Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
STAR Protoc ; 5(1): 102878, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38335091

ABSTRACT

Human pluripotent stem cell-derived neural progenitor cells (NPCs) are an essential tool for the study of brain development and developmental disorders such as autism. Here, we present a protocol to generate NPCs rapidly and reproducibly from human stem cells using dual-SMAD inhibition coupled with a brief pulse of mouse neurogenin-2 (Ngn2) overexpression. We detail the 48-h induction scheme deployed to produce these cells-termed stem cell-derived Ngn2-accelerated progenitor cells-followed by steps for expansion, purification, banking, and quality assessment. For complete details on the use and execution of this protocol, please refer to Wells et al.1.


Subject(s)
Neural Stem Cells , Pluripotent Stem Cells , Humans , Mice , Animals , Cell Differentiation/physiology
2.
Genet Med ; 26(4): 101057, 2024 04.
Article in English | MEDLINE | ID: mdl-38158856

ABSTRACT

PURPOSE: We established the genetic etiology of a syndromic neurodevelopmental condition characterized by variable cognitive impairment, recognizable facial dysmorphism, and a constellation of extra-neurological manifestations. METHODS: We performed phenotypic characterization of 6 participants from 4 unrelated families presenting with a neurodevelopmental syndrome and used exome sequencing to investigate the underlying genetic cause. To probe relevance to the neurodevelopmental phenotype and craniofacial dysmorphism, we established two- and three-dimensional human stem cell-derived neural models and generated a stable cachd1 zebrafish mutant on a transgenic cartilage reporter line. RESULTS: Affected individuals showed mild cognitive impairment, dysmorphism featuring oculo-auriculo abnormalities, and developmental defects involving genitourinary and digestive tracts. Exome sequencing revealed biallelic putative loss-of-function variants in CACHD1 segregating with disease in all pedigrees. RNA sequencing in CACHD1-depleted neural progenitors revealed abnormal expression of genes with key roles in Wnt signaling, neurodevelopment, and organ morphogenesis. CACHD1 depletion in neural progenitors resulted in reduced percentages of post-mitotic neurons and enlargement of 3D neurospheres. Homozygous cachd1 mutant larvae showed mandibular patterning defects mimicking human facial dysmorphism. CONCLUSION: Our findings support the role of loss-of-function variants in CACHD1 as the cause of a rare neurodevelopmental syndrome with facial dysmorphism and multisystem abnormalities.


Subject(s)
Abnormalities, Multiple , Craniofacial Abnormalities , Musculoskeletal Abnormalities , Neurodevelopmental Disorders , Animals , Humans , Abnormalities, Multiple/genetics , Craniofacial Abnormalities/genetics , Intellectual Disability/genetics , Musculoskeletal Abnormalities/genetics , Neurodevelopmental Disorders/genetics , Phenotype , Syndrome , Zebrafish/genetics
3.
Cell Stem Cell ; 30(3): 312-332.e13, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36796362

ABSTRACT

Human genome variation contributes to diversity in neurodevelopmental outcomes and vulnerabilities; recognizing the underlying molecular and cellular mechanisms will require scalable approaches. Here, we describe a "cell village" experimental platform we used to analyze genetic, molecular, and phenotypic heterogeneity across neural progenitor cells from 44 human donors cultured in a shared in vitro environment using algorithms (Dropulation and Census-seq) to assign cells and phenotypes to individual donors. Through rapid induction of human stem cell-derived neural progenitor cells, measurements of natural genetic variation, and CRISPR-Cas9 genetic perturbations, we identified a common variant that regulates antiviral IFITM3 expression and explains most inter-individual variation in susceptibility to the Zika virus. We also detected expression QTLs corresponding to GWAS loci for brain traits and discovered novel disease-relevant regulators of progenitor proliferation and differentiation such as CACHD1. This approach provides scalable ways to elucidate the effects of genes and genetic variation on cellular phenotypes.


Subject(s)
Neural Stem Cells , Zika Virus Infection , Zika Virus , Humans , Neural Stem Cells/metabolism , Cell Differentiation/genetics , Brain/metabolism , Zika Virus/metabolism , Gene Expression , Membrane Proteins/metabolism , RNA-Binding Proteins/metabolism
4.
Nat Commun ; 13(1): 3317, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35680907

ABSTRACT

Digital light processing bioprinting favors biofabrication of tissues with improved structural complexity. However, soft-tissue fabrication with this method remains a challenge to balance the physical performances of the bioinks for high-fidelity bioprinting and suitable microenvironments for the encapsulated cells to thrive. Here, we propose a molecular cleavage approach, where hyaluronic acid methacrylate (HAMA) is mixed with gelatin methacryloyl to achieve high-performance bioprinting, followed by selectively enzymatic digestion of HAMA, resulting in tissue-matching mechanical properties without losing the structural complexity and fidelity. Our method allows cellular morphological and functional improvements across multiple bioprinted tissue types featuring a wide range of mechanical stiffness, from the muscles to the brain, the softest organ of the human body. This platform endows us to biofabricate mechanically precisely tunable constructs to meet the biological function requirements of target tissues, potentially paving the way for broad applications in tissue and tissue model engineering.


Subject(s)
Bioprinting , Bioprinting/methods , Gelatin/chemistry , Humans , Hyaluronic Acid , Hydrogels/chemistry , Methacrylates/chemistry , Printing, Three-Dimensional , Tissue Engineering/methods , Tissue Scaffolds/chemistry
5.
Nature ; 582(7810): 89-94, 2020 06.
Article in English | MEDLINE | ID: mdl-32483373

ABSTRACT

A hexanucleotide-repeat expansion in C9ORF72 is the most common genetic variant that contributes to amyotrophic lateral sclerosis and frontotemporal dementia1,2. The C9ORF72 mutation acts through gain- and loss-of-function mechanisms to induce pathways that are implicated in neural degeneration3-9. The expansion is transcribed into a long repetitive RNA, which negatively sequesters RNA-binding proteins5 before its non-canonical translation into neural-toxic dipeptide proteins3,4. The failure of RNA polymerase to read through the mutation also reduces the abundance of the endogenous C9ORF72 gene product, which functions in endolysosomal pathways and suppresses systemic and neural inflammation6-9. Notably, the effects of the repeat expansion act with incomplete penetrance in families with a high prevalence of amyotrophic lateral sclerosis or frontotemporal dementia, indicating that either genetic or environmental factors modify the risk of disease for each individual. Identifying disease modifiers is of considerable translational interest, as it could suggest strategies to diminish the risk of developing amyotrophic lateral sclerosis or frontotemporal dementia, or to slow progression. Here we report that an environment with reduced abundance of immune-stimulating bacteria10,11 protects C9orf72-mutant mice from premature mortality and significantly ameliorates their underlying systemic inflammation and autoimmunity. Consistent with C9orf72 functioning to prevent microbiota from inducing a pathological inflammatory response, we found that reducing the microbial burden in mutant mice with broad spectrum antibiotics-as well as transplanting gut microflora from a protective environment-attenuated inflammatory phenotypes, even after their onset. Our studies provide further evidence that the microbial composition of our gut has an important role in brain health and can interact in surprising ways with well-known genetic risk factors for disorders of the nervous system.


Subject(s)
C9orf72 Protein/genetics , Gastrointestinal Microbiome/physiology , Gliosis/microbiology , Gliosis/pathology , Inflammation/genetics , Inflammation/microbiology , Spinal Cord/pathology , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Anti-Bacterial Agents/pharmacology , Autoimmunity/drug effects , Autoimmunity/genetics , Autoimmunity/immunology , Cell Movement/drug effects , Cytokines/immunology , Fecal Microbiota Transplantation , Female , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/immunology , Gliosis/genetics , Gliosis/prevention & control , Inflammation/pathology , Inflammation/prevention & control , Loss of Function Mutation/genetics , Male , Mice , Microglia/immunology , Microglia/microbiology , Microglia/pathology , Spinal Cord/immunology , Spinal Cord/microbiology , Survival Rate
6.
Nat Neurosci ; 23(4): 520-532, 2020 04.
Article in English | MEDLINE | ID: mdl-32123378

ABSTRACT

Hyper-reactivity to sensory input is a common and debilitating symptom in individuals with autism spectrum disorders (ASD), but the neural basis underlying sensory abnormality is not completely understood. Here we examined the neural representations of sensory perception in the neocortex of a Shank3B-/- mouse model of ASD. Male and female Shank3B-/- mice were more sensitive to relatively weak tactile stimulation in a vibrissa motion detection task. In vivo population calcium imaging in vibrissa primary somatosensory cortex (vS1) revealed increased spontaneous and stimulus-evoked firing in pyramidal neurons but reduced activity in interneurons. Preferential deletion of Shank3 in vS1 inhibitory interneurons led to pyramidal neuron hyperactivity and increased stimulus sensitivity in the vibrissa motion detection task. These findings provide evidence that cortical GABAergic interneuron dysfunction plays a key role in sensory hyper-reactivity in a Shank3 mouse model of ASD and identify a potential cellular target for exploring therapeutic interventions.


Subject(s)
Action Potentials/physiology , Autism Spectrum Disorder/physiopathology , GABAergic Neurons/physiology , Nerve Tissue Proteins/genetics , Somatosensory Cortex/physiopathology , Touch Perception/physiology , Animals , Autism Spectrum Disorder/genetics , Disease Models, Animal , Mice , Microfilament Proteins , Physical Stimulation , Pyramidal Cells/physiology , Sensory Thresholds/physiology , Touch/physiology
7.
J Neurosci ; 40(1): 101-106, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31896564

ABSTRACT

On the 50th anniversary of the Society for Neuroscience, we reflect on the remarkable progress that the field has made in understanding the nervous system, and look forward to the contributions of the next 50 years. We predict a substantial acceleration of our understanding of the nervous system that will drive the development of new therapeutic strategies to treat diseases over the course of the next five decades. We also see neuroscience at the nexus of many societal topics beyond medicine, including education, consumerism, and the justice system. In combination, advances made by basic, translational, and clinical neuroscience research in the next 50 years have great potential for lasting improvements in human health, the economy, and society.


Subject(s)
Neurosciences/trends , Animals , Behavior, Animal , Forecasting , Gene Editing , History, 20th Century , History, 21st Century , Humans , Interdisciplinary Communication , Mental Disorders/diagnosis , Mental Disorders/genetics , Mental Disorders/therapy , Nerve Net/physiology , Nervous System Diseases/genetics , Nervous System Diseases/therapy , Neurogenesis , Neurosciences/history , Organoids , Research , Social Change
8.
Cell ; 178(4): 867-886.e24, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31398341

ABSTRACT

Somatosensory over-reactivity is common among patients with autism spectrum disorders (ASDs) and is hypothesized to contribute to core ASD behaviors. However, effective treatments for sensory over-reactivity and ASDs are lacking. We found distinct somatosensory neuron pathophysiological mechanisms underlie tactile abnormalities in different ASD mouse models and contribute to some ASD-related behaviors. Developmental loss of ASD-associated genes Shank3 or Mecp2 in peripheral mechanosensory neurons leads to region-specific brain abnormalities, revealing links between developmental somatosensory over-reactivity and the genesis of aberrant behaviors. Moreover, acute treatment with a peripherally restricted GABAA receptor agonist that acts directly on mechanosensory neurons reduced tactile over-reactivity in six distinct ASD models. Chronic treatment of Mecp2 and Shank3 mutant mice improved body condition, some brain abnormalities, anxiety-like behaviors, and some social impairments but not memory impairments, motor deficits, or overgrooming. Our findings reveal a potential therapeutic strategy targeting peripheral mechanosensory neurons to treat tactile over-reactivity and select ASD-related behaviors.


Subject(s)
Autism Spectrum Disorder/metabolism , GABA Agonists/pharmacology , Isonicotinic Acids/pharmacology , Phenotype , Sensory Receptor Cells/drug effects , Touch/drug effects , Action Potentials/drug effects , Animals , Anxiety/drug therapy , Autism Spectrum Disorder/drug therapy , Autism Spectrum Disorder/genetics , Behavior, Animal/drug effects , Brain/drug effects , Disease Models, Animal , Female , GABA Agonists/therapeutic use , Isonicotinic Acids/therapeutic use , Male , Maze Learning/drug effects , Methyl-CpG-Binding Protein 2/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Microfilament Proteins , Nerve Tissue Proteins/genetics , Prepulse Inhibition/drug effects , Sensory Receptor Cells/metabolism
9.
J Vis Exp ; (127)2017 09 19.
Article in English | MEDLINE | ID: mdl-28994790

ABSTRACT

The recent emergence of Zika virus (ZIKV) in susceptible populations has led to an abrupt increase in microcephaly and other neurodevelopmental conditions in newborn infants. While mosquitos are the main route of viral transmission, it has also been shown to spread via sexual contact and vertical mother-to-fetus transmission. In this latter case of transmission, due to the unique viral tropism of ZIKV, the virus is believed to predominantly target the neural progenitor cells (NPCs) of the developing brain. Here a method for modeling ZIKV infection, and the resulting microcephaly, that occur when human cerebral organoids are exposed to live ZIKV is described. The organoids display high levels of virus within their neural progenitor population, and exhibit severe cell death and microcephaly over time. This three-dimensional cerebral organoid model allows researchers to conduct species-matched experiments to observe and potentially intervene with ZIKV infection of the developing human brain. The model provides improved relevance over standard two-dimensional methods, and contains human-specific cellular architecture and protein expression that are not possible in animal models.


Subject(s)
Brain/virology , Neural Stem Cells/virology , Organoids/virology , Zika Virus Infection/virology , Brain/pathology , Humans , Neural Stem Cells/pathology
10.
Cell Stem Cell ; 19(6): 703-708, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27912091

ABSTRACT

Zika virus (ZIKV) can cross the placental barrier, resulting in infection of the fetal brain and neurological defects including microcephaly. The cellular tropism of ZIKV and the identity of attachment factors used by the virus to gain access to key cell types involved in pathogenesis are under intense investigation. Initial studies suggested that ZIKV preferentially targets neural progenitor cells (NPCs), providing an explanation for the developmental phenotypes observed in some pregnancies. The AXL protein has been nominated as a key attachment factor for ZIKV in several cell types including NPCs. However, here we show that genetic ablation of AXL has no effect on ZIKV entry or ZIKV-mediated cell death in human induced pluripotent stem cell (iPSC)-derived NPCs or cerebral organoids. These findings call into question the utility of AXL inhibitors for preventing birth defects after infection and suggest that further studies of viral attachment factors in NPCs are needed.


Subject(s)
Cerebrum/pathology , Gene Deletion , Neural Stem Cells/metabolism , Neural Stem Cells/virology , Neuroprotection , Organoids/virology , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , Zika Virus Infection/prevention & control , Cell Death , Gene Knockout Techniques , Humans , Neural Stem Cells/pathology , Organoids/metabolism , Organoids/pathology , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Zika Virus Infection/pathology , Axl Receptor Tyrosine Kinase
11.
Nature ; 532(7597): 58-63, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-27007844

ABSTRACT

Developmental disabilities, including attention-deficit hyperactivity disorder (ADHD), intellectual disability (ID), and autism spectrum disorders (ASD), affect one in six children in the USA. Recently, gene mutations in patched domain containing 1 (PTCHD1) have been found in ~1% of patients with ID and ASD. Individuals with PTCHD1 deletion show symptoms of ADHD, sleep disruption, hypotonia, aggression, ASD, and ID. Although PTCHD1 is probably critical for normal development, the connection between its deletion and the ensuing behavioural defects is poorly understood. Here we report that during early post-natal development, mouse Ptchd1 is selectively expressed in the thalamic reticular nucleus (TRN), a group of GABAergic neurons that regulate thalamocortical transmission, sleep rhythms, and attention. Ptchd1 deletion attenuates TRN activity through mechanisms involving small conductance calcium-dependent potassium currents (SK). TRN-restricted deletion of Ptchd1 leads to attention deficits and hyperactivity, both of which are rescued by pharmacological augmentation of SK channel activity. Global Ptchd1 deletion recapitulates learning impairment, hyper-aggression, and motor defects, all of which are insensitive to SK pharmacological targeting and not found in the TRN-restricted deletion mouse. This study maps clinically relevant behavioural phenotypes onto TRN dysfunction in a human disease model, while also identifying molecular and circuit targets for intervention.


Subject(s)
Attention Deficit Disorder with Hyperactivity/physiopathology , Attention Deficit Disorder with Hyperactivity/psychology , Gene Deletion , Membrane Proteins/deficiency , Membrane Proteins/genetics , Thalamic Nuclei/physiopathology , Aggression , Animals , Animals, Newborn , Attention , Attention Deficit Disorder with Hyperactivity/genetics , Behavior, Animal , Disease Models, Animal , Electric Conductivity , Female , GABAergic Neurons/metabolism , GABAergic Neurons/pathology , Humans , Learning Disabilities/genetics , Learning Disabilities/physiopathology , Male , Membrane Proteins/metabolism , Mice , Mice, Knockout , Motor Disorders/genetics , Motor Disorders/physiopathology , Neural Inhibition , Potassium Channels, Calcium-Activated/metabolism , Sleep , Sleep Deprivation/genetics , Sleep Deprivation/physiopathology , Thalamic Nuclei/pathology
12.
Nature ; 472(7344): 437-42, 2011 Apr 28.
Article in English | MEDLINE | ID: mdl-21423165

ABSTRACT

Autism spectrum disorders (ASDs) comprise a range of disorders that share a core of neurobehavioural deficits characterized by widespread abnormalities in social interactions, deficits in communication as well as restricted interests and repetitive behaviours. The neurological basis and circuitry mechanisms underlying these abnormal behaviours are poorly understood. SHANK3 is a postsynaptic protein, whose disruption at the genetic level is thought to be responsible for the development of 22q13 deletion syndrome (Phelan-McDermid syndrome) and other non-syndromic ASDs. Here we show that mice with Shank3 gene deletions exhibit self-injurious repetitive grooming and deficits in social interaction. Cellular, electrophysiological and biochemical analyses uncovered defects at striatal synapses and cortico-striatal circuits in Shank3 mutant mice. Our findings demonstrate a critical role for SHANK3 in the normal development of neuronal connectivity and establish causality between a disruption in the Shank3 gene and the genesis of autistic-like behaviours in mice.


Subject(s)
Autistic Disorder/genetics , Autistic Disorder/physiopathology , Carrier Proteins/genetics , Carrier Proteins/metabolism , Neostriatum/physiopathology , Animals , Compulsive Behavior/genetics , Female , Gene Deletion , Grooming , Male , Mice , Microfilament Proteins , Mutant Proteins/genetics , Mutant Proteins/metabolism , Neostriatum/pathology , Nerve Tissue Proteins , Neural Pathways , RNA, Messenger/genetics , RNA, Messenger/metabolism , Self-Injurious Behavior/genetics , Self-Injurious Behavior/physiopathology , Social Behavior , Synapses/metabolism , Synapses/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...