Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
ACS Infect Dis ; 10(5): 1679-1695, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38581700

ABSTRACT

Linezolid is a drug with proven human antitubercular activity whose use is limited to highly drug-resistant patients because of its toxicity. This toxicity is related to its mechanism of action─linezolid inhibits protein synthesis in both bacteria and eukaryotic mitochondria. A highly selective and potent series of oxazolidinones, bearing a 5-aminomethyl moiety (in place of the typical 5-acetamidomethyl moiety of linezolid), was identified. Linezolid-resistant mutants were cross-resistant to these molecules but not vice versa. Resistance to the 5-aminomethyl molecules mapped to an N-acetyl transferase (Rv0133) and these mutants remained fully linezolid susceptible. Purified Rv0133 was shown to catalyze the transformation of the 5-aminomethyl oxazolidinones to their corresponding N-acetylated metabolites, and this transformation was also observed in live cells of Mycobacterium tuberculosis. Mammalian mitochondria, which lack an appropriate N-acetyltransferase to activate these prodrugs, were not susceptible to inhibition with the 5-aminomethyl analogues. Several compounds that were more potent than linezolid were taken into C3HeB/FeJ mice and were shown to be highly efficacious, and one of these (9) was additionally taken into marmosets and found to be highly active. Penetration of these 5-aminomethyl oxazolidinone prodrugs into caseum was excellent. Unfortunately, these compounds were rapidly converted into the corresponding 5-alcohols by mammalian metabolism which retained antimycobacterial activity but resulted in substantial mitotoxicity.


Subject(s)
Antitubercular Agents , Mycobacterium tuberculosis , Oxazolidinones , Prodrugs , Prodrugs/pharmacology , Prodrugs/chemistry , Antitubercular Agents/pharmacology , Antitubercular Agents/chemistry , Mycobacterium tuberculosis/drug effects , Oxazolidinones/pharmacology , Oxazolidinones/chemistry , Animals , Microbial Sensitivity Tests , Mice , Humans , Linezolid/pharmacology , Linezolid/chemistry , Drug Resistance, Bacterial , Mitochondria/drug effects , Mitochondria/metabolism
2.
Proc Natl Acad Sci U S A ; 121(14): e2321336121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38530888

ABSTRACT

Host-directed therapies (HDTs) represent an emerging approach for bacterial clearance during tuberculosis (TB) infection. While most HDTs are designed and implemented for immuno-modulation, other host targets-such as nonimmune stromal components found in pulmonary granulomas-may prove equally viable. Building on our previous work characterizing and normalizing the aberrant granuloma-associated vasculature, here we demonstrate that FDA-approved therapies (bevacizumab and losartan, respectively) can be repurposed as HDTs to normalize blood vessels and extracellular matrix (ECM), improve drug delivery, and reduce bacterial loads in TB granulomas. Granulomas feature an overabundance of ECM and compressed blood vessels, both of which are effectively reduced by losartan treatment in the rabbit model of TB. Combining both HDTs promotes secretion of proinflammatory cytokines and improves anti-TB drug delivery. Finally, alone and in combination with second-line antitubercular agents (moxifloxacin or bedaquiline), these HDTs significantly reduce bacterial burden. RNA sequencing analysis of HDT-treated lung and granuloma tissues implicates up-regulated antimicrobial peptide and proinflammatory gene expression by ciliated epithelial airway cells as a putative mechanism of the observed antitubercular benefits in the absence of chemotherapy. These findings demonstrate that bevacizumab and losartan are well-tolerated stroma-targeting HDTs, normalize the granuloma microenvironment, and improve TB outcomes, providing the rationale to clinically test this combination in TB patients.


Subject(s)
Latent Tuberculosis , Mycobacterium tuberculosis , Tuberculosis , Humans , Animals , Rabbits , Bevacizumab/pharmacology , Losartan/pharmacology , Tuberculosis/microbiology , Antitubercular Agents/pharmacology , Granuloma , Latent Tuberculosis/microbiology
3.
CPT Pharmacometrics Syst Pharmacol ; 13(4): 673-685, 2024 04.
Article in English | MEDLINE | ID: mdl-38404200

ABSTRACT

Tuberculosis (TB) is a life-threatening infectious disease. The standard treatment is up to 90% effective; however, it requires the administration of four antibiotics (isoniazid, rifampicin, pyrazinamide, and ethambutol [HRZE]) over long time periods. This harsh treatment process causes adherence issues for patients because of the long treatment times and a myriad of adverse effects. Therefore, the World Health Organization has focused goals of shortening standard treatment regimens for TB in their End TB Strategy efforts, which aim to reduce TB-related deaths by 95% by 2035. For this purpose, many novel and promising combination antibiotics are being explored that have recently been discovered, such as the bedaquiline, pretomanid, and linezolid (BPaL) regimen. As a result, testing the number of possible combinations with all possible novel regimens is beyond the limit of experimental resources. In this study, we present a unique framework that uses a primate granuloma modeling approach to screen many combination regimens that are currently under clinical and experimental exploration and assesses their efficacies to inform future studies. We tested well-studied regimens such as HRZE and BPaL to evaluate the validity and accuracy of our framework. We also simulated additional promising combination regimens that have not been sufficiently studied clinically or experimentally, and we provide a pipeline for regimen ranking based on their efficacies in granulomas. Furthermore, we showed a correlation between simulation rankings and new marmoset data rankings, providing evidence for the credibility of our framework. This framework can be adapted to any TB regimen and can rank any number of single or combination regimens.


Subject(s)
Diarylquinolines , Nitroimidazoles , Tuberculosis, Multidrug-Resistant , Tuberculosis , Animals , Humans , Antitubercular Agents/therapeutic use , Linezolid/therapeutic use , Tuberculosis/drug therapy , Tuberculosis, Multidrug-Resistant/drug therapy
4.
bioRxiv ; 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37333343

ABSTRACT

Tuberculosis remains a large global disease burden for which treatment regimens are protracted and monitoring of disease activity difficult. Existing detection methods rely almost exclusively on bacterial culture from sputum which limits sampling to organisms on the pulmonary surface. Advances in monitoring tuberculous lesions have utilized the common glucoside [18F]FDG, yet lack specificity to the causative pathogen Mycobacterium tuberculosis (Mtb) and so do not directly correlate with pathogen viability. Here we show that a close mimic that is also positron-emitting of the non-mammalian Mtb disaccharide trehalose - 2-[18F]fluoro-2-deoxytrehalose ([18F]FDT) - can act as a mechanism-based enzyme reporter in vivo. Use of [18F]FDT in the imaging of Mtb in diverse models of disease, including non-human primates, successfully co-opts Mtb-specific processing of trehalose to allow the specific imaging of TB-associated lesions and to monitor the effects of treatment. A pyrogen-free, direct enzyme-catalyzed process for its radiochemical synthesis allows the ready production of [18F]FDT from the most globally-abundant organic 18F-containing molecule, [18F]FDG. The full, pre-clinical validation of both production method and [18F]FDT now creates a new, bacterium-specific, clinical diagnostic candidate. We anticipate that this distributable technology to generate clinical-grade [18F]FDT directly from the widely-available clinical reagent [18F]FDG, without need for either bespoke radioisotope generation or specialist chemical methods and/or facilities, could now usher in global, democratized access to a TB-specific PET tracer.

5.
J Am Chem Soc ; 145(2): 851-863, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36603206

ABSTRACT

Resistance of bacterial pathogens against antibiotics is declared by WHO as a major global health threat. As novel antibacterial agents are urgently needed, we re-assessed the broad-spectrum myxobacterial antibiotic myxovalargin and found it to be extremely potent against Mycobacterium tuberculosis. To ensure compound supply for further development, we studied myxovalargin biosynthesis in detail enabling production via fermentation of a native producer. Feeding experiments as well as functional genomics analysis suggested a structural revision, which was eventually corroborated by the development of a concise total synthesis. The ribosome was identified as the molecular target based on resistant mutant sequencing, and a cryo-EM structure revealed that myxovalargin binds within and completely occludes the exit tunnel, consistent with a mode of action to arrest translation during a late stage of translation initiation. These studies open avenues for structure-based scaffold improvement toward development as an antibacterial agent.


Subject(s)
Mycobacterium tuberculosis , Myxococcales , Anti-Bacterial Agents/chemistry , Ribosomes/metabolism , Protein Biosynthesis
6.
Antimicrob Agents Chemother ; 66(3): e0221221, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35099272

ABSTRACT

Nontuberculous mycobacterial pulmonary disease (NTM-PD) is a potentially fatal infectious disease requiring long treatment duration with multiple antibiotics and against which there is no reliable cure. Among the factors that have hampered the development of adequate drug regimens is the lack of an animal model that reproduces the NTM lung pathology required for studying antibiotic penetration and efficacy. Given the documented similarities between tuberculosis and NTM immunopathology in patients, we first determined that the rabbit model of active tuberculosis reproduces key features of human NTM-PD and provides an acceptable surrogate model to study lesion penetration. We focused on clarithromycin, a macrolide and pillar of NTM-PD treatment, and explored the underlying causes of the disconnect between its favorable potency and pharmacokinetics and inconsistent clinical outcome. To quantify pharmacokinetic-pharmacodynamic target attainment at the site of disease, we developed a translational model describing clarithromycin distribution from plasma to lung lesions, including the spatial quantitation of clarithromycin and azithromycin in mycobacterial lesions of two patients on long-term macrolide therapy. Through clinical simulations, we visualized the coverage of clarithromycin in plasma and four disease compartments, revealing heterogeneous bacteriostatic and bactericidal target attainment depending on the compartment and the corresponding potency against nontuberculous mycobacteria in clinically relevant assays. Overall, clarithromycin's favorable tissue penetration and lack of bactericidal activity indicated that its clinical activity is limited by pharmacodynamic, rather than pharmacokinetic, factors. Our results pave the way toward the simulation of lesion pharmacokinetic-pharmacodynamic coverage by multidrug combinations to enable the prioritization of promising regimens for clinical trials.


Subject(s)
Lung Diseases , Mycobacterium Infections, Nontuberculous , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Humans , Lung Diseases/drug therapy , Lung Diseases/microbiology , Macrolides/pharmacology , Macrolides/therapeutic use , Mycobacterium Infections, Nontuberculous/drug therapy , Mycobacterium Infections, Nontuberculous/microbiology , Nontuberculous Mycobacteria , Rabbits
7.
Front Cell Infect Microbiol ; 11: 613149, 2021.
Article in English | MEDLINE | ID: mdl-33796474

ABSTRACT

Tuberculosis (TB) remains a global health problem despite almost universal efforts to provide patients with highly effective chemotherapy, in part, because many infected individuals are not diagnosed and treated, others do not complete treatment, and a small proportion harbor Mycobacterium tuberculosis (Mtb) strains that have become resistant to drugs in the standard regimen. Development and approval of new drugs for TB have accelerated in the last 10 years, but more drugs are needed due to both Mtb's development of resistance and the desire to shorten therapy to 4 months or less. The drug development process needs predictive animal models that recapitulate the complex pathology and bacterial burden distribution of human disease. The human host response to pulmonary infection with Mtb is granulomatous inflammation usually resulting in contained lesions and limited bacterial replication. In those who develop progressive or active disease, regions of necrosis and cavitation can develop leading to lasting lung damage and possible death. This review describes the major vertebrate animal models used in evaluating compound activity against Mtb and the disease presentation that develops. Each of the models, including the zebrafish, various mice, guinea pigs, rabbits, and non-human primates provides data on number of Mtb bacteria and pathology resolution. The models where individual lesions can be dissected from the tissue or sampled can also provide data on lesion-specific bacterial loads and lesion-specific drug concentrations. With the inclusion of medical imaging, a compound's effect on resolution of pathology within individual lesions and animals can also be determined over time. Incorporation of measurement of drug exposure and drug distribution within animals and their tissues is important for choosing the best compounds to push toward the clinic and to the development of better regimens. We review the practical aspects of each model and the advantages and limitations of each in order to promote choosing a rational combination of them for a compound's development.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Guinea Pigs , Humans , Lung , Mice , Rabbits , Tuberculosis/drug therapy , Zebrafish
8.
Nat Commun ; 10(1): 4970, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31672993

ABSTRACT

The viability of Mycobacterium tuberculosis (Mtb) depends on energy generated by its respiratory chain. Cytochrome bc1-aa3 oxidase and type-2 NADH dehydrogenase (NDH-2) are respiratory chain components predicted to be essential, and are currently targeted for drug development. Here we demonstrate that an Mtb cytochrome bc1-aa3 oxidase deletion mutant is viable and only partially attenuated in mice. Moreover, treatment of Mtb-infected marmosets with a cytochrome bc1-aa3 oxidase inhibitor controls disease progression and reduces lesion-associated inflammation, but most lesions become cavitary. Deletion of both NDH-2 encoding genes (Δndh-2 mutant) reveals that the essentiality of NDH-2 as shown in standard growth media is due to the presence of fatty acids. The Δndh-2 mutant is only mildly attenuated in mice and not differently susceptible to clofazimine, a drug in clinical use proposed to engage NDH-2. These results demonstrate the intrinsic plasticity of Mtb's respiratory chain, and highlight the challenges associated with targeting the pathogen's respiratory enzymes for tuberculosis drug development.


Subject(s)
Antitubercular Agents/therapeutic use , Drug Development , Electron Transport Complex III/genetics , Electron Transport Complex IV/genetics , Mycobacterium tuberculosis/genetics , NADH Dehydrogenase/genetics , Tuberculosis/drug therapy , Adaptation, Physiological/genetics , Animals , Callithrix , Electron Transport , Electron Transport Complex III/antagonists & inhibitors , Electron Transport Complex IV/antagonists & inhibitors , Gene Knockdown Techniques , Imidazoles/pharmacology , In Vitro Techniques , Lung/drug effects , Lung/pathology , Mice , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/metabolism , NADH Dehydrogenase/antagonists & inhibitors , Piperidines/pharmacology , Pyridines/pharmacology , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/pathology
9.
J Med Chem ; 61(22): 9952-9965, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30350998

ABSTRACT

Magnesium plays an important role in infection with Mycobacterium tuberculosis ( Mtb) as a signal of the extracellular environment, as a cofactor for many enzymes, and as a structural element in important macromolecules. Raltegravir, an antiretroviral drug that inhibits HIV-1 integrase is known to derive its potency from selective sequestration of active-site magnesium ions in addition to binding to a hydrophobic pocket. In order to determine if essential Mtb-related phosphoryl transfers could be disrupted in a similar manner, a directed screen of known molecules with integrase inhibitor-like pharmacophores ( N-alkyl-5-hydroxypyrimidinone carboxamides) was performed. Initial hits afforded compounds with low-micromolar potency against Mtb, acceptable cytotoxicity and PK characteristics, and robust SAR. Elucidation of the target of these compounds revealed that they lacked magnesium dependence and instead disappointingly inhibited a known promiscuous target in Mtb, decaprenylphosphoryl-ß-d-ribose 2'-oxidase (DprE1, Rv3790).


Subject(s)
Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Drug Design , Oxidoreductases/metabolism , Pyrimidinones/chemistry , Pyrimidinones/pharmacology , Alkylation , Animals , Antitubercular Agents/metabolism , Antitubercular Agents/pharmacokinetics , Female , High-Throughput Screening Assays , Mice , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Targeted Therapy , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Oxidoreductases/chemistry , Protein Conformation , Pyrimidinones/metabolism , Pyrimidinones/pharmacokinetics , Structure-Activity Relationship , Tissue Distribution
10.
Nat Med ; 21(10): 1223-7, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26343800

ABSTRACT

Finding new treatment-shortening antibiotics to improve cure rates and curb the alarming emergence of drug resistance is the major objective of tuberculosis (TB) drug development. Using a matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging suite in a biosafety containment facility, we show that the key sterilizing drugs rifampicin and pyrazinamide efficiently penetrate the sites of TB infection in lung lesions. Rifampicin even accumulates in necrotic caseum, a critical lesion site where persisting tubercle bacilli reside. In contrast, moxifloxacin, which is active in vitro against a subpopulation of Mycobacterium tuberculosis that persists in specific niches under drug pressure and has achieved treatment shortening in mice, does not diffuse well in caseum, concordant with its failure to shorten therapy in recent clinical trials. We suggest that such differential spatial distribution and kinetics of accumulation in lesions may create temporal and spatial windows of monotherapy in specific niches, allowing the gradual development of multidrug-resistant TB. We propose an alternative working model to prioritize new antibiotic regimens based on quantitative and spatial distribution of TB drugs in the major lesion types found in human lungs. The finding that lesion penetration may contribute to treatment outcome has wide implications for TB.


Subject(s)
Antitubercular Agents/pharmacology , Pyrazinamide/pharmacology , Rifampin/pharmacology , Tuberculosis/drug therapy , Antitubercular Agents/pharmacokinetics , Antitubercular Agents/therapeutic use , Humans , Mycobacterium tuberculosis/drug effects , Pyrazinamide/pharmacokinetics , Pyrazinamide/therapeutic use , Rifampin/pharmacokinetics , Rifampin/therapeutic use , Tuberculosis/metabolism
11.
ACS Infect Dis ; 1(5): 203-214, 2015 May 08.
Article in English | MEDLINE | ID: mdl-26086040

ABSTRACT

Pyrazinamide has played a critical role in shortening therapy against drug-sensitive, drug-resistant, active, and latent tuberculosis (TB). Despite widespread recognition of its therapeutic importance, the sterilizing properties of this 60-year-old drug remain an enigma given its rather poor activity in vitro. Here we revisit longstanding paradigms and offer pharmacokinetic explanations for the apparent disconnect between in vitro activity and clinical impact. We show substantial host-mediated conversion of prodrug pyrazinamide (PZA) to the active form, pyrazinoic acid (POA), in TB patients and in animal models. We demonstrate favorable penetration of this pool of circulating POA from plasma into lung tissue and granulomas, where the pathogen resides. In standardized growth inhibition experiments, we show that POA exhibits superior in vitro potency compared to PZA, indicating that the vascular supply of host-derived POA may contribute to the in vivo efficacy of PZA, thereby reducing the apparent discrepancy between in vitro and in vivo activity. However, the results also raise the possibility that subinhibitory concentrations of POA generated by the host could fuel the emergence of resistance to both PZA and POA. In contrast to widespread expectations, we demonstrate good oral bioavailability and exposure in preclinical species in pharmacokinetic studies of oral POA. Baseline exposure of oral POA can be further increased by the xanthine oxidase inhibitor and approved gout drug allopurinol. These promising results pave the way for clinical investigations of oral POA as a therapeutic alternative or an add-on to overcome PZA resistance and salvage this essential TB drug.

12.
Antimicrob Agents Chemother ; 59(7): 4181-9, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25941223

ABSTRACT

Shortening the lengthy treatment duration for tuberculosis patients is a major goal of current drug development efforts. The common marmoset develops human-like disease pathology and offers an attractive model to better understand the basis for relapse and test regimens for effective shorter duration therapy. We treated Mycobacterium tuberculosis-infected marmosets with two drug regimens known to differ in their relapse rates in human clinical trials: the standard four-drug combination of isoniazid, rifampin, pyrazinamide, and ethambutol (HRZE) that has very low relapse rates and the combination of isoniazid and streptomycin that is associated with higher relapse rates. As early as 2 weeks, the more sterilizing regimen significantly reduced the volume of lung disease by computed tomography (P = 0.035) and also significantly reduced uptake of [(18)F]-2-fluoro-2-deoxyglucose by positron emission tomography (P = 0.049). After 6 weeks of therapy, both treatments caused similar reductions in granuloma bacterial load, but the more sterilizing, four-drug regimen caused greater reduction in bacterial load in cavitary lesions (P = 0.009). These findings, combined with the association in humans between cavitary disease and relapse, suggest that the basis for improved sterilizing activity of the four-drug combination is both its faster disease volume resolution and its stronger sterilizing effect on cavitary lesions. Definitive data from relapse experiments are needed to support this observation.


Subject(s)
Antitubercular Agents/therapeutic use , Tuberculosis/drug therapy , Tuberculosis/microbiology , Animals , Callithrix , Dose-Response Relationship, Drug , Drug Combinations , Female , Fluorodeoxyglucose F18 , Granuloma/microbiology , Male , Mycobacterium tuberculosis , Positron-Emission Tomography , Radiopharmaceuticals , Recurrence , Tomography, X-Ray Computed , Tuberculosis/diagnostic imaging
13.
Proc Natl Acad Sci U S A ; 112(6): 1827-32, 2015 Feb 10.
Article in English | MEDLINE | ID: mdl-25624495

ABSTRACT

Tuberculosis (TB) causes almost 2 million deaths annually, and an increasing number of patients are resistant to existing therapies. Patients who have TB require lengthy chemotherapy, possibly because of poor penetration of antibiotics into granulomas where the bacilli reside. Granulomas are morphologically similar to solid cancerous tumors in that they contain hypoxic microenvironments and can be highly fibrotic. Here, we show that TB-infected rabbits have impaired small molecule distribution into these disease sites due to a functionally abnormal vasculature, with a low-molecular-weight tracer accumulating only in peripheral regions of granulomatous lesions. Granuloma-associated vessels are morphologically and spatially heterogeneous, with poor vessel pericyte coverage in both human and experimental rabbit TB granulomas. Moreover, we found enhanced VEGF expression in both species. In tumors, antiangiogenic, specifically anti-VEGF, treatments can "normalize" their vasculature, reducing hypoxia and creating a window of opportunity for concurrent chemotherapy; thus, we investigated vessel normalization in rabbit TB granulomas. Treatment of TB-infected rabbits with the anti-VEGF antibody bevacizumab significantly decreased the total number of vessels while normalizing those vessels that remained. As a result, hypoxic fractions of these granulomas were reduced and small molecule tracer delivery was increased. These findings demonstrate that bevacizumab treatment promotes vascular normalization, improves small molecule delivery, and decreases hypoxia in TB granulomas, thereby providing a potential avenue to improve delivery and efficacy of current treatment regimens.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Blood Vessels/drug effects , Granuloma, Respiratory Tract/drug therapy , Granuloma, Respiratory Tract/metabolism , Tuberculosis/pathology , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Animals , Bevacizumab , Blood Vessels/pathology , Coloring Agents/pharmacokinetics , Granuloma, Respiratory Tract/etiology , Humans , Pericytes/pathology , Positron-Emission Tomography , Rabbits , Tomography, X-Ray Computed , Tuberculosis/complications
14.
Infect Immun ; 81(8): 2909-19, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23716617

ABSTRACT

Existing small-animal models of tuberculosis (TB) rarely develop cavitary disease, limiting their value for assessing the biology and dynamics of this highly important feature of human disease. To develop a smaller primate model with pathology similar to that seen in humans, we experimentally infected the common marmoset (Callithrix jacchus) with diverse strains of Mycobacterium tuberculosis of various pathogenic potentials. These included recent isolates of the modern Beijing lineage, the Euro-American X lineage, and M. africanum. All three strains produced fulminant disease in this animal with a spectrum of progression rates and clinical sequelae that could be monitored in real time using 2-deoxy-2-[(18)F]fluoro-d-glucose (FDG) positron emission tomography (PET)/computed tomography (CT). Lesion pathology at sacrifice revealed the entire spectrum of lesions observed in human TB patients. The three strains produced different rates of progression to disease, various extents of extrapulmonary dissemination, and various degrees of cavitation. The majority of live births in this species are twins, and comparison of results from siblings with different infecting strains allowed us to establish that the infection was highly reproducible and that the differential virulence of strains was not simply host variation. Quantitative assessment of disease burden by FDG-PET/CT provided an accurate reflection of the pathology findings at necropsy. These results suggest that the marmoset offers an attractive small-animal model of human disease that recapitulates both the complex pathology and spectrum of disease observed in humans infected with various M. tuberculosis strain clades.


Subject(s)
Disease Models, Animal , Disease Progression , Mycobacterium tuberculosis/pathogenicity , Tuberculosis/microbiology , Tuberculosis/pathology , Animals , Callithrix , Multimodal Imaging , Positron-Emission Tomography , Tomography, X-Ray Computed , Virulence
15.
Antimicrob Agents Chemother ; 56(8): 4391-402, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22687508

ABSTRACT

With a host of new antitubercular chemotherapeutics in development, methods to assess the activity of these agents beyond mouse efficacy are needed to prioritize combinations for clinical trials. Lesions in Mycobacterium tuberculosis-infected rabbits are hypoxic, with histopathologic features that closely resemble those of human tuberculous lesions. Using [(18)F]2-fluoro-deoxy-d-glucose ([(18)F]FDG) positron emission tomography-computed tomography (PET-CT) imaging, we studied the dynamics of tuberculosis infection in rabbits, revealing an initial inflammatory response followed by a consolidative chronic disease. Five weeks after infection, as much as 23% of total lung volume was abnormal, but this was contained and to some extent reversed naturally by 9 weeks. During development of this chronic state, individual lesions in the same animal had very different fates, ranging from complete resolution to significant progression. Lesions that remained through the initial stage showed an increase in volume and tissue density over time by CT. Initiation of chemotherapy using either isoniazid (INH) or rifampin (RIF) during chronic infection reduced bacterial load with quantitative changes in [(18)F]FDG uptake, lesion density and total lesion volume measured by CT. The [(18)F]FDG PET uptake in lesions was significantly reduced with as little as 1 week of treatment, while the volume and density of lesions changed more slowly. The results from this study suggest that rabbits may be a useful surrogate species for evaluating novel chemotherapies and understanding changes in both PET and CT scans in human clinical trials.


Subject(s)
Antitubercular Agents/therapeutic use , Lung/pathology , Multimodal Imaging , Mycobacterium tuberculosis/drug effects , Positron-Emission Tomography , Tomography, X-Ray Computed , Tuberculosis, Pulmonary/drug therapy , Animals , Bacterial Load/drug effects , Disease Models, Animal , Fluorodeoxyglucose F18 , Granuloma/microbiology , Isoniazid/therapeutic use , Lung/immunology , Lung/microbiology , Rabbits , Radiopharmaceuticals , Random Allocation , Rifampin/therapeutic use , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/microbiology
16.
Anal Chem ; 83(6): 2112-8, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21332183

ABSTRACT

MALDI-MSI is a powerful technology for localizing drug and metabolite distributions in biological tissues. To enhance our understanding of tuberculosis (TB) drug efficacy and how efficiently certain drugs reach their site of action, MALDI-MSI was applied to image the distribution of the second-line TB drug moxifloxacin at a range of time points after dosing. The ability to perform multiple monitoring of selected ion transitions in the same experiment enabled extremely sensitive imaging of moxifloxacin within tuberculosis-infected rabbit lung biopsies in less than 15 min per tissue section. Homogeneous application of a reference standard during the matrix spraying process enabled the ion-suppressing effects of the inhomogeneous lung tissue to be normalized. The drug was observed to accumulate in granulomatous lesions at levels higher than that in the surrounding lung tissue from 1.5 h postdose until the final time point. MALDI-MSI moxifloxacin distribution data were validated by quantitative LC/MS/MS analysis of lung and granuloma extracts from adjacent biopsies taken from the same animals. Drug distribution within the granulomas was observed to be inhomogeneous, and very low levels were observed in the caseum in comparison to the cellular granuloma regions. In this experiment the MALDI-MRM-MSI method was shown to be a rapid and sensitive method for analyzing the distribution of anti-TB compounds and will be applied to distribution studies of additional drugs in the future.


Subject(s)
Anti-Bacterial Agents/pharmacokinetics , Aza Compounds/pharmacokinetics , Granuloma, Respiratory Tract/metabolism , Lung/microbiology , Molecular Imaging/methods , Quinolines/pharmacokinetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Tuberculosis, Pulmonary/metabolism , Animals , Female , Fluoroquinolones , Granuloma, Respiratory Tract/pathology , Lung/metabolism , Lung/pathology , Molecular Imaging/standards , Moxifloxacin , Rabbits , Reference Standards , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/standards , Tuberculosis, Pulmonary/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...