Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
Add more filters










Publication year range
1.
Chemistry ; : e202402547, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087783

ABSTRACT

An adaptable Fe(II) tetrahedral cage, [Fe4L4][BF4]8 (L = tris(4-(((E)-pyridin-2-ylmethylene)amino)phenyl) phosphate), has been synthesised via self-assembly. By modulating the orientation of its pendant P=O groups, the cage was found to be capable of encapsulating anionic, neutral, and cationic guests, which was confirmed in the solid state via single-crystal X-ray diffraction (SCXRD) and in solution by high-resolution mass spectroscopy (HR-MS), as well as by NMR (1H, 19F, 31P) studies where possible.

2.
Commun Chem ; 7(1): 159, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020074

ABSTRACT

Halogen(I) complexes are widely used as halogenation reagents and traditionally feature homoleptic stabilising Lewis bases, though the recent revitalisation of iodine(I) carboxylate chemistry has provided isolable examples of heteroleptic iodine(I) complexes. This work reports iodine(I) pnictogenate complexes stabilised by a Lewis base (L), Ph2P(O)O─I─L, synthesised via cation exchange from the silver(I) precursor, (Ph2P(O)OAg)n. The complexes were characterised in both solution (1H, 1H-15N HMBC, 31P) and the solid state, and supplemented computationally by DFT studies. Interestingly, these iodine(I) pnictogenates demonstrate a range of stabilities, and have been found to excel as iodination reagents in comparison to carbonyl hypoiodites, with comparable reactivity to the eponymous Barluenga's reagent in the iodination of antipyrine.

3.
Chem Asian J ; 19(13): e202400349, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38578048

ABSTRACT

Based on the prior observation of the trifluoroacetate hypoiodite, CF3C(O)OI, demonstrating the largest σ-hole of a neutral halogen bond donor, a series of mono- and bis-carbonyl hypoiodites utilising trifluoromethyl or fluorine substituents at various positions of a parent benzoyl skeleton have been synthesised. The carbonyl hypoiodite complexes were prepared via cation exchange of the silver(I) cations with iodine(I) from the respective silver(I) carboxylates and dicarboxylates as the synthetic precursors. A range of pyridinic Lewis bases of varying nucleophilicities were used to stabilise the carbonyl hypoiodites to further probe their properties. The silver(I) intermediates with these Lewis bases were also isolated for silver(I) pentafluorobenzoate, providing additional insight into the cation exchange reaction. All complexes were characterised both in solution (1H, 1H-15N HMBC, 19F) and in the solid state (SCXRD), permitting insights into the formation of the elusive pyridine-iodine(I) cation.

4.
Chem Commun (Camb) ; 60(18): 2552-2555, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38343202

ABSTRACT

The new bis(alkynyl)mercurial Hg{CCSeCW(CO)2(Tp*)}2 (Tp* = tris(dimethylpyrazolyl)borate) forms adducts with fluoride and phenathroline, the structures of which are interpreted in the context of two-coordinate mercury presenting a σ-torroid for spodium bonding.

5.
Chemistry ; 30(13): e202303643, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38055221

ABSTRACT

The coordination nature of 2-mono- and 2,6-disubstituted pyridines with electron-withdrawing halogen and electron-donating methyl groups for [N-X-N]+ (X=I, Br) complexations have been studied using 15 N NMR, X-ray crystallography, and Density Functional Theory (DFT) calculations. The 15 N NMR chemical shifts reveal iodine(I) and bromine(I) prefer to form complexes with 2-substituted pyridines and only 2,6-dimethylpyridine. The crystalline halogen(I) complexes of 2-substituted pyridines were characterized by using X-ray diffraction analysis, but 2,6-dihalopyridines were unable to form stable crystalline halogen(I) complexes due to the lower nucleophilicity of the pyridinic nitrogen. In contrast, the halogen(I) complexes of 2,6-dimethylpyridine, which has a more basic nitrogen, are characterized by X-crystallography, which complements the 15 N NMR studies. DFT calculations reveal that the bond energies for iodine(I) complexes vary between -291 and -351 kJ mol-1 and for bromine between -370 and -427 kJ mol-1 . The bond energies of halogen(I) complexes of 2-halopyridines with more nucleophilic nitrogen are 66-76 kJ mol-1 larger than those of analogous 2,6-dihalopyridines with less nucleophilic nitrogen. The experimental and DFT results show that the electronic influence of ortho-halogen substituents on pyridinic nitrogen leads to a completely different preference for the coordination bonding of halogen(I) ions, providing new insights into bonding in halogen(I) chemistry.

6.
Adv Sci (Weinh) ; 11(6): e2307208, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38059769

ABSTRACT

The nature of (imide)N-X⋯N(pyridine) halogen-bonded complexes formed by six N-haloimides and sixteen 2-substituted pyridines are studied using X-ray crystallography (68 crystal structures), Density Functional Theory (DFT) (86 complexation energies), and NMR spectroscopy (90 association constants). Strong halogen bond (XB) donors such as N-iodosuccinimide form only 1:1 haloimide:pyridine crystalline complexes, but even stronger N-iodosaccharin forms 1:1 haloimide:pyridine and three other distinct complexes. In 1:1 haloimide:pyridine crystalline complexes, the haloimide's N─X bond exhibits an unusual bond bending feature that is larger for stronger N-haloimides. DFT complexation energies (ΔEXB ) for iodoimide-pyridine complexes range from -44 to -99 kJ mol-1 , while for N-bromoimide-pyridine, they are between -31 and -77 kJ mol-1 . The ΔEXB of I⋯N XBs in 1:1 iodosaccharin:pyridine complexes are the largest of their kind, but they are substantially smaller than those in [bis(saccharinato)iodine(I)]pyridinium salts (-576 kJ mol-1 ), formed by N-iodosaccharin and pyridines. The NMR association constants and ΔEXB energies of 1:1 haloimide:pyridine complexes do not correlate as these complexes in solution are heavily influenced by secondary interactions, which DFT studies do not account for. Association constants follow the σ-hole strengths of N-haloimides, which agree with DFT and crystallography data. The haloimide:2-(N,N-dimethylamino)pyridine complex undergoes a halogenation reaction resulting in 5-iodo-2-dimethylaminopyridine.

7.
Chemistry ; 29(69): e202302162, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37682579

ABSTRACT

Homoleptic [L-I-L]+ iodine(I) complexes (where L is a R3 R2 R1 N tertiary amine) were synthesized via the [L-Ag-L]+ → [L-I-L]+ cation exchange reaction. In solution, the amines form [R3 R2 R1 N-Ag-NR1 R2 R3 ]+ silver(I) complexes, which crystallize out from solution as the meso-[L-Ag-L]+ complexes, as characterized by X-ray crystallography. The subsequent [L-I-L]+ iodine(I) analogues were extremely reactive and could not be isolated in the solid state. Density functional theory (DFT) calculations were performed to study the Ag+ -N and I+ -N interaction energies in silver(I) and iodine(I) complexes, with the former ranging from -80 to -100 kJ mol-1 and latter from -260 to -279 kJ mol-1 . The X-ray crystal structures revealed Ag+ ⋅⋅⋅Cπ and Ag+ ⋅⋅⋅H-C short contacts between the silver(I) cation and flexible N-alkyl/N-aryl groups, which are the first of their kind in such precursor complexes.

8.
ACS Omega ; 8(26): 24064-24071, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37426204

ABSTRACT

Building upon the first report of a 3-acetaminopyridine-based iodine(I) complex (1b) and its unexpected reactivity toward tBuOMe, several new 3-substituted iodine(I) complexes (2b-5b) have been synthesized. The iodine(I) complexes were synthesized from their analogous silver(I) complexes (2a-5a) via a silver(I) to iodine(I) cation exchange reaction, incorporating functionally related substituents as 3-acetaminopyridine in 1b; 3-acetylpyridine (3-Acpy; 2), 3-aminopyridine (3-NH2py; 3), and 3-dimethylaminopyridine (3-NMe2py; 4), as well as the strongly electron-withdrawing 3-cyanopyridine (3-CNpy; 5), to probe the possible limitations of iodine(I) complex formation. The individual properties of these rare examples of iodine(I) complexes incorporating 3-substituted pyridines are also compared to each other and contrasted to their 4-substituted counterparts which are more prevalent in the literature. While the reactivity of 1b toward etheric solvents could not be reproduced in any of the functionally related analogues synthesized herein, the reactivity of 1b was further expanded to a second etheric solvent. Reaction of bis(3-acetaminopyridine)iodine(I) (1b) and iPr2O gave [3-acetamido-1-(3-iodo-2-methylpentan-2-yl)pyridin-1-ium]PF6 (1d), which demonstrated potentially useful C-C and C-I bond formation under ambient conditions.

9.
Chemistry ; 29(58): e202302089, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37427889

ABSTRACT

Strong Lewis acids are essential tools for manifold chemical procedures, but their scalable deployment is limited by their costs and safety concerns. We report a scalable, convenient, and inexpensive synthesis of stable diiminium-based reagents with a Lewis acidic carbon centre. Coordination with pyridine donors stabilises these centres; the 2,2'-bipyridine adduct shows a chelation effect at carbon. Due to high fluoride, hydride, and oxide affinities, the diiminium pyridine adducts are promising soft and hard Lewis acids. They effectively produce acylpyridinium salts from carboxylates that can acylate amines to give amides and imides even from electronically intractable coupling partners.

10.
J Am Chem Soc ; 145(28): 15414-15424, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37411044

ABSTRACT

Owing to the unknown correlation of a metal's ligand and its resulting preferred speciation in terms of oxidation state, geometry, and nuclearity, a rational design of multinuclear catalysts remains challenging. With the goal to accelerate the identification of suitable ligands that form trialkylphosphine-derived dihalogen-bridged Ni(I) dimers, we herein employed an assumption-based machine learning approach. The workflow offers guidance in ligand space for a desired speciation without (or only minimal) prior experimental data points. We experimentally verified the predictions and synthesized numerous novel Ni(I) dimers as well as explored their potential in catalysis. We demonstrate C-I selective arylations of polyhalogenated arenes bearing competing C-Br and C-Cl sites in under 5 min at room temperature using 0.2 mol % of the newly developed dimer, [Ni(I)(µ-Br)PAd2(n-Bu)]2, which is so far unmet with alternative dinuclear or mononuclear Ni or Pd catalysts.

11.
Inorg Chem ; 62(21): 8101-8111, 2023 May 29.
Article in English | MEDLINE | ID: mdl-37191273

ABSTRACT

Two different organometallic gold(I) compounds containing naphthalene and phenanthrene as fluorophores and 2-pyridyldiphenylphosphane as the ancillary ligand were synthesized (compounds 1 with naphthalene and 2 with phenanthrene). They were reacted with three different copper(I) salts with different counterions (PF6-, OTf-, and BF4-; OTf = triflate) to obtain six Au(I)/Cu(I) heterometallic clusters (compounds 1a-c for naphthalene derivatives and 2a-c for phenanthrene derivatives). The heterometallic compounds present red pure room-temperature phosphorescence in both solution, the solid state, and air-equilibrated samples, as a difference with the dual emission recorded for the gold(I) precursors 1 and 2. The presence of Au(I)-Cu(I) metallophilic contacts has been identified using single-crystal X-ray diffraction structure resolution of two of the compounds, which play a direct role in the resulting red-shifted emission with respect to the gold(I) homometallic precursors. Polystyrene (PS) and poly(methyl methacrylate) (PMMA) polymeric matrices were doped with our luminescent compounds, and the resulting changes in their emissive properties were analyzed and compared with those previously recorded in the solution and the solid state. All complexes were tested to analyze their ability to produce 1O2 and present very good values of ΦΔ up to 50%.

12.
Angew Chem Int Ed Engl ; 62(29): e202305703, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37141043

ABSTRACT

Sulfondiimines are marginalized entities among nitrogen-containing organosulfur compounds, despite offering promising properties for applications in various fields including medicinal and agrochemical. Herein, we present a metal-free and rapid synthetic procedure for the synthesis of N-monosubstituted sulfondiimines that overcomes current limitations in their synthetic accessibility. Particularly, S,S-dialkyl substrates, which are commonly difficult to convert by existing methods, react well with a combination of iodine, 1,8-diazabicyclo[5.4.0]undec-7-en (DBU), and iminoiodinanes (PhINR) in acetonitrile (MeCN) to furnish the corresponding sulfondiimines in yields up to 85 % (25 examples). Valuable "free" NH-N'H-sulfondiimines can then be accessed by N-deprotection under mild reaction conditions. Several experimental observations suggest a mechanistic pathway diverging from the common radical-based iodine/iminoiodinane mechanism. Based on the experimental results in combination with data obtained by 1 H NMR spectroscopy, ESI mass spectrometry, and crystallographic analysis we propose a direct amination from PhINNs and a reaction path via a cationic iodonitrene.

13.
Chem Commun (Camb) ; 59(31): 4648-4651, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-36988285

ABSTRACT

Three chiral carbonyl hypoiodites, R-C(O)OI, have been prepared from N-protected (S)-valine to give the ligand-stabilised (S)-valinoyl hypoiodite complexes with 4-dimethylaminopyridine, 4-pyrrolidinopyridine, and 4-morpholinopyridine as the stabilising ligands. The identity of the complexes was established by NMR (1H, 13C, 1H-15N HMBC) and single crystal X-ray diffraction analysis.

14.
J Nat Prod ; 86(2): 380-389, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36749598

ABSTRACT

Six new crotofolane diterpenoids (1-6) and 13 known compounds (7-19) were isolated from the MeOH-CH2Cl2 (1:1, v/v) extracts of the leaves and stem bark of Croton kilwae. The structures of the new compounds were elucidated by extensive analysis of spectroscopic and mass spectrometric data. The structure of crotokilwaepoxide A (1) was confirmed by single-crystal X-ray diffraction, allowing for the determination of its absolute configuration. The crude extracts and the isolated compounds were investigated for antiviral activity against respiratory syncytial virus (RSV) and human rhinovirus type-2 (HRV-2) in HEp-2 and HeLa cells, respectively, for antibacterial activity against the Gram-positive Bacillus subtilis and the Gram-negative Escherichia coli, and for antimalarial activity against the Plasmodium falciparum Dd2 strain. ent-3ß,19-Dihydroxykaur-16-ene (7) and ayanin (16) displayed anti-RSV activities with IC50 values of 10.2 and 6.1 µM, respectively, while exhibiting only modest cytotoxic effects on HEp-2 cells that resulted in selectivity indices of 4.9 and 16.4. Compounds 2 and 5 exhibited modest anti-HRV-2 activity (IC50 of 44.6 µM for both compounds), while compound 16 inhibited HRV-2 with an IC50 value of 1.8 µM. Compounds 1-3 showed promising antiplasmodial activities (80-100% inhibition) at a 50 µM concentration.


Subject(s)
Antimalarials , Croton , Diterpenes , Humans , Antimalarials/pharmacology , Croton/chemistry , Crystallography, X-Ray , Diterpenes/chemistry , HeLa Cells , Molecular Structure , Plant Extracts/chemistry
15.
Beilstein J Org Chem ; 19: 91-99, 2023.
Article in English | MEDLINE | ID: mdl-36761473

ABSTRACT

Cholesterol reacts under Appel conditions (CBr4/PPh3) to give 3,5-cholestadiene (elimination) and 3ß-bromocholest-5-ene (substitution with retention of configuration). Thus, the bromination of cholesterol deviates from the stereochemistry of the standard Appel mechanism due to participation of the Δ5 π-electrons. In contrast, the subsequent azidolysis (NaN3/DMF) of 3ß-bromocholest-5-ene proceeds predominantly by Walden inversion (SN2) affording 3α-azidocholest-5-ene. The structures of all relevant products were revealed by X-ray single crystal structure analyses, and the NMR data are in agreement to the reported ones. In light of these findings, we herein correct the previous stereochemical assignments reported by one of us in the Beilstein J. Org. Chem. 2015, 11, 1922-1932 and the Monatsh. Chem. 2018, 149, 505-517.

16.
Chem Asian J ; 18(6): e202201203, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36734201

ABSTRACT

Solid-state NMR has been applied to a series of Barluenga-type iodine(I) [L-I-L]PF6 (L=pyridine, 4-ethylpyridine, 4-dimethylaminopyridine, isoquinoline) complexes as their hexafluorophosphate salts, as well as their respective non-liquid ligands (L), their precursor silver(I) complexes, and the respective N-methylated pyridinium and quinolinium hexafluorophoshate salts. These results are compared and contrasted to the corresponding solution studies and single-crystal X-ray structures. As the first study of its kind on the solid-state NMR behavior of halogen(I) complexes, practical considerations are also discussed to encourage wider utilization of this technique in the future.

17.
Inorg Chem ; 62(5): 2000-2012, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36696563

ABSTRACT

Two series of Pt(II)-cyclometallated compounds containing N^C^N tridentate and alkynyl-chromophore ligands have been synthesized and structurally characterized. The N^C^N ligands differ on the presence of R1 = H or F in the central aromatic ring, while six different chromophores have been introduced to the alkynyl moiety. Single-crystal X-ray structures for some of the compounds reveal the presence of weak intermolecular contacts responsible for the formation of some dimers or aggregates. The photophysical characterization shows the presence of two emission bands in solution assigned to the 3π-π* transition from the N^C^N ligands mixed with 3MLCT/3ILCT transitions (higher energy band) in deaerated samples. The formation of excimers has also been identified as a broad band at longer wavelengths [near-infrared (NIR) emission] that becomes the main emission band for compounds containing phenanthrene as the chromophore. NIR emission behavior has also been explored using acetonitrile/water mixtures, and the presence of aggregates that emit at ca. 650 nm has also been detected.

18.
Inorg Chem ; 61(51): 20931-20941, 2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36512673

ABSTRACT

Two series of dinuclear gold(I) complexes that contain two Au-chromophore units (chromophore = dibenzofurane or dimethylfluorene) connected through a diphosphane bridge that differs in the flexibility and length (diphosphane = dppb for 1,4-bis(diphenylphosphino)butane, DPEphos for bis[(2-diphenylphosphino)phenyl]ether, xanthphos for 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene, and BiPheP for 2,2'-bis(diphenylphosphino)-1,1'-biphenyl) have been synthesized and structurally characterized. Their photophysical properties have been carefully investigated, paying attention to the role of the presence, or absence, of aurophilic contacts and their nature (intra- or intermolecular character). This analysis was permitted due to the X-ray crystallographic determination of all of the structures of the compounds discussed herein. The quantum yields of the triplet population, ϕT, have been calculated by nanosecond-laser flash photolysis measurements, and we could determine the main role of the character of the aurophilic contacts in the resulting ϕT, being especially favored in the presence of intermolecular contacts. Time-dependent density functional theory (TD-DFT) calculations support the absorption and emission assignments and the shorter distance between S1 and the closest triplet excited state energy in the case of the compounds with a higher triplet-state population.

19.
Chem Commun (Camb) ; 58(98): 13628-13631, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36408864

ABSTRACT

Giant octahedral M32 coordination cages were prepared via self-assembly of sulfonylcalix[4]arene-supported tetranuclear M(II) clusters (M = Co, Ni) with hybrid linker based on tris(dipyrrinato)cobalt(III) complexes appended with peripherical carboxylic groups. Due to intrinsic and extrinsic porosity, the obtained solid-state supramolecular architectures demonstrated good performance as adsorbents for the separation of industrially important gases mixtures.

20.
Dalton Trans ; 51(38): 14646-14653, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36093683

ABSTRACT

The first tris(O-I-N) carbonyl hypoiodites have been synthesised based on trimesic acid and pyridine or 4-methylpyridine, with their structures definitively confirmed by single crystal X-ray diffraction (SCXRD). The more soluble carbonyl hypoiodites based on pivalic acid have also been studied via NMR, SCXRD, and computational analyses, enabling the study of the direct silver(I) precursor and intermediates of the resulting carbonyl hypoiodites generated using a range of substituted pyridines.


Subject(s)
Pyridines , Silver , Crystallography, X-Ray , Iodine Compounds , Pyridines/chemistry , Silver/chemistry , Tricarboxylic Acids
SELECTION OF CITATIONS
SEARCH DETAIL