Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Eur Radiol Exp ; 7(1): 5, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36750494

ABSTRACT

BACKGROUND: To investigate hip implant-related metal artifacts on a 0.55-T system compared with 1.5-T and 3-T systems. METHODS: Total hip arthroplasty made of three different alloys were evaluated in a water phantom at 0.55, 1.5, and 3 T using routine protocols. Visually assessment (VA) was performed by three readers using a Likert scale from 0 (no artifacts) to 6 (extremely severe artifacts). Quantitative assessment (QA) was performed using the coefficient of variation (CoV) and the fraction of voxels within a threshold of the mean signal intensity compared to an automatically defined region of interest (FVwT). Agreement was evaluated using intra/inter-class correlation coefficient (ICC). RESULTS: Interreader agreement of VA was strong-to-moderate (ICC 0.74-0.82). At all field strengths (0.55-T/1.5-T/3-T), artifacts were assigned a lower score for titanium (Ti) alloys (2.44/2.9/2.7) than for stainless steel (Fe-Cr) (4.1/3.9/5.1) and cobalt-chromium (Co-Cr) alloys (4.1/4.1/5.2) (p < 0.001 for both). Artifacts were lower for 0.55-T and 1.5-T than for 3-T systems, for all implants (p ≤ 0.049). A strong VA-to-QA correlation was found (r = 0.81; p < 0.001); CoV was lower for Ti alloys than for Fe-Cr and Co-Cr alloys at all field strengths. The FVwT showed a negative correlation with VA (-0.68 < r < -0.84; p < 0.001). CONCLUSIONS: Artifact intensity was lowest for Ti alloys at 0.55 T. For other alloys, it was similar at 0.55 T and 1.5 T, higher at 3 T. Despite an inferior gradient system and a larger bore width, the 0.55-T system showed the same artifact intensity of the 1.5-T system.


Subject(s)
Alloys , Metals , Titanium , Prostheses and Implants , Magnetic Resonance Imaging/methods
2.
J Digit Imaging ; 34(1): 124-133, 2021 02.
Article in English | MEDLINE | ID: mdl-33469724

ABSTRACT

To explore the feasibility of a fully automated workflow for whole-body volumetric analyses based on deep reinforcement learning (DRL) and to investigate the influence of contrast-phase (CP) and slice thickness (ST) on the calculated organ volume. This retrospective study included 431 multiphasic CT datasets-including three CP and two ST reconstructions for abdominal organs-totaling 10,508 organ volumes (10,344 abdominal organ volumes: liver, spleen, and kidneys, 164 lung volumes). Whole-body organ volumes were determined using multi-scale DRL for 3D anatomical landmark detection and 3D organ segmentation. Total processing time for all volumes and mean calculation time per case were recorded. Repeated measures analyses of variance (ANOVA) were conducted to test for robustness considering CP and ST. The algorithm calculated organ volumes for the liver, spleen, and right and left kidney (mean volumes in milliliter (interquartile range), portal venous CP, 5 mm ST: 1868.6 (1426.9, 2157.8), 350.19 (45.46, 395.26), 186.30 (147.05, 214.99) and 181.91 (143.22, 210.35), respectively), and for the right and left lung (2363.1 (1746.3, 2851.3) and 1950.9 (1335.2, 2414.2)). We found no statistically significant effects of the variable contrast phase or the variable slice thickness on the organ volumes. Mean computational time per case was 10 seconds. The evaluated approach, using state-of-the art DRL, enables a fast processing of substantial amounts irrespective of CP and ST, allowing building up organ-specific volumetric databases. The thus derived volumes may serve as reference for quantitative imaging follow-up.


Subject(s)
Liver , Tomography, X-Ray Computed , Algorithms , Humans , Liver/diagnostic imaging , Retrospective Studies , Spleen/diagnostic imaging
3.
Eur J Radiol ; 126: 108918, 2020 May.
Article in English | MEDLINE | ID: mdl-32171914

ABSTRACT

PURPOSE: To evaluate the performance of an artificial intelligence (AI) based software solution tested on liver volumetric analyses and to compare the results to the manual contour segmentation. MATERIALS AND METHODS: We retrospectively obtained 462 multiphasic CT datasets with six series for each patient: three different contrast phases and two slice thickness reconstructions (1.5/5 mm), totaling 2772 series. AI-based liver volumes were determined using multi-scale deep-reinforcement learning for 3D body markers detection and 3D structure segmentation. The algorithm was trained for liver volumetry on approximately 5000 datasets. We computed the absolute error of each automatically- and manually-derived volume relative to the mean manual volume. The mean processing time/dataset and method was recorded. Variations of liver volumes were compared using univariate generalized linear model analyses. A subgroup of 60 datasets was manually segmented by three radiologists, with a further subgroup of 20 segmented three times by each, to compare the automatically-derived results with the ground-truth. RESULTS: The mean absolute error of the automatically-derived measurement was 44.3 mL (representing 2.37 % of the averaged liver volumes). The liver volume was neither dependent on the contrast phase (p = 0.697), nor on the slice thickness (p = 0.446). The mean processing time/dataset with the algorithm was 9.94 s (sec) compared to manual segmentation with 219.34 s. We found an excellent agreement between both approaches with an ICC value of 0.996. CONCLUSION: The results of our study demonstrate that AI-powered fully automated liver volumetric analyses can be done with excellent accuracy, reproducibility, robustness, speed and agreement with the manual segmentation.


Subject(s)
Algorithms , Image Interpretation, Computer-Assisted/methods , Liver Diseases/diagnostic imaging , Tomography, X-Ray Computed/methods , Artificial Intelligence , Deep Learning , Humans , Liver/diagnostic imaging , Reproducibility of Results , Retrospective Studies
4.
Invest Radiol ; 54(1): 55-59, 2019 01.
Article in English | MEDLINE | ID: mdl-30199417

ABSTRACT

OBJECTIVE: The aim of this study was to test the diagnostic performance of a deep learning-based triage system for the detection of acute findings in abdominal computed tomography (CT) examinations. MATERIALS AND METHODS: Using a RIS/PACS (Radiology Information System/Picture Archiving and Communication System) search engine, we obtained 100 consecutive abdominal CTs with at least one of the following findings: free-gas, free-fluid, or fat-stranding and 100 control cases with absence of these findings. The CT data were analyzed using a convolutional neural network algorithm previously trained for detection of these findings on an independent sample. The validation of the results was performed on a Web-based feedback system by a radiologist with 1 year of experience in abdominal imaging without prior knowledge of image findings through both visual confirmation and comparison with the clinically approved, written report as the standard of reference. All cases were included in the final analysis, except those in which the whole dataset could not be processed by the detection software. Measures of diagnostic accuracy were then calculated. RESULTS: A total of 194 cases were included in the analysis, 6 excluded because of technical problems during the extraction of the DICOM datasets from the local PACS. Overall, the algorithm achieved a 93% sensitivity (91/98, 7 false-negative) and 97% specificity (93/96, 3 false-positive) in the detection of acute abdominal findings. Intra-abdominal free gas was detected with a 92% sensitivity (54/59) and 93% specificity (39/42), free fluid with a 85% sensitivity (68/80) and 95% specificity (20/21), and fat stranding with a 81% sensitivity (42/50) and 98% specificity (48/49). False-positive results were due to streak artifacts, partial volume effects, and a misidentification of a diverticulum (each n = 1). CONCLUSIONS: The algorithm's autonomous detection of acute pathological abdominal findings demonstrated a high diagnostic performance, enabling guidance of the radiology workflow toward prioritization of abdominal CT examinations with acute conditions.


Subject(s)
Artificial Intelligence , Radiographic Image Interpretation, Computer-Assisted/methods , Radiography, Abdominal/methods , Radiology Information Systems , Tomography, X-Ray Computed/methods , Algorithms , Humans , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL