
Alcohol Drinking , Genome-Wide Association Study , Mendelian Randomization Analysis , Phenotype , Polymorphism, Single Nucleotide , Humans , Alcohol Drinking/genetics , Female , Cohort Studies , Male , Phenomics , Genetic Predisposition to Disease , Alcohol Dehydrogenase/genetics , Genotype , Alleles
3.
Nat Hum Behav ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632388

ABSTRACT

Tobacco use disorder (TUD) is the most prevalent substance use disorder in the world. Genetic factors influence smoking behaviours and although strides have been made using genome-wide association studies to identify risk variants, most variants identified have been for nicotine consumption, rather than TUD. Here we leveraged four US biobanks to perform a multi-ancestral meta-analysis of TUD (derived via electronic health records) in 653,790 individuals (495,005 European, 114,420 African American and 44,365 Latin American) and data from UK Biobank (ncombined = 898,680). We identified 88 independent risk loci; integration with functional genomic tools uncovered 461 potential risk genes, primarily expressed in the brain. TUD was genetically correlated with smoking and psychiatric traits from traditionally ascertained cohorts, externalizing behaviours in children and hundreds of medical outcomes, including HIV infection, heart disease and pain. This work furthers our biological understanding of TUD and establishes electronic health records as a source of phenotypic information for studying the genetics of TUD.

4.
medRxiv ; 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37745582

ABSTRACT

Coffee is one of the most widely consumed beverages. We performed a genome-wide association study (GWAS) of coffee intake in US-based 23andMe participants (N=130,153) and identified 7 significant loci, with many replicating in three multi-ancestral cohorts. We examined genetic correlations and performed a phenome-wide association study across thousands of biomarkers and health and lifestyle traits, then compared our results to the largest available GWAS of coffee intake from UK Biobank (UKB; N=334,659). The results of these two GWAS were highly discrepant. We observed positive genetic correlations between coffee intake and psychiatric illnesses, pain, and gastrointestinal traits in 23andMe that were absent or negative in UKB. Genetic correlations with cognition were negative in 23andMe but positive in UKB. The only consistent observations were positive genetic correlations with substance use and obesity. Our study shows that GWAS in different cohorts could capture cultural differences in the relationship between behavior and genetics.

5.
Mol Psychiatry ; 28(8): 3493-3502, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37537283

ABSTRACT

Attention deficit/hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental disorder. We performed a transcriptome-wide association study (TWAS) using the latest genome-wide association study (GWAS) meta-analysis, in 38,691 individuals with ADHD and 186,843 controls, and 14 gene-expression reference panels across multiple brain tissues and whole blood. Based on TWAS results, we selected subsets of genes and constructed transcriptomic risk scores (TRSs) for the disorder in peripheral blood mononuclear cells of individuals with ADHD and controls. We found evidence of association between ADHD and TRSs constructed using expression profiles from multiple brain areas, with individuals with ADHD carrying a higher burden of TRSs than controls. TRSs were uncorrelated with the polygenic risk score (PRS) for ADHD and, in combination with PRS, improved significantly the proportion of variance explained over the PRS-only model. These results support the complementary predictive potential of genetic and transcriptomic profiles in blood and underscore the potential utility of gene expression for risk prediction and deeper insight in molecular mechanisms underlying ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Transcriptome , Humans , Transcriptome/genetics , Attention Deficit Disorder with Hyperactivity/genetics , Genome-Wide Association Study , Leukocytes, Mononuclear , Risk Factors
6.
medRxiv ; 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37034728

ABSTRACT

Tobacco use disorder (TUD) is the most prevalent substance use disorder in the world. Genetic factors influence smoking behaviors, and although strides have been made using genome-wide association studies (GWAS) to identify risk variants, the majority of variants identified have been for nicotine consumption, rather than TUD. We leveraged five biobanks to perform a multi-ancestral meta-analysis of TUD (derived via electronic health records, EHR) in 898,680 individuals (739,895 European, 114,420 African American, 44,365 Latin American). We identified 88 independent risk loci; integration with functional genomic tools uncovered 461 potential risk genes, primarily expressed in the brain. TUD was genetically correlated with smoking and psychiatric traits from traditionally ascertained cohorts, externalizing behaviors in children, and hundreds of medical outcomes, including HIV infection, heart disease, and pain. This work furthers our biological understanding of TUD and establishes EHR as a source of phenotypic information for studying the genetics of TUD.

7.
J Transl Med ; 21(1): 272, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37085903

ABSTRACT

BACKGROUND: Irritable bowel syndrome (IBS) is a chronic disorder of gut-brain interaction frequently accompanied by mental conditions, including depression and anxiety. Despite showing substantial heritability and being partly determined by a genetic component, the genetic underpinnings explaining the high rates of comorbidity remain largely unclear and there are no conclusive data on the temporal relationship between them. Exploring the overlapping genetic architecture between IBS and mental conditions may help to identify novel genetic loci and biological mechanisms underlying IBS and causal relationships between them. METHODS: We quantified the genetic overlap between IBS, neuroticism, depression and anxiety, conducted a multi-trait genome-wide association study (GWAS) considering these traits and investigated causal relationships between them by using the largest GWAS to date. RESULTS: IBS showed to be a highly polygenic disorder with extensive genetic sharing with mental conditions. Multi-trait analysis of IBS and neuroticism, depression and anxiety identified 42 genome-wide significant variants for IBS, of which 38 are novel. Fine-mapping risk loci highlighted 289 genes enriched in genes upregulated during early embryonic brain development and gene-sets related with psychiatric, digestive and autoimmune disorders. IBS-associated genes were enriched for target genes of anti-inflammatory and antirheumatic drugs, anesthetics and opioid dependence pharmacological treatment. Mendelian-randomization analysis accounting for correlated pleiotropy identified bidirectional causal effects between IBS and neuroticism and depression and causal effects of the genetic liability of IBS on anxiety. CONCLUSIONS: These findings provide evidence of the polygenic architecture of IBS, identify novel genome-wide significant variants for IBS and extend previous knowledge on the genetic overlap and relationship between gastrointestinal and mental disorders.


Subject(s)
Irritable Bowel Syndrome , Humans , Irritable Bowel Syndrome/genetics , Irritable Bowel Syndrome/complications , Irritable Bowel Syndrome/psychology , Genome-Wide Association Study , Anxiety/complications , Anxiety/genetics , Comorbidity , Phenotype
8.
Neuropsychopharmacology ; 48(7): 981-990, 2023 06.
Article in English | MEDLINE | ID: mdl-36906694

ABSTRACT

There is evidence linking ADHD to a reduced life expectancy. The mortality rate in individuals with ADHD is twice that of the general population and it is associated with several factors, such as unhealthy lifestyle behaviors, social adversity, and mental health problems that may in turn increase mortality rates. Since ADHD and lifespan are heritable, we used data from genome-wide association studies (GWAS) of ADHD and parental lifespan, as proxy of individual lifespan, to estimate their genetic correlation, identify genetic loci jointly associated with both phenotypes and assess causality. We confirmed a negative genetic correlation between ADHD and parental lifespan (rg = -0.36, P = 1.41e-16). Nineteen independent loci were jointly associated with both ADHD and parental lifespan, with most of the alleles that increased the risk for ADHD being associated with shorter lifespan. Fifteen loci were novel for ADHD and two were already present in the original GWAS on parental lifespan. Mendelian randomization analyses pointed towards a negative causal effect of ADHD liability on lifespan (P = 1.54e-06; Beta = -0.07), although these results were not confirmed by all sensitivity analyses performed, and further evidence is required. The present study provides the first evidence of a common genetic background between ADHD and lifespan, which may play a role in the reported effect of ADHD on premature mortality risk. These results are consistent with previous epidemiological data describing reduced lifespan in mental disorders and support that ADHD is an important health condition that could negatively affect future life outcomes.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Genome-Wide Association Study , Humans , Attention Deficit Disorder with Hyperactivity/epidemiology , Attention Deficit Disorder with Hyperactivity/genetics , Genome-Wide Association Study/methods , Longevity/genetics , Phenotype , Mendelian Randomization Analysis
9.
Int J Epidemiol ; 52(2): 386-402, 2023 04 19.
Article in English | MEDLINE | ID: mdl-35690959

ABSTRACT

BACKGROUND: Attention deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder caused by a combination of genetic and environmental factors and is often thought as an entry point into a negative life trajectory, including risk for comorbid disorders, poor educational achievement or low income. In the present study, we aimed to clarify the causal relationship between ADHD and a comprehensive range of related traits. METHODS: We used genome-wide association study (GWAS) summary statistics for ADHD (n = 53 293) and 124 traits related to anthropometry, cognitive function and intelligence, early life exposures, education and employment, lifestyle and environment, longevity, neurological, and psychiatric and mental health or personality and psychosocial factors available in the MR-Base database (16 067 ≤n ≤766 345). To investigate their causal relationship with ADHD, we used two-sample Mendelian randomization (MR) with a range of sensitivity analyses, and validated MR findings using causal analysis using summary effect estimates (CAUSE), aiming to avoid potential false-positive results. RESULTS: Our findings strengthen previous evidence of a causal effect of ADHD liability on smoking and major depression, and are consistent with a causal effect on odds of decreased average total household income [odds ratio (OR) = 0.966, 95% credible interval (CrI) = (0.954, 0.979)] and increased lifetime number of sexual partners [OR = 1.023, 95% CrI = (1.013, 1.033)]. We also found evidence for a causal effect on ADHD for liability of arm predicted mass and weight [OR = 1.452, 95% CrI = (1.307, 1.614) and OR = 1.430, 95% CrI = (1.326, 1.539), respectively] and time spent watching television [OR = 1.862, 95% CrI = (1.545, 2.246)], and evidence for a bidirectional effect for age of first sexual intercourse [beta = -0.058, 95% CrI = (-0.072, -0.044) and OR = 0.413, 95% CrI = (0.372, 0.457), respectively], odds of decreased age completed full-time education [OR = 0.972, 95% CrI = (0.962, 0.981) and OR = 0.435, 95% CrI = (0.356, 0.533), respectively] and years of schooling [beta = -0.036, 95% CrI = (-0.048, -0.024) and OR = 0.458, 95% CrI = (0.411, 0.511), respectively]. CONCLUSIONS: Our results may contribute to explain part of the widespread co-occurring traits and comorbid disorders across the lifespan of individuals with ADHD and may open new opportunities for developing preventive strategies for ADHD and for negative ADHD trajectories.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Depressive Disorder, Major , Humans , Attention Deficit Disorder with Hyperactivity/epidemiology , Attention Deficit Disorder with Hyperactivity/genetics , Mendelian Randomization Analysis/methods , Genome-Wide Association Study , Causality
10.
Transl Psychiatry ; 12(1): 409, 2022 09 24.
Article in English | MEDLINE | ID: mdl-36153331

ABSTRACT

Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder that results from the interaction of both genetic and environmental risk factors. Genome-wide association studies have started to identify multiple genetic risk loci associated with ADHD, however, the exact causal genes and biological mechanisms remain largely unknown. We performed a multi-step analysis to identify and characterize modules of co-expressed genes associated with ADHD using data from peripheral blood mononuclear cells of 270 ADHD cases and 279 controls. We identified seven ADHD-associated modules of co-expressed genes, some of them enriched in both genetic and epigenetic signatures for ADHD and in biological pathways relevant for psychiatric disorders, such as the regulation of gene expression, epigenetics and immune system. In addition, for some of the modules, we found evidence of potential regulatory mechanisms, including microRNAs and common genetic variants. In conclusion, our results point to promising genes and pathways for ADHD, supporting the use of peripheral blood to assess gene expression signatures in psychiatric disorders. Furthermore, they highlight that the combination of multi-omics signals provides deeper and broader insights into the biological mechanisms underlying ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , MicroRNAs , Attention Deficit Disorder with Hyperactivity/genetics , Gene Regulatory Networks , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Leukocytes, Mononuclear , MicroRNAs/genetics
11.
Nat Genet ; 54(8): 1117-1124, 2022 08.
Article in English | MEDLINE | ID: mdl-35927488

ABSTRACT

Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder with onset in childhood (childhood ADHD); two-thirds of affected individuals continue to have ADHD in adulthood (persistent ADHD), and sometimes ADHD is diagnosed in adulthood (late-diagnosed ADHD). We evaluated genetic differences among childhood (n = 14,878), persistent (n = 1,473) and late-diagnosed (n = 6,961) ADHD cases alongside 38,303 controls, and rare variant differences in 7,650 ADHD cases and 8,649 controls. We identified four genome-wide significant loci for childhood ADHD and one for late-diagnosed ADHD. We found increased polygenic scores for ADHD in persistent ADHD compared with the other two groups. Childhood ADHD had higher genetic overlap with hyperactivity and autism compared with late-diagnosed ADHD and the highest burden of rare protein-truncating variants in evolutionarily constrained genes. Late-diagnosed ADHD had a larger genetic overlap with depression than childhood ADHD and no increased burden in rare protein-truncating variants. Overall, these results suggest a genetic influence on age at first ADHD diagnosis, persistence of ADHD and the different comorbidity patterns among the groups.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Neurodevelopmental Disorders , Adult , Attention Deficit Disorder with Hyperactivity/diagnosis , Attention Deficit Disorder with Hyperactivity/genetics , Comorbidity , Genetic Predisposition to Disease , Humans , Multifactorial Inheritance
12.
Transl Psychiatry ; 11(1): 382, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34238926

ABSTRACT

Compelling evidence supports alterations in gut microbial diversity, bacterial composition, and/or relative abundance of several bacterial taxa in attention-deficit/hyperactivity disorder (ADHD). However, findings for ADHD are inconsistent among studies, and specific gut microbiome signatures for the disorder remain unknown. Given that previous studies have mainly focused on the pediatric form of the disorder and involved small sample sizes, we conducted the largest study to date to compare the gastrointestinal microbiome composition in 100 medication-naïve adults with ADHD and 100 sex-matched healthy controls. We found evidence that ADHD subjects have differences in the relative abundance of several microbial taxa. At the family level, our data support a lower relative abundance of Gracilibacteraceae and higher levels of Selenomonadaceae and Veillonellaceae in adults with ADHD. In addition, the ADHD group showed higher levels of Dialister and Megamonas and lower abundance of Anaerotaenia and Gracilibacter at the genus level. All four selected genera explained 15% of the variance of ADHD, and this microbial signature achieved an overall sensitivity of 74% and a specificity of 71% for distinguishing between ADHD patients and healthy controls. We also tested whether the selected genera correlate with age, body mass index (BMI), or scores of the ADHD rating scale but found no evidence of correlation between genera relative abundance and any of the selected traits. These results are in line with recent studies supporting gut microbiome alterations in neurodevelopment disorders, but further studies are needed to elucidate the role of the gut microbiota on the ADHD across the lifespan and its contribution to the persistence of the disorder from childhood to adulthood.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Gastrointestinal Microbiome , Neurodevelopmental Disorders , Adolescent , Adult , Attention , Body Mass Index , Child , Humans , Young Adult
13.
Am J Med Genet B Neuropsychiatr Genet ; 186(3): 140-150, 2021 04.
Article in English | MEDLINE | ID: mdl-33244849

ABSTRACT

Substance use disorder (SUD) often co-occur at high prevalence with other psychiatric conditions. Among them, attention-deficit and hyperactivity disorder (ADHD) is present in almost one out of every four subjects with SUD and is associated with higher severity, more frequent polysubstance dependence and increased risk for other mental health problems in SUD patients. Despite studies suggesting a genetic basis in the co-occurrence of these two conditions, the genetic factors involved in the joint development of both disorders and the mechanisms mediating these causal relationships are still unknown. In this study, we tested whether the genetic liability to five SUD-related phenotypes share a common background in the general population and clinically diagnosed ADHD individuals from an in-house sample of 989 subjects and further explored the genetic overlap and the causal relationship between ADHD and SUD using pre-existing GWAS datasets. Our results confirm a common genetic background between ADHD and SUD and support the current literature on the causal effect of the liability to ADHD on the risk for SUD. We added novel findings on the effect of the liability of lifetime cannabis use on ADHD and found evidence of shared genetic background underlying SUD in general population and in ADHD, at least for lifetime cannabis use, alcohol dependence and smoking initiation. These findings are in agreement with the high comorbidity observed between ADHD and SUD and highlight the need to control for substance use in ADHD and to screen for ADHD comorbidity in all SUD patients to provide optimal clinical interventions.


Subject(s)
Attention Deficit Disorder with Hyperactivity/epidemiology , Genetic Predisposition to Disease , Substance-Related Disorders/epidemiology , Adolescent , Adult , Attention Deficit Disorder with Hyperactivity/genetics , Case-Control Studies , Comorbidity , Humans , Male , Prevalence , Psychiatric Status Rating Scales , Risk Factors , Spain/epidemiology , Substance-Related Disorders/genetics
14.
Eur Neuropsychopharmacol ; 41: 160-166, 2020 12.
Article in English | MEDLINE | ID: mdl-33221139

ABSTRACT

Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder with an estimated heritability of around 70%. Although the largest genome-wide association study (GWAS) meta-analysis on ADHD identified independent loci conferring risk to the disorder, the molecular mechanisms underlying the genetic basis of the disorder remain to be elucidated. To explore ADHD biology, we ran a two-step transcriptome profiling in peripheral blood mononuclear cells (PBMCs) of 143 ADHD subjects and 169 healthy controls. Through this exploratory study we found eight differentially expressed genes in ADHD. These results highlight promising candidate genes and gene pathways for ADHD and support the use of peripheral tissues to assess gene expression signatures for ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity/diagnosis , Attention Deficit Disorder with Hyperactivity/genetics , Gene Expression Profiling/methods , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Adult , Case-Control Studies , Female , Humans , Male , Middle Aged , Young Adult
15.
Transl Psychiatry ; 10(1): 199, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32561708

ABSTRACT

Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental disorder that often persists into adulthood. There is growing evidence that epigenetic dysregulation participates in ADHD. Given that only a limited number of epigenome-wide association studies (EWASs) of ADHD have been conducted so far and they have mainly focused on pediatric and population-based samples, we performed an EWAS in a clinical sample of adults with ADHD. We report one CpG site and four regions differentially methylated between patients and controls, which are located in or near genes previously involved in autoimmune diseases, cancer or neuroticism. Our sensitivity analyses indicate that smoking status is not responsible for these results and that polygenic risk burden for ADHD does not greatly impact the signatures identified. Additionally, we show an overlap of our EWAS findings with genetic signatures previously described for ADHD and with epigenetic signatures for smoking behavior and maternal smoking. These findings support a role of DNA methylation in ADHD and emphasize the need for additional efforts in larger samples to clarify the role of epigenetic mechanisms on ADHD across the lifespan.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Adult , Attention Deficit Disorder with Hyperactivity/genetics , Child , DNA Methylation , Epigenome , Epigenomics , Genome-Wide Association Study , Humans , Multifactorial Inheritance
16.
Neuropsychopharmacology ; 45(10): 1617-1626, 2020 09.
Article in English | MEDLINE | ID: mdl-32279069

ABSTRACT

Attention deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder characterized by age-inappropriate symptoms of inattention, impulsivity, and hyperactivity that persist into adulthood in the majority of the diagnosed children. Despite several risk factors during childhood predicting the persistence of ADHD symptoms into adulthood, the genetic architecture underlying the trajectory of ADHD over time is still unclear. We set out to study the contribution of common genetic variants to the risk for ADHD across the lifespan by conducting meta-analyses of genome-wide association studies on persistent ADHD in adults and ADHD in childhood separately and jointly, and by comparing the genetic background between them in a total sample of 17,149 cases and 32,411 controls. Our results show nine new independent loci and support a shared contribution of common genetic variants to ADHD in children and adults. No subgroup heterogeneity was observed among children, while this group consists of future remitting and persistent individuals. We report similar patterns of genetic correlation of ADHD with other ADHD-related datasets and different traits and disorders among adults, children, and when combining both groups. These findings confirm that persistent ADHD in adults is a neurodevelopmental disorder and extend the existing hypothesis of a shared genetic architecture underlying ADHD and different traits to a lifespan perspective.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Adult , Attention Deficit Disorder with Hyperactivity/genetics , Child , Genetic Background , Genome-Wide Association Study , Humans , Impulsive Behavior , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...