Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
PLoS Pathog ; 20(7): e1012394, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38991026

ABSTRACT

Staphylococcus aureus is a facultative intracellular pathogen of human macrophages, which facilitates chronic infection. The genotypes, pathways, and mutations influencing that phenotype remain incompletely explored. Here, we used two distinct strategies to ascertain S. aureus gene mutations affecting pathogenesis in macrophages. First, we analyzed isolates collected serially from chronic cystic fibrosis (CF) respiratory infections. We found that S. aureus strains evolved greater macrophage invasion capacity during chronic human infection. Bacterial genome-wide association studies (GWAS) identified 127 candidate genes for which mutation was significantly associated with macrophage pathogenesis in vivo. In parallel, we passaged laboratory S. aureus strains in vitro to select for increased infection of human THP-1 derived macrophages, which identified 15 candidate genes by whole-genome sequencing. Functional validation of candidate genes using isogenic transposon mutant knockouts and CRISPR interference (CRISPRi) knockdowns confirmed virulence contributions from 37 of 39 tested genes (95%) implicated by in vivo studies and 7 of 10 genes (70%) ascertained from in vitro selection, with one gene in common to the two strategies. Validated genes included 17 known virulence factors (39%) and 27 newly identified by our study (61%), some encoding functions not previously associated with macrophage pathogenesis. Most genes (80%) positively impacted macrophage invasion when disrupted, consistent with the phenotype readily arising from loss-of-function mutations in vivo. This work reveals genes and mechanisms that contribute to S. aureus infection of macrophages, highlights differences in mutations underlying convergent phenotypes arising from in vivo and in vitro systems, and supports the relevance of S. aureus macrophage pathogenesis during chronic respiratory infection in CF. Additional studies will be needed to illuminate the exact mechanisms by which implicated mutations affect their phenotypes.

2.
Sci Transl Med ; 16(742): eadk8222, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598612

ABSTRACT

Despite modern antiseptic techniques, surgical site infection (SSI) remains a leading complication of surgery. However, the origins of SSI and the high rates of antimicrobial resistance observed in these infections are poorly understood. Using instrumented spine surgery as a model of clean (class I) skin incision, we prospectively sampled preoperative microbiomes and postoperative SSI isolates in a cohort of 204 patients. Combining multiple forms of genomic analysis, we correlated the identity, anatomic distribution, and antimicrobial resistance profiles of SSI pathogens with those of preoperative strains obtained from the patient skin microbiome. We found that 86% of SSIs, comprising a broad range of bacterial species, originated endogenously from preoperative strains, with no evidence of common source infection among a superset of 1610 patients. Most SSI isolates (59%) were resistant to the prophylactic antibiotic administered during surgery, and their resistance phenotypes correlated with the patient's preoperative resistome (P = 0.0002). These findings indicate the need for SSI prevention strategies tailored to the preoperative microbiome and resistome present in individual patients.


Subject(s)
Anti-Infective Agents , Surgical Wound Infection , Humans , Surgical Wound Infection/prevention & control , Surgical Wound Infection/drug therapy , Surgical Wound Infection/microbiology , Antibiotic Prophylaxis , Skin , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
3.
Article in English | MEDLINE | ID: mdl-38604398

ABSTRACT

BACKGROUND: Cutibacterium acnes is the bacterium most commonly responsible for shoulder periprosthetic joint infection (PJI) and is often cultured from samples obtained at the time of revision for failed shoulder arthroplasty. We sought to determine whether these bacteria originate from the patient or from exogenous sources. We also sought to identify which C. acnes genetic traits were associated with the development of shoulder PJI. METHODS: We performed bacterial whole-genome sequencing of C. acnes from a single-institution repository of cultures obtained before or during primary and revision shoulder arthroplasty and correlated the molecular epidemiology and genetic content of strains with clinical features of infection. RESULTS: A total of 341 isolates collected over a 4-year period from 88 patients were sequenced. C. acnes cultured from surgical specimens demonstrated significant similarity to the strains colonizing the skin of the same patient (P < .001). Infrequently, there was evidence of strains shared across unrelated patients, suggesting that exogenous sources of C. acnes culture-positivity were uncommon. Phylotypes IB and II were modestly associated with clinical features of PJI, but all phylotypes appeared inherently capable of causing disease. Chronic shoulder PJI was associated with the absence of common C. acnes genes involved in bacterial quorum-sensing (luxS, tqsA). CONCLUSION: C. acnes strains cultured from deep intraoperative sources during revision shoulder arthroplasty demonstrate strong genetic similarity to the strains colonizing a patient's skin. Some phylotypes of C. acnes commonly colonizing human skin are modestly more virulent than others, but all phylotypes have a capacity for PJI. C. acnes cultured from cases of PJI commonly demonstrated genetic hallmarks associated with adaptation from acute to chronic phases of infection. This is the strongest evidence to date supporting the role of the patient's own, cutaneous C. acnes strains in the pathogenesis of shoulder arthroplasty infection. Our findings support the importance of further research focused on perioperative decolonization and management of endogenous bacteria that are likely to be introduced into the arthroplasty wound at the time of skin incision.

4.
mBio ; 15(2): e0193523, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38275294

ABSTRACT

The intestinal microbiome influences growth and disease progression in children with cystic fibrosis (CF). Elexacaftor-tezacaftor-ivacaftor (ELX/TEZ/IVA), the newest pharmaceutical modulator for CF, restores the function of the pathogenic mutated CF transmembrane conductance regulator (CFTR) channel. We performed a single-center longitudinal analysis of the effect of ELX/TEZ/IVA on the intestinal microbiome, intestinal inflammation, and clinical parameters in children with CF. Following ELX/TEZ/IVA, children with CF had significant improvements in body mass index and percent predicted forced expiratory volume in one second, and required fewer antibiotics for respiratory infections. Intestinal microbiome diversity increased following ELX/TEZ/IVA coupled with a decrease in the intestinal carriage of Staphylococcus aureus, the predominant respiratory pathogen in children with CF. There was a reduced abundance of microbiome-encoded antibiotic resistance genes. Microbial pathways for aerobic respiration were reduced after ELX/TEZ/IVA. The abundance of microbial acid tolerance genes was reduced, indicating microbial adaptation to increased CFTR function. In all, this study represents the first comprehensive analysis of the intestinal microbiome in children with CF receiving ELX/TEZ/IVA.IMPORTANCECystic fibrosis (CF) is an autosomal recessive disease with significant gastrointestinal symptoms in addition to pulmonary complications. Recently approved treatments for CF, CF transmembrane conductance regulator (CFTR) modulators, are anticipated to substantially improve the care of people with CF and extend their lifespans. Prior work has shown that the intestinal microbiome correlates with health outcomes in CF, particularly in children. Here, we study the intestinal microbiome of children with CF before and after the CFTR modulator, ELX/TEZ/IVA. We identify promising improvements in microbiome diversity, reduced measures of intestinal inflammation, and reduced antibiotic resistance genes. We present specific bacterial taxa and protein groups which change following ELX/TEZ/IVA. These results will inform future mechanistic studies to understand the microbial improvements associated with CFTR modulator treatment. This study demonstrates how the microbiome can change in response to a targeted medication that corrects a genetic disease.


Subject(s)
Aminophenols , Benzodioxoles , Cystic Fibrosis , Gastrointestinal Microbiome , Indoles , Pyrazoles , Pyridines , Pyrrolidines , Quinolones , Child , Humans , Cystic Fibrosis/drug therapy , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Anti-Bacterial Agents/therapeutic use , Inflammation , Mutation
5.
Infect Immun ; 91(10): e0022823, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37676013

ABSTRACT

Staphylococcus aureus is a facultative intracellular pathogen in many host cell types, facilitating its persistence in chronic infections. The genes contributing to intracellular pathogenesis have not yet been fully enumerated. Here, we cataloged genes influencing S. aureus invasion and survival within human THP-1 derived macrophages using two laboratory strains (ATCC2913 and JE2). We developed an in vitro transposition method to produce highly saturated transposon mutant libraries in S. aureus and performed transposon insertion sequencing (Tn-Seq) to identify candidate genes with significantly altered abundance following macrophage invasion. While some significant genes were strain-specific, 108 were identified as common across both S. aureus strains, with most (n = 106) being required for optimal macrophage infection. We used CRISPR interference (CRISPRi) to functionally validate phenotypic contributions for a subset of genes. Of the 20 genes passing validation, seven had previously identified roles in S. aureus virulence, and 13 were newly implicated. Validated genes frequently evidenced strain-specific effects, yielding opposing phenotypes when knocked down in the alternative strain. Genomic analysis of de novo mutations occurring in groups (n = 237) of clonally related S. aureus isolates from the airways of chronically infected individuals with cystic fibrosis (CF) revealed significantly greater in vivo purifying selection in conditionally essential candidate genes than those not associated with macrophage invasion. This study implicates a core set of genes necessary to support macrophage invasion by S. aureus, highlights strain-specific differences in phenotypic effects of effector genes, and provides evidence for selection of candidate genes identified by Tn-Seq analyses during chronic airway infection in CF patients in vivo.


Subject(s)
Cystic Fibrosis , Staphylococcal Infections , Humans , Staphylococcus aureus/metabolism , Staphylococcal Infections/metabolism , Respiratory System , Cystic Fibrosis/complications , Virulence/genetics
6.
medRxiv ; 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37645804

ABSTRACT

The intestinal microbiome influences growth and disease progression in children with cystic fibrosis (CF). Elexacaftor-tezacaftor-ivacaftor (ELX/TEZ/IVA), the newest pharmaceutical modulator for CF, restores function of the pathogenic mutated CFTR channel. We performed a single-center longitudinal analysis of the effect of ELX/TEZ/IVA on the intestinal microbiome, intestinal inflammation, and clinical parameters in children with CF. Following ELX/TEZ/IVA, children with CF had significant improvements in BMI, ppFEV1 and required fewer antibiotics for respiratory infections. Intestinal microbiome diversity increased following ELX/TEZ/IVA coupled with a decrease in the intestinal carriage of Staphylococcus aureus, the predominant respiratory pathogen in children with CF. There was a reduced abundance of microbiome-encoded antibiotic-resistance genes. Microbial pathways for aerobic respiration were reduced after ELX/TEZ/IVA. The abundance of microbial acid tolerance genes was reduced, indicating microbial adaptation to increased CFTR function. In all, this study represents the first comprehensive analysis of the intestinal microbiome in children with CF receiving ELX/TEZ/IVA.

8.
Lancet Infect Dis ; 23(6): 740-750, 2023 06.
Article in English | MEDLINE | ID: mdl-36731480

ABSTRACT

BACKGROUND: Shigella spp have been associated with community-wide outbreaks in urban settings. We analysed a sustained shigellosis outbreak in Seattle, WA, USA, to understand its origins and mechanisms of antimicrobial resistance, define ongoing transmission patterns, and optimise strategies for treatment and infection control. METHODS: We did a retrospective study of all Shigella isolates identified from stool samples at the clinical laboratories at Harborview Medical Center and University of Washington Medical Center (Seattle, WA, USA) from May 1, 2017, to Feb 28, 2022. We characterised isolates by species identification, phenotypic susceptibility testing, and whole-genome sequencing. Demographic characteristics and clinical outcomes of the patients were retrospectively examined. FINDINGS: 171 cases of shigellosis were included. 78 (46%) patients were men who have sex with men (MSM), and 88 (52%) were people experiencing homelessness (PEH). Although 84 (51%) isolates were multidrug resistant, 100 (70%) of 143 patients with data on antimicrobial therapy received appropriate empirical therapy. Phylogenomic analysis identified sequential outbreaks of multiple distinct lineages of Shigella flexneri and Shigella sonnei. Discrete clonal lineages (ten in S flexneri and nine in S sonnei) and resistance traits were responsible for infection in different at-risk populations (ie, MSM, PEH), enabling development of effective guidelines for empirical treatment. The most prevalent lineage in Seattle was probably introduced to Washington State via international travel, with subsequent domestic transmission between at-risk groups. INTERPRETATION: An outbreak in Seattle was driven by parallel emergence of multidrug-resistant strains involving international transmission networks and domestic transmission between at-risk populations. Genomic analysis elucidated not only outbreak origin, but directed optimal approaches to testing, treatment, and public health response. Rapid diagnostics combined with detailed knowledge of local epidemiology can enable high rates of appropriate empirical therapy even in multidrug-resistant infection. FUNDING: None.


Subject(s)
Anti-Infective Agents , Dysentery, Bacillary , Sexual and Gender Minorities , Shigella , Male , Humans , Female , Dysentery, Bacillary/drug therapy , Dysentery, Bacillary/epidemiology , Homosexuality, Male , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Retrospective Studies , Washington/epidemiology , Shigella/genetics , Disease Outbreaks , Anti-Infective Agents/therapeutic use , Genomics , Microbial Sensitivity Tests
9.
Infect Immun ; 91(3): e0053822, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36847490

ABSTRACT

Staphylococcus aureus generates biofilms during many chronic human infections, which contributes to its growth and persistence in the host. Multiple genes and pathways necessary for S. aureus biofilm production have been identified, but knowledge is incomplete, and little is known about spontaneous mutations that increase biofilm formation as infection progresses. Here, we performed in vitro selection of four S. aureus laboratory strains (ATCC 29213, JE2, N315, and Newman) to identify mutations associated with enhanced biofilm production. Biofilm formation increased in passaged isolates from all strains, exhibiting from 1.2- to 5-fold the capacity of parental lines. Whole-genome sequencing identified nonsynonymous mutations affecting 23 candidate genes and a genomic duplication encompassing sigB. Six candidate genes significantly impacted biofilm formation as isogenic transposon knockouts: three were previously reported to impact S. aureus biofilm formation (icaR, spdC, and codY), while the remaining three (manA, narH, and fruB) were newly implicated by this study. Plasmid-mediated genetic complementation of manA, narH, and fruB transposon mutants corrected biofilm deficiencies, with high-level expression of manA and fruB further enhancing biofilm formation over basal levels. This work recognizes genes not previously identified as contributing to biofilm formation in S. aureus and reveals genetic changes able to augment biofilm production by that organism.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Humans , Staphylococcus aureus/metabolism , Plasmids , Mutation , Biofilms
10.
mBio ; 13(5): e0142422, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36121157

ABSTRACT

Within-host evolution produces genetic diversity in bacterial strains that cause chronic human infections. However, the lack of facile methods to measure bacterial allelic variation in clinical samples has limited understanding of intrastrain diversity's effects on disease. Here, we report a new method termed genome capture sequencing (GenCap-Seq) in which users inexpensively make hybridization probes from genomic DNA or PCR amplicons to selectively enrich and sequence targeted bacterial DNA from clinical samples containing abundant human or nontarget bacterial DNA. GenCap-Seq enables accurate measurement of allele frequencies over targeted regions and is scalable from specific genes to entire genomes, including the strain-specific accessory genome. The method is effective with samples in which target DNA is rare and inhibitory and DNA-degrading substances are abundant, including human sputum and feces. In proof-of-principle experiments, we used GenCap-Seq to investigate the responses of diversified Pseudomonas aeruginosa populations chronically infecting the lungs of people with cystic fibrosis to in vivo antibiotic exposure, and we found that treatment consistently reduced intrastrain genomic diversity. In addition, analysis of gene-level allele frequency changes suggested that some genes without conventional resistance functions may be important for bacterial fitness during in vivo antibiotic exposure. GenCap-Seq's ability to scalably enrich targeted bacterial DNA from complex samples will enable studies on the effects of intrastrain and intraspecies diversity in human infectious disease. IMPORTANCE Genetic diversity evolves in bacterial strains during human infections and could affect disease manifestations and treatment resistance. However, the extent of diversity present in vivo and its changes over time are difficult to measure by conventional methods. We developed a novel approach, GenCap-Seq, to enrich microbial DNA from complex human samples like sputum and feces for genome-wide measurements of bacterial allelic diversity. The approach is inexpensive, scalable to encompass entire targeted genomes, and works in the presence of abundant untargeted nucleic acids and inhibiting substances. We used GenCap-Seq to investigate in vivo responses of diversified bacterial strains to antibiotic treatment. This method will enable new ideas about the effects of intrastrain diversity on human infections to be tested.


Subject(s)
Cystic Fibrosis , Pseudomonas Infections , Humans , DNA, Bacterial/genetics , Pseudomonas aeruginosa/genetics , Cystic Fibrosis/microbiology , Genome, Bacterial , Sequence Analysis, DNA , Anti-Bacterial Agents/pharmacology , Genetic Variation , Pseudomonas Infections/microbiology
11.
Microbiol Spectr ; 10(4): e0096422, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35703554

ABSTRACT

The genus Enterobacter includes species responsible for nosocomial outbreaks in fragile patients, especially in neonatal intensive care units (NICUs). Determining the primary source of infection is critical to outbreak management and patient outcomes. In this investigation, we report the management and control measures implemented during an Enterobacter outbreak of bloodstream infections in premature babies. The study was conducted in a French NICU over a 3-year period (2016 to 2018) and included 20 premature infants with bacteremia. The clinical and microbiological characteristics were identified, and whole-genome sequencing (WGS) was performed on bacteremia isolates. Initially, several outbreak containment strategies were carried out with no success. Next, outbreak investigation pinpointed the neonatal incubators as the primary reservoir and source of contamination in this outbreak. A new sampling methodology during "on" or "in use" conditions enabled its identification, which led to their replacement, thus resulting in the containment of the outbreak. WGS analysis showed a multiclonal outbreak. Some clones were identified in different isolation sources, including patients and neonatal incubators. In addition, microbiological results showed a multispecies outbreak with a high prevalence of Enterobacter bugandensis and Enterobacter xiangfangensis. We conclude that the NICU health care environment represents an important reservoir for Enterobacter transmission and infection. Finally, extracting samples from the neonatal incubator during active use conditions improves the recovery of bacteria from contaminated equipment. This method should be used more frequently to achieve better monitoring of the NICU for HAIs prevention. IMPORTANCE Neonatal incubators in the NICU can be an important reservoir of pathogens responsible for life-threatening outbreaks in neonatal patients. Traditional disinfection with antiseptics is not sufficient to eradicate the microorganisms that can persist for long periods in the different reservoirs. Identification and elimination of the reservoirs are crucial for outbreak prevention and control. In our investigation, using a new strategy of microbiological screening of neonatal incubators, we demonstrated that these were the primary source of contamination. After their replacement, the outbreak was controlled. This new methodology was effective in containing this outbreak and could be a viable alternative for infection prevention and control in outbreak situations involving incubators as a reservoir.


Subject(s)
Bacteremia , Cross Infection , Neonatal Sepsis , Bacteremia/epidemiology , Bacteremia/prevention & control , Cross Infection/epidemiology , Cross Infection/microbiology , Cross Infection/prevention & control , Disease Outbreaks/prevention & control , Enterobacter/genetics , Humans , Incubators , Infant , Infant, Newborn , Neonatal Sepsis/epidemiology , Neonatal Sepsis/prevention & control
12.
Clin Infect Dis ; 75(9): 1641-1644, 2022 10 29.
Article in English | MEDLINE | ID: mdl-35510938

ABSTRACT

A patient with end-stage renal disease received 2 doses of dalbavancin for methicillin-resistant Staphylococcus aureus (MRSA) arteriovenous fistula infection and presented 5 weeks later with infective endocarditis secondary to vancomycin, daptomycin, and dalbavancin nonsusceptible MRSA. Resistance was associated with walK and scrA mutations, reduced long-chain lipid content, and reduced membrane fluidity.


Subject(s)
Daptomycin , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Vancomycin/pharmacology , Vancomycin/therapeutic use , Daptomycin/pharmacology , Daptomycin/therapeutic use , Staphylococcus aureus , Methicillin-Resistant Staphylococcus aureus/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Teicoplanin/pharmacology , Teicoplanin/therapeutic use , Staphylococcal Infections/drug therapy , Microbial Sensitivity Tests
13.
JAC Antimicrob Resist ; 4(1): dlac011, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35156034

ABSTRACT

OBJECTIVES: Cefiderocol is a siderophore cephalosporin active against MDR Gram-negatives including Stenotrophomonas maltophilia. Cefiderocol resistance remains uncommon and incompletely understood. We selected for cefiderocol-resistant S. maltophilia in vitro and characterized the genetic mechanisms and potential for cross-resistance to other antimicrobials. METHODS: We selected cefiderocol resistance in three clinical strains of S. maltophilia by serial passage in escalating concentrations of cefiderocol. Emergent cefiderocol-resistant isolates were subjected to repeat susceptibility testing against a panel of relevant antimicrobials. Isolates with confirmed MIC changes were whole genome sequenced. RESULTS: Each parent strain was initially susceptible to cefiderocol (MICs of 0.03125, 0.03125 and 0.125 mg/L), and one initially tested susceptible to ceftazidime/avibactam (MIC 4 mg/L). We recovered evolved isolates achieving cefiderocol resistance at MICs of 8-32 mg/L from each parental strain. Some cefiderocol resistant isolates reverted following one to four drug-free passages. Ceftazidime/avibactam MICs of passaged isolates repeatedly increased to ≥256 mg/L, and while other MICs were largely unchanged, trimethoprim/sulfamethoxazole MICs declined 4-fold in two strains. WGS revealed one evolved isolate carrying six coding mutations, while four were isogenic mutants of tonB, tolQ, smf-1 and the smeT promoter. Mutation of the smeT promoter downregulated the smeDEF efflux pump and reduced susceptibility to penicillins but increased susceptibility to several other classes including sulphonamides. Other mutations occurred in genes putatively involved in iron metabolism including smlt1148 and cirA. CONCLUSIONS: S. maltophilia strains evolved cefiderocol resistance through different genetic pathways, but often involved iron transport. Future work is required to fully understand the role(s) of other genes in cefiderocol resistance.

14.
J Mol Diagn ; 24(2): 167-176, 2022 02.
Article in English | MEDLINE | ID: mdl-34775030

ABSTRACT

Genomic chimerism represents co-existing cells with different genotypes and has diagnostic significance in transplant engraftment monitoring, residual cancer detection, and other contexts. We previously described an approach to chimerism detection by interrogating variably present or absent genomic loci using single-molecule molecular inversion probes (smMIPs) and next-generation sequencing, which provided ultrasensitive limits of detection (<1 in 10,000 cells) but was not reliably quantitative. Herein, smMIP testing was modified to accurately quantitate chimeric cells by incorporating copy number neutral control loci for data normalization and computationally modeling cell mixtures from individual-specific genotypes. Data demonstrate precision and accuracy over three orders of magnitude (0.01% to 50% chimerism). Seventy hematopoietic stem cell transplant specimens from single (n = 42) or double (n = 28) donors were evaluated, benchmarking smMIP against conventional variable number tandem repeat (VNTR) analysis and an unrelated, ultrasensitive polymorphism-specific quantitative PCR (PS-qPCR) assay. Quantitative concordance of all three assays was high (P < 0.0005, Pearson correlation coefficient), although smMIP correlated better with VNTR testing than PS-qPCR. smMIP and PS-qPCR collectively identified low-level chimerism in all specimens testing negative by VNTR (n = 41 and n = 45 of 48 specimens, respectively). This work demonstrates the feasibility of smMIP-based chimerism testing for quantitative and ultrasensitive measurement of genomic chimerism at practical levels approaching one in one million cells, and cross-validates the approach.


Subject(s)
Chimerism , Hematopoietic Stem Cell Transplantation , DNA Copy Number Variations/genetics , Genomics , Genotype , High-Throughput Nucleotide Sequencing , Humans
15.
Front Mol Biosci ; 8: 688357, 2021.
Article in English | MEDLINE | ID: mdl-34646861

ABSTRACT

Methicillin-resistant S. aureus (MRSA) are resistant to beta-lactams, but synergistic activity between beta-lactams and glycopeptides/lipopeptides is common. Many have attributed this synergy to the beta-lactam-glycopeptide seesaw effect; however, this association has not been rigorously tested. The objective of this study was to determine whether the seesaw effect is necessary for synergy and to measure the impact of beta-lactam exposure on lipid metabolism. We selected for three isogenic strains with reduced susceptibility to vancomycin, daptomycin, and dalbavancin by serial passaging the MRSA strain N315. We used whole genome sequencing to identify genetic variants that emerged and tested for synergy between vancomycin, daptomycin, or dalbavancin in combination with 6 beta-lactams with variable affinity for staphylococcal penicillin binding proteins (PBPs), including nafcillin, meropenem, ceftriaxone, ceftaroline, cephalexin, and cefoxitin, using time-kills. We observed that the seesaw effect with each beta-lactam was variable and the emergence of the seesaw effect for a particular beta-lactam was not necessary for synergy between that beta-lactam and vancomycin, daptomycin, or dalbavancin. Synergy was more commonly observed with vancomycin and daptomycin based combinations than dalbavancin in time-kills. Among the beta-lactams, cefoxitin and nafcillin were the most likely to exhibit synergy using the concentrations tested, while cephalexin was the least likely to exhibit synergy. Synergy was more common among the resistant mutants than the parent strain. Interestingly N315-D1 and N315-DAL0.5 both had mutations in vraTSR and walKR despite their differences in the seesaw effect. Lipidomic analysis of all strains exposed to individual beta-lactams at subinhibitory concentrations suggested that in general, the abundance of cardiolipins (CLs) and most free fatty acids (FFAs) positively correlated with the presence of synergistic effects while abundance of phosphatidylglycerols (PGs) and lysylPGs mostly negatively correlated with synergistic effects. In conclusion, the beta-lactam-glycopeptide seesaw effect and beta-lactam-glycopeptide synergy are distinct phenomena. This suggests that the emergence of the seesaw effect may not have clinical importance in terms of predicting synergy. Further work is warranted to characterize strains that don't exhibit beta-lactam synergy to identify which strains should be targeted with combination therapy and which ones cannot and to further investigate the potential role of CLs in mediating synergy.

16.
Int J Infect Dis ; 112: 330-337, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34562627

ABSTRACT

BACKGROUND: Urine cell-free DNA (cfDNA) is an attractive target for diagnosing pulmonary Mycobacterium tuberculosis (MTB) infection, but has not been thoroughly characterized as a biomarker. METHODS: This study was performed to investigate the size and composition of urine cfDNA from tuberculosis (TB) patients with minimal bias using next-generation sequencing (NGS). A combination of DNA extraction and single-stranded sequence library preparation methods demonstrated to recover short, highly degraded cfDNA fragments was employed. Urine cfDNA from 10 HIV-positive patients with pulmonary TB and two MTB-negative controls was examined. RESULTS: MTB-derived cfDNA was identifiable by NGS from all MTB-positive patients and was absent from negative controls. MTB cfDNA was significantly shorter than human cfDNA, with median fragment lengths of ≤19-52 bp and 42-92 bp, respectively. MTB cfDNA abundance increased exponentially with decreased fragment length, having a peak fragment length of ≤19 bp in most samples. In addition, we identified a larger fraction of short human genomic cfDNA, ranging from 29 to 53 bp, than previously reported. Urine cfDNA fragments spanned the MTB genome with relative uniformity, but nucleic acids derived from multicopy elements were proportionately over-represented. CONCLUSIONS: TB urine cfDNA is a potentially powerful biomarker but is highly fragmented, necessitating special procedures to maximize its recovery and detection.


Subject(s)
Cell-Free Nucleic Acids , Mycobacterium tuberculosis , Tuberculosis, Pulmonary/diagnosis , Biomarkers/urine , Cell-Free Nucleic Acids/urine , DNA, Bacterial/urine , High-Throughput Nucleotide Sequencing , Humans , Mycobacterium tuberculosis/genetics
17.
Clin Microbiol Infect ; 27(6): 910.e1-910.e8, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32866650

ABSTRACT

OBJECTIVES: Dalbavancin is a lipoglycopeptide active against methicillin-resistant Staphylococcus aureus (MRSA). Its long half-life (8.5-16 days) allows for once-weekly or single-dose treatments but could prolong the mutant selection window, promoting resistance and cross-resistance to related antimicrobials such as vancomycin. The objective of this study was to evaluate the capacity of post-distributional pharmacokinetic exposures of dalbavancin to select for resistance and cross-resistance in MRSA. METHODS: We simulated average, post-distributional exposures of single-dose (1500 mg) dalbavancin (fCmax 9.9 µg/mL, ß-elimination t1/2 204 h) in an in vitro pharmacokinetic/pharmacodynamic (PK/PD) model for 28 days (672 h) against five MRSA strains and one methicillin-susceptible strain (MSSA). Samples were collected at least daily, and surviving colonies were enumerated and screened for resistance on drug-free and dalbavancin-supplemented medium respectively. Isolates from resistance screening plates were subjected to whole-genome sequencing (WGS) and susceptibly testing against dalbavancin, vancomycin, daptomycin, and six ß-lactams with varying penicillin-binding protein (PBP) affinities. RESULTS: Dalbavancin was bactericidal against most strains for days 1-4 before regrowth of less susceptible subpopulations occurred. Isolates with eight-fold increases in dalbavancin MIC were detected as early as day 4 but increased 64-128-fold in all models by day 28. Vancomycin and daptomycin MICs increased 4-16-fold, exceeding the susceptibly breakpoints for both antibiotics; ß-lactam MICs generally decreased by two-to eight-fold, suggesting a dalbavancin-ß-lactam seesaw effect, but increased by eight-fold or more in certain isolates. Resistant isolates carried mutations in a variety of genes, most commonly walKR, apt, stp1, and atl. CONCLUSIONS: In our in vitro system, post-distributional dalbavancin exposures selected for stable mutants with reduced susceptibility to dalbavancin, vancomycin, and daptomycin, and generally increased susceptibility to ß-lactams in all strains of MRSA tested. The clinical significance of these findings remains unclear, but created an opportunity to genotype a unique collection of dalbavancin-resistant strains for the first time. Mutations involved genes previously associated with vancomycin intermediate susceptibility and daptomycin non-susceptibility, most commonly walKR-associated genes.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial , Methicillin-Resistant Staphylococcus aureus/drug effects , Teicoplanin/analogs & derivatives , Vancomycin/pharmacology , Bacteriological Techniques , Humans , Teicoplanin/pharmacology
18.
J Antimicrob Chemother ; 76(3): 616-625, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33259594

ABSTRACT

BACKGROUND: Bacteria adapt to survive and grow in different environments. Genetic mutations that promote bacterial survival under harsh conditions can also restrict growth. The causes and consequences of these adaptations have important implications for diagnosis, pathogenesis, and therapy. OBJECTIVES: We describe the isolation and characterization of an antibiotic-dependent, temperature-sensitive Pseudomonas aeruginosa mutant chronically infecting the respiratory tract of a cystic fibrosis (CF) patient, underscoring the clinical challenges bacterial adaptations can present. METHODS: Respiratory samples collected from a CF patient during routine care were cultured for standard pathogens. P. aeruginosa isolates recovered from samples were analysed for in vitro growth characteristics, antibiotic susceptibility, clonality, and membrane phospholipid and lipid A composition. Genetic mutations were identified by whole genome sequencing. RESULTS: P. aeruginosa isolates collected over 5 years from respiratory samples of a CF patient frequently harboured a mutation in phosphatidylserine decarboxylase (psd), encoding an enzyme responsible for phospholipid synthesis. This mutant could only grow at 37°C when in the presence of supplemented magnesium, glycerol, or, surprisingly, the antibiotic sulfamethoxazole, which the source patient had repeatedly received. Of concern, this mutant was not detectable on standard selective medium at 37°C. This growth defect correlated with alterations in membrane phospholipid and lipid A content. CONCLUSIONS: A P. aeruginosa mutant chronically infecting a CF patient exhibited dependence on sulphonamides and would likely evade detection using standard clinical laboratory methods. The diagnostic and therapeutic challenges presented by this mutant highlight the complex interplay between bacterial adaptation, antibiotics, and laboratory practices, during chronic bacterial infections.


Subject(s)
Cystic Fibrosis , Pseudomonas Infections , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cystic Fibrosis/complications , Cystic Fibrosis/drug therapy , Humans , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/genetics , Temperature
19.
Am J Respir Crit Care Med ; 203(9): 1127-1137, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33296290

ABSTRACT

Rationale:Staphylococcus aureus is the most common respiratory pathogen isolated from patients with cystic fibrosis (CF) in the United States. Although modes of acquisition and genetic adaptation have been described for Pseudomonas aeruginosa, resulting in improved diagnosis and treatment, these features remain more poorly defined for S. aureus.Objectives: To characterize the molecular epidemiology and genetic adaptation of S. aureus during chronic CF airway infection and in response to antibiotic therapy.Methods: We performed whole-genome sequencing of 1,382 S. aureus isolates collected longitudinally over a mean 2.2 years from 246 children with CF at five U.S. centers between 2008 and 2017. Results were integrated with clinical and demographic data to characterize bacterial population dynamics and identify common genetic targets of in vivo adaptation.Measurements and Main Results: Results showed that 45.5% of patients carried multiple, coexisting S. aureus lineages, often having different antibiotic susceptibility profiles. Adaptation during the course of infection commonly occurred in a set of genes related to persistence and antimicrobial resistance. Individual sequence types demonstrated wide geographic distribution, and we identified limited strain-sharing among children linked by common household or clinical exposures. Unlike P. aeruginosa, S. aureus genetic diversity was unconstrained, with an ongoing flow of new genetic elements into the population of isolates from children with CF.Conclusions: CF airways are frequently coinfected by multiple, genetically distinct S. aureus lineages, indicating that current clinical procedures for sampling isolates and selecting antibiotics are likely inadequate. Strains can be shared by patients in close domestic or clinical contact and can undergo convergent evolution in key persistence and antimicrobial-resistance genes, suggesting novel diagnostic and therapeutic approaches for future study.


Subject(s)
Cystic Fibrosis/complications , Cystic Fibrosis/microbiology , Respiratory Tract Infections/microbiology , Staphylococcal Infections/genetics , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Adolescent , Anti-Bacterial Agents/therapeutic use , Child , Cohort Studies , Female , Humans , Male , Molecular Epidemiology , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/genetics , Staphylococcal Infections/drug therapy
20.
J Antimicrob Chemother ; 76(2): 292-296, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33057715

ABSTRACT

OBJECTIVES: Tedizolid is an oxazolidinone antimicrobial with activity against Gram-positive bacteria, including MRSA. Tedizolid resistance is uncommon and tedizolid's capacity to select for cross-resistance to other antimicrobials is incompletely understood. The objective of this study was to further explore the phenotypic and genetic basis of tedizolid resistance in MRSA. METHODS: We selected for tedizolid resistance in an MRSA laboratory strain, N315, by serial passage until an isolate with an MIC ≥1 log2 dilution above the breakpoint for resistance (≥2 mg/L) was recovered. This isolate was subjected to WGS and susceptibility to a panel of related and unrelated antimicrobials was tested in order to determine cross-resistance. Homology modelling was performed to evaluate the potential impact of the mutation on target protein function. RESULTS: After 10 days of serial passage we recovered a phenotypically stable mutant with a tedizolid MIC of 4 mg/L. WGS revealed only one single nucleotide variant (A1345G) in rpoB, corresponding to amino acid substitution D449N. MICs of linezolid, chloramphenicol, retapamulin and quinupristin/dalfopristin increased by ≥2 log2 dilutions, suggesting the emergence of the so-called 'PhLOPSa' resistance phenotype. Susceptibility to other drugs, including rifampicin, was largely unchanged. Homology models revealed that the mutated residue of RNA polymerase would be unlikely to directly affect oxazolidinone action. CONCLUSIONS: To the best of our knowledge, this is the first time that an rpoB mutation has been implicated in resistance to PhLOPSa antimicrobials. The mechanism of resistance remains unclear, but is likely indirect, involving σ-factor binding or other alterations in transcriptional regulation.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Oxazolidinones , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Methicillin-Resistant Staphylococcus aureus/genetics , Microbial Sensitivity Tests , Mutation , Organophosphates/pharmacology , Oxazoles/pharmacology , Serial Passage , Tetrazoles
SELECTION OF CITATIONS
SEARCH DETAIL