Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Brain Commun ; 6(1): fcae017, 2024.
Article in English | MEDLINE | ID: mdl-38317856

ABSTRACT

The immunoproteasome is a central protease complex required for optimal antigen presentation. Immunoproteasome activity is also associated with facilitating the degradation of misfolded and oxidized proteins, which prevents cellular stress. While extensively studied during diseases with increasing evidence suggesting a role for the immunoproteasome during pathological conditions including neurodegenerative diseases, this enzyme complex is believed to be mainly not expressed in the healthy brain. In this study, we show an age-dependent increase in polyubiquitination in the brains of wild-type mice, accompanied by an induction of immunoproteasomes, which was most prominent in neurons and microglia. In contrast, mice completely lacking immunoproteasomes (triple-knockout mice), displayed a strong increase in polyubiquitinated proteins already in the young brain and developed spontaneous epileptic seizures, beginning at the age of 6 months. Injections of kainic acid led to high epilepsy-related mortality of aged triple-knockout mice, confirming increased pathological hyperexcitability states. Notably, the expression of the immunoproteasome was reduced in the brains of patients suffering from epilepsy. In addition, the aged triple-knockout mice showed increased anxiety, tau hyperphosphorylation and degeneration of Purkinje cell population with the resulting ataxic symptoms and locomotion alterations. Collectively, our study suggests a critical role for the immunoproteasome in the maintenance of a healthy brain during ageing.

2.
Front Immunol ; 14: 1269015, 2023.
Article in English | MEDLINE | ID: mdl-37799719

ABSTRACT

The opportunities genetic engineering has created in the field of adoptive cellular therapy for cancer are accelerating the development of novel treatment strategies using chimeric antigen receptor (CAR) and T cell receptor (TCR) T cells. The great success in the context of hematologic malignancies has made especially CAR T cell therapy a promising approach capable of achieving long-lasting remission. However, the causalities involved in mediating resistance to treatment or relapse are still barely investigated. Research on T cell exhaustion and dysfunction has drawn attention to host-derived factors that define both the immune and tumor microenvironment (TME) crucially influencing efficacy and toxicity of cellular immunotherapy. The microbiome, as one of the most complex host factors, has become a central topic of investigations due to its ability to impact on health and disease. Recent findings support the hypothesis that commensal bacteria and particularly microbiota-derived metabolites educate and modulate host immunity and TME, thereby contributing to the response to cancer immunotherapy. Hence, the composition of microbial strains as well as their soluble messengers are considered to have predictive value regarding CAR T cell efficacy and toxicity. The diversity of mechanisms underlying both beneficial and detrimental effects of microbiota comprise various epigenetic, metabolic and signaling-related pathways that have the potential to be exploited for the improvement of CAR T cell function. In this review, we will discuss the recent findings in the field of microbiome-cancer interaction, especially with respect to new trajectories that commensal factors can offer to advance cellular immunotherapy.


Subject(s)
Microbiota , Receptors, Chimeric Antigen , Humans , T-Lymphocytes , Neoplasm Recurrence, Local , Receptors, Chimeric Antigen/genetics , Immunotherapy , Tumor Microenvironment
3.
Microbiol Spectr ; 11(3): e0433822, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37074181

ABSTRACT

Visceral leishmaniasis (VL) is caused by protozoan parasites of the Leishmania donovani complex and is one of the most prominent vector-borne infectious diseases with epidemic and mortality potential if not correctly diagnosed and treated. East African countries suffer from a very high incidence of VL, and although several diagnostic tests are available for VL, diagnosis continues to represent a big challenge in these countries due to the lack of sensitivity and specificity of current serological tools. Based on bioinformatic analysis, a new recombinant kinesin antigen from Leishmania infantum (rKLi8.3) was developed. The diagnostic performance of rKLi8.3 was evaluated by enzyme-linked immunosorbent assay (ELISA) and lateral flow test (LFT) on a panel of sera from Sudanese, Indian, and South American patients diagnosed with VL or other diseases, including tuberculosis, malaria, and trypanosomiasis. The diagnostic accuracy of rKLi8.3 was compared with rK39 and rKLO8 antigens. The VL-specific sensitivity of rK39, rKLO8, and rKLi8.3 ranged from 91.2% over 92.4% to 97.1% and specificity ranged from 93.6% over 97.6% to 99.2%, respectively. In India, all tests showed a comparable specificity of 90.9%, while the sensitivity ranged from 94.7% to 100% (rKLi8.3). In contrast to commercial serodiagnostic tests, rKLi8.3-based ELISA and LFT showed improved sensitivity and no cross-reactivity with other parasitic diseases. Thus, rKLi8.3-based ELISA and LFT offer improved VL serodiagnostic efficiency in East Africa and other areas of endemicity. IMPORTANCE Reliable and field suitable serodiagnosis of visceral leishmaniasis (VL) in East Africa has until now been a big challenge due to low sensitivity and cross-reactivity with other pathogens. To improve VL serodiagnosis, a new recombinant kinesin antigen from Leishmania infantum (rKLi8.3) was developed and tested with a panel of sera from Sudanese, Indian, and South American patients diagnosed with VL or other infectious diseases. Both prototype rKLi8.3-based enzyme-linked immunosorbent assay (ELISA) and lateral flow test (LFT) showed improved sensitivity and no cross-reactivity with other parasitic diseases. Thus, rKLi8.3-based ELISA and LFT offer substantially increased diagnostic efficiency for VL in East Africa and other areas of endemicity, compared to currently commercially available serodiagnostic tests.


Subject(s)
Leishmaniasis, Visceral , Humans , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/epidemiology , Leishmaniasis, Visceral/parasitology , Antigens, Protozoan , Protozoan Proteins , Kinesins , Serologic Tests , Enzyme-Linked Immunosorbent Assay
4.
Microbiol Spectr ; 11(3): e0517422, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37052493

ABSTRACT

Acinetobacter baumannii is an antibiotic-resistant, Gram-negative pathogen that causes a multitude of nosocomial infections. However, pathogenicity mechanisms and the host cell response during infection remain unclear. In this study, we determined virulence traits of A. baumannii clinical isolates belonging to the most widely disseminated international clonal lineage, international cluster 2 (IC2), in vitro and in vivo. Complexome profiling of primary human endothelial cells with A. baumannii revealed that mitochondria, and in particular complexes of the electron transport chain, are important host cell targets. Infection with highly virulent A. baumannii remodelled assembly of mitochondrial protein complexes and led to metabolic adaptation. These were characterized by reduced mitochondrial respiration and glycolysis in contrast to those observed in infection with low-pathogenicity A. baumannii. Perturbation of oxidative phosphorylation, destabilization of mitochondrial ribosomes, and interference with mitochondrial metabolic pathways were identified as important pathogenicity mechanisms. Understanding the interaction of human host cells with the current global A. baumannii clone is the basis to identify novel therapeutic targets. IMPORTANCE Virulence traits of Acinetobacter baumannii isolates of the worldwide most prevalent international clonal lineage, IC2, remain largely unknown. In our study, multidrug-resistant IC2 clinical isolates differed substantially in their virulence potential despite their close genetic relatedness. Our data suggest that, at least for some isolates, mitochondria are important target organelles during infection of primary human endothelial cells. Complexes of the respiratory chain were extensively remodelled after infection with a highly virulent A. baumannii strain, leading to metabolic adaptation characterized by severely reduced respiration and glycolysis. Perturbations of both mitochondrial morphology and mitoribosomes were identified as important pathogenicity mechanisms. Our data might help to further decipher the molecular mechanisms of A. baumannii and host mitochondrial interaction during infection.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Humans , Acinetobacter baumannii/genetics , Endothelial Cells , Acinetobacter Infections/drug therapy , Drug Resistance, Multiple, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Mitochondrial Proteins/therapeutic use
5.
Cancers (Basel) ; 15(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36900377

ABSTRACT

Prevention of the effectiveness of anti-tumor immune responses is one of the canonical cancer hallmarks. The competition for crucial nutrients within the tumor microenvironment (TME) between cancer cells and immune cells creates a complex interplay characterized by metabolic deprivation. Extensive efforts have recently been made to understand better the dynamic interactions between cancer cells and surrounding immune cells. Paradoxically, both cancer cells and activated T cells are metabolically dependent on glycolysis, even in the presence of oxygen, a metabolic process known as the Warburg effect. The intestinal microbial community delivers various types of small molecules that can potentially augment the functional capabilities of the host immune system. Currently, several studies are trying to explore the complex functional relationship between the metabolites secreted by the human microbiome and anti-tumor immunity. Recently, it has been shown that a diverse array of commensal bacteria synthetizes bioactive molecules that enhance the efficacy of cancer immunotherapy, including immune checkpoint inhibitor (ICI) treatment and adoptive cell therapy with chimeric antigen receptor (CAR) T cells. In this review, we highlight the importance of commensal bacteria, particularly of the gut microbiota-derived metabolites that are capable of shaping metabolic, transcriptional and epigenetic processes within the TME in a therapeutically meaningful way.

6.
NAR Cancer ; 5(1): zcad007, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36755960

ABSTRACT

Transcriptional cancer subtypes which correlate with traits such as tumor growth, drug sensitivity or the chances of relapse and metastasis, have been described for several malignancies. The core regulatory circuits (CRCs) defining these subtypes are established by chromatin super enhancers (SEs) driving key transcription factors (TFs) specific for the particular cell state. In neuroblastoma (NB), one of the most frequent solid pediatric cancer entities, two major SE-directed molecular subtypes have been described: A more lineage-committed adrenergic (ADRN) and a mesenchymal (MES) subtype. Here, we found that a small isoxazole molecule (ISX), a frequently used pro-neural drug, reprogrammed SE activity and switched NB cells from an ADRN subtype towards a growth-retarded MES-like state. The MES-like state shared strong transcriptional overlap with ganglioneuroma (GN), a benign and highly differentiated tumor of the neural crest. Mechanistically, ISX suppressed chromatin binding of N-MYC, a CRC-amplifying transcription factor, resulting in loss of key ADRN subtype-enriched components such as N-MYC itself, PHOX2B and ALK, while concomitently, MES subtype markers were induced. Globally, ISX treatment installed a chromatin accessibility landscape typically associated with low risk NB. In summary, we provide evidence that CRCs and cancer subtype reprogramming might be amenable to future therapeutic targeting.

7.
Epilepsia ; 64(2): 511-523, 2023 02.
Article in English | MEDLINE | ID: mdl-36507708

ABSTRACT

OBJECTIVE: The P2X7 receptor (P2X7R) is an important contributor to neuroinflammation, responding to extracellularly released adenosine triphosphate. Expression of the P2X7R is increased in the brain in experimental and human epilepsy, and genetic or pharmacologic targeting of the receptor can reduce seizure frequency and severity in preclinical models. Experimentally induced seizures also increase levels of the P2X7R in blood. Here, we tested 18 F-JNJ-64413739, a positron emission tomography (PET) P2X7R antagonist, as a potential noninvasive biomarker of seizure-damage and epileptogenesis. METHODS: Status epilepticus was induced via an intra-amygdala microinjection of kainic acid. Static PET studies (30 min duration, initiated 30 min after tracer administration) were conducted 48 h after status epilepticus via an intravenous injection of 18 F-JNJ-64413739. PET images were coregistered with a brain magnetic resonance imaging atlas, tracer uptake was determined in the different brain regions and peripheral organs, and values were correlated to seizure severity during status epilepticus. 18 F-JNJ-64413739 was also applied to ex vivo human brain slices obtained following surgical resection for intractable temporal lobe epilepsy. RESULTS: P2X7R radiotracer uptake correlated strongly with seizure severity during status epilepticus in brain structures including the cerebellum and ipsi- and contralateral cortex, hippocampus, striatum, and thalamus. In addition, a correlation between radiotracer uptake and seizure severity was also evident in peripheral organs such as the heart and the liver. Finally, P2X7R radiotracer uptake was found elevated in brain sections from patients with temporal lobe epilepsy when compared to control. SIGNIFICANCE: Taken together, our data suggest that P2X7R-based PET imaging may help to identify seizure-induced neuropathology and temporal lobe epilepsy patients with increased P2X7R levels possibly benefitting from P2X7R-based treatments.


Subject(s)
Epilepsy, Temporal Lobe , Status Epilepticus , Mice , Humans , Male , Animals , Epilepsy, Temporal Lobe/metabolism , Receptors, Purinergic P2X7/metabolism , Receptors, Purinergic P2X7/therapeutic use , Brain/diagnostic imaging , Brain/metabolism , Status Epilepticus/chemically induced , Status Epilepticus/diagnostic imaging , Status Epilepticus/metabolism , Seizures/drug therapy
8.
EMBO Rep ; 23(12): e54685, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36215678

ABSTRACT

Increased lactate levels in the tissue microenvironment are a well-known feature of chronic inflammation. However, the role of lactate in regulating T cell function remains controversial. Here, we demonstrate that extracellular lactate predominantly induces deregulation of the Th17-specific gene expression program by modulating the metabolic and epigenetic status of Th17 cells. Following lactate treatment, Th17 cells significantly reduced their IL-17A production and upregulated Foxp3 expression through ROS-driven IL-2 secretion. Moreover, we observed increased levels of genome-wide histone H3K18 lactylation, a recently described marker for active chromatin in macrophages, in lactate-treated Th17 cells. In addition, we show that high lactate concentrations suppress Th17 pathogenicity during intestinal inflammation in mice. These results indicate that lactate is capable of reprogramming pro-inflammatory T cell phenotypes into regulatory T cells.


Subject(s)
Lactic Acid , Th17 Cells , Animals , Mice , Epigenomics
10.
Microbiome ; 10(1): 158, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36171625

ABSTRACT

BACKGROUND: The intestinal microbiota fundamentally guides the development of a normal intestinal physiology, the education, and functioning of the mucosal immune system. The Citrobacter rodentium-carrier model in germ-free (GF) mice is suitable to study the influence of selected microbes on an otherwise blunted immune response in the absence of intestinal commensals. RESULTS: Here, we describe that colonization of adult carrier mice with 14 selected commensal microbes (OMM12 + MC2) was sufficient to reestablish the host immune response to enteric pathogens; this conversion was facilitated by maturation and activation of the intestinal blood vessel system and the step- and timewise stimulation of innate and adaptive immunity. While the immature colon of C. rodentium-infected GF mice did not allow sufficient extravasation of neutrophils into the gut lumen, colonization with OMM12 + MC2 commensals initiated the expansion and activation of the visceral vascular system enabling granulocyte transmigration into the gut lumen for effective pathogen elimination. CONCLUSIONS: Consortium modeling revealed that the addition of two facultative anaerobes to the OMM12 community was essential to further progress the intestinal development. Moreover, this study demonstrates the therapeutic value of a defined consortium to promote intestinal maturation and immunity even in adult organisms. Video Abstract.


Subject(s)
Citrobacter rodentium , Intestinal Mucosa , Animals , Citrobacter rodentium/physiology , Immune System , Immunocompetence , Intestines , Mice
11.
Int J Mol Sci ; 23(15)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35955407

ABSTRACT

The gut microbiota encodes a broad range of enzymes capable of synthetizing various metabolites, some of which are still uncharacterized. One well-known class of microbiota-derived metabolites are the short-chain fatty acids (SCFAs) such as acetate, propionate, butyrate and valerate. SCFAs have long been considered a mere waste product of bacterial metabolism. Novel results have challenged this long-held dogma, revealing a central role for microbe-derived SCFAs in gut microbiota-host interaction. SCFAs are bacterial signaling molecules that act directly on host T lymphocytes by reprogramming their metabolic activity and epigenetic status. They have an essential biological role in promoting differentiation of (intestinal) regulatory T cells and in production of the anti-inflammatory cytokine interleukin-10 (IL-10). These small molecules can also reach the circulation and modulate immune cell function in remote tissues. In experimental models of autoimmune and inflammatory diseases, such as inflammatory bowel disease, multiple sclerosis or diabetes, a strong therapeutic potential of SCFAs through the modulation of effector T cell function was observed. In this review, we discuss current research activities toward understanding a relevance of microbial SCFA for treating autoimmune and inflammatory pathologies from in vitro to human studies.


Subject(s)
Fatty Acids, Volatile , Gastrointestinal Microbiome , Bacteria/metabolism , Butyrates , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Fatty Acids, Volatile/metabolism , Gastrointestinal Microbiome/physiology , Humans
12.
Eur J Immunol ; 52(9): 1523-1526, 2022 09.
Article in English | MEDLINE | ID: mdl-35776890

ABSTRACT

The known YAP inhibitor verteporfin is capable of repressing IL-17A production in Th17 cells. However, this effect is mediated independently of YAP and can ameliorate Th17-mediated experimental autoimmune encephalomyelitis (EAE) upon in vivo administration. The data suggest verteprofin's mode of action for the design of novel therapeutic autoimmune disease intervention.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Th17 Cells , Animals , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Mice , Mice, Inbred C57BL , Verteporfin/pharmacology
13.
Arch Immunol Ther Exp (Warsz) ; 70(1): 5, 2022 Jan 22.
Article in English | MEDLINE | ID: mdl-35064840

ABSTRACT

The participation of proteasomes in vital cellular and metabolic processes that are involved in tumor growth has made this protease complex an attractive target for cancer treatment. In contrast to ubiquitously available constitutive proteasome, the increased enzymatic activity of immunoproteasome is associated with tumor-infiltrating immune cells, such as antigen-presenting cells and T lymphocytes. In various tumors, an effective anti-tumor immunity is provided through generation of tumor-associated antigens by proteasomes, contributing crucially to cancer eradication by T lymphocytes. The knowledge regarding the role of immunoproteasomes in the communication between tumor cells and infiltrating immune cells is limited. Novel data suggest that the involvement of immunoproteasomes in tumorigenesis is more complex than previously thought. In the intestine, in which diverse signals from commensal bacteria and food can contribute to the onset of chronic inflammation and inflammation-driven cancer, immunoproteasomes exert tumorigenic properties by modulating the expression of pro-inflammatory factors. In contrast, in melanoma and non-small cell lung cancer, the immunoproteasome acts against cancer development by promoting an effective anti-tumor immunity. In this review, we highlight the potential of immunoproteasomes to either contribute to inflammatory signaling and tumor development, or to support anti-cancer immunity. Further, we discuss novel therapeutic options for cancer treatments that are associated with modulating the activity of immunoproteasomes in the tumor microenvironment.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Colonic Neoplasms , Lung Neoplasms , Melanoma , Cell Communication , Humans , Proteasome Endopeptidase Complex , Tumor Microenvironment
14.
J Leukoc Biol ; 111(5): 1001-1007, 2022 05.
Article in English | MEDLINE | ID: mdl-34622991

ABSTRACT

The NF-κB transcription factor c-Rel plays a crucial role in promoting and regulating immune responses and inflammation. However, the function of c-Rel in modulating the mucosal immune system is poorly understood. T follicular helper (Tfh) cells and IgA production in gut-associated lymphoid tissues (GALT) such as Peyer's patches (PPs) are important for maintaining the intestinal homeostasis. Here, c-Rel was identified as an essential factor regulating intestinal IgA generation and function of Tfh cells. Genetic deletion of c-Rel resulted in the aberrant formation of germinal centers (GCs) in PPs, significantly reduced IgA generation and defective Tfh cell differentiation. Supporting these findings, the Ag-specific IgA response to Citrobacter rodentium was strongly impaired in c-Rel-deficient mice. Interestingly, an excessive expansion of segmented filamentous bacteria (SFB) was observed in the small intestine of animals lacking c-Rel. Yet, the production of IL-17A, IgA, and IL-21, which are induced by SFB, was impaired due to the lack of transcriptional control by c-Rel. Collectively, the transcriptional activity of c-Rel regulates Tfh cell function and IgA production in the gut, thus preserving the intestinal homeostasis.


Subject(s)
Peyer's Patches , T-Lymphocytes, Helper-Inducer , Animals , Bacteria , Communication , Immunoglobulin A , Lymphocytes , Mice , Transcription Factors
15.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Article in English | MEDLINE | ID: mdl-34588305

ABSTRACT

Increased stiffness of solid tissues has long been recognized as a diagnostic feature of several pathologies, most notably malignant diseases. In fact, it is now well established that elevated tissue rigidity enhances disease progression and aggressiveness and is associated with a poor prognosis in patients as documented, for instance, for lung fibrosis or the highly desmoplastic cancer of the pancreas. The underlying mechanisms of the interplay between physical properties and cellular behavior are, however, not very well understood. Here, we have found that switching culture conditions from soft to stiff substrates is sufficient to evoke (macro) autophagy in various fibroblast types. Mechanistically, this is brought about by stiffness-sensing through an Integrin αV-focal adhesion kinase module resulting in sequestration and posttranslational stabilization of the metabolic master regulator AMPKα at focal adhesions, leading to the subsequent induction of autophagy. Importantly, stiffness-induced autophagy in stromal cells such as fibroblasts and stellate cells critically supports growth of adjacent cancer cells in vitro and in vivo. This process is Integrin αV dependent, opening possibilities for targeting tumor-stroma crosstalk. Our data thus reveal that the mere change in mechanical tissue properties is sufficient to metabolically reprogram stromal cell populations, generating a tumor-supportive metabolic niche.


Subject(s)
Autophagy/physiology , Extracellular Matrix/pathology , Animals , Cell Line , Extracellular Matrix/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis/metabolism , Fibrosis/pathology , Focal Adhesions/metabolism , Focal Adhesions/pathology , Integrin alphaV/metabolism , Mice , NIH 3T3 Cells , Neoplasms/metabolism , Neoplasms/pathology , Pancreas/metabolism , Pancreas/pathology , Stromal Cells/metabolism
16.
Trends Cell Biol ; 31(11): 873-875, 2021 11.
Article in English | MEDLINE | ID: mdl-34538658

ABSTRACT

The microbiome is a hidden treasure trove comprising various microorganisms that produce a wide range of bioactive molecules. Recent studies provide evidence for the potential impact of microbiota on cancer therapies. Here, we summarize how the molecular interaction of two groups of microbial metabolites with T cells improves immunotherapy for cancer.


Subject(s)
Gastrointestinal Microbiome , Neoplasms , Humans , Immunotherapy , Neoplasms/therapy
17.
Front Cell Dev Biol ; 9: 703218, 2021.
Article in English | MEDLINE | ID: mdl-34381785

ABSTRACT

During the past decade, researchers have investigated the role of microbiota in health and disease. Recent findings support the hypothesis that commensal bacteria and in particular microbiota-derived metabolites have an impact on development of inflammation and carcinogenesis. Major classes of microbial-derived molecules such as short-chain fatty acids (SCFA) and secondary bile acids (BAs) were shown to have immunomodulatory potential in various autoimmune, inflammatory as well as cancerous disease models and are dependent on diet-derived substrates. The versatile mechanisms underlying both beneficial and detrimental effects of bacterial metabolites comprise diverse regulatory pathways in lymphocytes and non-immune cells including changes in the signaling, metabolic and epigenetic status of these. Consequently, SCFAs as strong modulators of immunometabolism and histone deacetylase (HDAC) inhibitors have been investigated as therapeutic agents attenuating inflammatory and autoimmune disorders. Moreover, BAs were shown to modulate the microbial composition, adaptive and innate immune response. In this review, we will discuss the recent findings in the field of microbiota-derived metabolites, especially with respect to the molecular and cellular mechanisms of SCFA and BA biology in the context of intestinal and liver diseases.

18.
Nat Commun ; 12(1): 4077, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34210970

ABSTRACT

Emerging data demonstrate that the activity of immune cells can be modulated by microbial molecules. Here, we show that the short-chain fatty acids (SCFAs) pentanoate and butyrate enhance the anti-tumor activity of cytotoxic T lymphocytes (CTLs) and chimeric antigen receptor (CAR) T cells through metabolic and epigenetic reprograming. We show that in vitro treatment of CTLs and CAR T cells with pentanoate and butyrate increases the function of mTOR as a central cellular metabolic sensor, and inhibits class I histone deacetylase activity. This reprogramming results in elevated production of effector molecules such as CD25, IFN-γ and TNF-α, and significantly enhances the anti-tumor activity of antigen-specific CTLs and ROR1-targeting CAR T cells in syngeneic murine melanoma and pancreatic cancer models. Our data shed light onto microbial molecules that may be used for enhancing cellular anti-tumor immunity. Collectively, we identify pentanoate and butyrate as two SCFAs with therapeutic utility in the context of cellular cancer immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Fatty Acids, Volatile/metabolism , Immunologic Factors/metabolism , Immunotherapy, Adoptive/methods , Microbiota/physiology , Neoplasms/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , Butyrates/metabolism , Cell Line, Tumor , Cytokines/metabolism , Female , Immunotherapy , Interferon-gamma , Interleukin-2 Receptor alpha Subunit , Megasphaera , Melanoma/metabolism , Mice , Mice, Inbred C57BL , Peptide Fragments , Receptor Tyrosine Kinase-like Orphan Receptors , Receptors, G-Protein-Coupled/genetics , Tumor Necrosis Factor-alpha
19.
Virulence ; 12(1): 1003-1010, 2021 12.
Article in English | MEDLINE | ID: mdl-33843461

ABSTRACT

Moraxella catarrhalis is a bacterial pathogen that causes respiratory tract infections in humans. The increasing prevalence of antibiotic-resistant M. catarrhalis strains has created a demand for alternative treatment options. We therefore tested 23 insect antimicrobial peptides (AMPs) for their activity against M. catarrhalis in a human in vitro infection model with primary macrophages, and against commensal bacteria. Effects on bacterial growth were determined by colony counting and growth curve analysis. The inflammatory macrophage response was characterized by qPCR and multiplex ELISA. Eleven of the AMPs were active against M. catarrhalis. Defensin 1 from the red flour beetle Tribolium castaneum significantly inhibited bacterial growth and reduced the number of colony forming units. This AMP also showed antibacterial activity in the in vitro infection model, reducing cytokine expression and release by macrophages. Defensin 1 had no effect on the commensal bacteria Escherichia coli and Enterococcus faecalis. However, sarcotoxin 1 C from the green bottle fly Lucilia sericata was active against M. catarrhalis and E. coli, but not against E. faecalis. The ability of T. castaneum defensin 1 to inhibit M. catarrhalis but not selected commensal bacteria, and the absence of cytotoxic or inflammatory effects against human blood-derived macrophages, suggests this AMP may be suitable for development as a new therapeutic lead against antibiotic-resistant M. catarrhalis.


Subject(s)
Antimicrobial Peptides , Defensins , Moraxella , Tribolium , Animals , Humans , Anti-Bacterial Agents/pharmacology , Antimicrobial Peptides/toxicity , Defensins/toxicity , Escherichia coli , Moraxella/physiology , Moraxella catarrhalis
20.
Cancer Immunol Res ; 9(6): 682-692, 2021 06.
Article in English | MEDLINE | ID: mdl-33707310

ABSTRACT

Apart from the constitutive proteasome, the immunoproteasome that comprises the three proteolytic subunits LMP2, MECL-1, and LMP7 is expressed in most immune cells. In this study, we describe opposing roles for immunoproteasomes in regulating the tumor microenvironment (TME). During chronic inflammation, immunoproteasomes modulated the expression of protumorigenic cytokines and chemokines and enhanced infiltration of innate immune cells, thus triggering the onset of colitis-associated carcinogenesis (CAC) in wild-type mice. Consequently, immunoproteasome-deficient animals (LMP2/MECL-1/LMP7-null mice) were almost completely resistant to CAC development. In patients with ulcerative colitis with high risk for CAC, immunoproteasome-induced protumorigenic mediators were upregulated. In melanoma tumors, the role of immunoproteasomes is relatively unknown. We found that high expression of immunoproteasomes in human melanoma was associated with better prognosis. Similarly, our data revealed that the immunoproteasome has antitumorigenic activity in a mouse model of melanoma. The antitumor immunity against melanoma was compromised in immunoproteasome-deficient mice because of the impaired activity of CD8+ CTLs, CD4+ Th1 cells, and antigen-presenting cells. These findings show that immunoproteasomes may exert opposing roles with either pro- or antitumoral properties in a context-dependent manner.


Subject(s)
Cysteine Endopeptidases/metabolism , Melanoma, Experimental/immunology , Proteasome Endopeptidase Complex/metabolism , T-Lymphocytes, Cytotoxic/immunology , Tumor Microenvironment/immunology , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Colitis/pathology , Cysteine Endopeptidases/deficiency , Cysteine Endopeptidases/genetics , Cytokines/metabolism , Female , Histocompatibility Antigens Class I/metabolism , Humans , Melanoma, Experimental/drug therapy , Mice , Mice, Inbred C57BL , Mice, Knockout , Proteasome Endopeptidase Complex/genetics , T-Lymphocytes, Cytotoxic/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...