Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 25(11)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38892328

ABSTRACT

Curcumin is a natural compound that is considered safe and may have potential health benefits; however, its poor stability and water insolubility limit its therapeutic applications. Different strategies aim to increase its water solubility. Here, we tested the compound PVP-curcumin as a photosensitizer for antimicrobial photodynamic therapy (aPDT) as well as its potential to act as an adjuvant in antibiotic drug therapy. Gram-negative E. coli K12 and Gram-positive S. capitis were subjected to aPDT using various PVP-curcumin concentrations (1-200 µg/mL) and 475 nm blue light (7.5-45 J/cm2). Additionally, results were compared to aPDT using 415 nm blue light. Gene expression of recA and umuC were analyzed via RT-qPCR to assess effects on the bacterial SOS response. Further, the potentiation of Ciprofloxacin by PVP-curcumin was investigated, as well as its potential to prevent the emergence of antibiotic resistance. Both bacterial strains were efficiently reduced when irradiated with 415 nm blue light (2.2 J/cm2) and 10 µg/mL curcumin. Using 475 nm blue light, bacterial reduction followed a biphasic effect with higher efficacy in S. capitis compared to E. coli K12. PVP-curcumin decreased recA expression but had limited effect regarding enhancing antibiotic treatment or impeding resistance development. PVP-curcumin demonstrated effectiveness as a photosensitizer against both Gram-positive and Gram-negative bacteria but did not modulate the bacterial SOS response.


Subject(s)
Anti-Bacterial Agents , Ciprofloxacin , Curcumin , Photosensitizing Agents , Rec A Recombinases , Curcumin/pharmacology , Photosensitizing Agents/pharmacology , Rec A Recombinases/metabolism , Rec A Recombinases/genetics , Ciprofloxacin/pharmacology , Anti-Bacterial Agents/pharmacology , Photochemotherapy/methods , SOS Response, Genetics/drug effects , Escherichia coli K12/drug effects , Escherichia coli K12/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Povidone/chemistry , Povidone/pharmacology , Microbial Sensitivity Tests , Escherichia coli/drug effects , Light , DNA-Binding Proteins
2.
Cells Tissues Organs ; 175(2): 61-71, 2003.
Article in English | MEDLINE | ID: mdl-14605485

ABSTRACT

Cardiomyocytes cease to divide shortly after birth and an irreversible cell cycle arrest is evident accompanied by the downregulation of cyclin-dependent kinase activities. To get a better understanding of the cardiac cell cycle and its regulation, the effect of functional recovery of the mitosis-promoting factor (MPF) consisting of cyclin B1 and the cyclin-dependent kinase Cdc2 was assessed in primary cultures of postmitotic ventricular adult rat cardiomyocytes (ARC). Gene transfer into ARC was achieved using the adenovirus-enhanced transferrinfection system that was characterized by the absence of cytotoxic events. Simultaneous ectopic expression of wild-type versions of cyclin B1 and Cdc2 was sufficient to induce MPF activity. Reestablished MPF resulted in a mitotic phenotype, marked by an abnormal condensation of the nuclei, histone H3 phosphorylation and variable degree of decay of the contractile apparatus. Although a complete cell division was not observed, the results provided conclusive evidence that cell cycle-related events in postmitotic cardiomyocytes could be triggered by genetic intervention downstream of the G1/S checkpoint. This will be of importance to design novel strategies to overcome the proliferation arrest in adult cardiomyocytes.


Subject(s)
Cell Cycle/physiology , Cell Differentiation/physiology , Heart/growth & development , Maturation-Promoting Factor/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Animals , CDC2 Protein Kinase/genetics , CDC2 Protein Kinase/metabolism , Cell Line , Cyclin B/genetics , Cyclin B/metabolism , Cyclin B1 , Female , G1 Phase/genetics , Gene Expression Regulation, Developmental/genetics , Gene Transfer Techniques , Genes, cdc/physiology , Humans , Maturation-Promoting Factor/genetics , Myocardium/cytology , Myocytes, Cardiac/cytology , Phosphorylation , Rats , S Phase/genetics
3.
Cancer Gene Ther ; 9(8): 673-80, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12136428

ABSTRACT

We have recently developed surface-shielded transferrin-polyethylenimine (Tf-PEI)/DNA delivery systems that target reporter gene expression to distant tumors after systemic application. In the present study, we used surface-shielded Tf-PEI/DNA complexes for delivering the gene for a highly potent cytokine, tumor necrosis factor-alpha (TNFalpha). TNFalpha is known for its ability to induce hemorrhagic tumor necrosis and tumor regression. However, the therapeutic application of TNFalpha is hampered by its high systemic toxicity dictating the need to target TNFalpha activity to the tumor. Systemic application of surface-shielded Tf-PEI complexes with the TNFalpha gene resulted in preferential expression of TNFalpha in the tumor without detectable TNFalpha serum levels, in contrast to the application of nontargeted complexes. Tumor-targeted TNFalpha gene delivery induced pronounced hemorrhagic tumor necrosis and inhibition of tumor growth in three murine tumor models of different tissue origins, Neuro2a neuroblastoma, MethA fibrosarcoma, and M-3 melanoma, with complete tumor regressions observed in the MethA model. No systemic TNF-related toxicity was observed due to the localization of the TNFalpha activity to the tumor. Targeted gene therapy may be an attractive strategy applicable to highly active, yet toxic, molecules such as TNFalpha.


Subject(s)
Neuroblastoma/pathology , Tumor Necrosis Factor-alpha/genetics , Animals , Fibrosarcoma/genetics , Fibrosarcoma/pathology , Genetic Therapy , Melanoma, Experimental/genetics , Melanoma, Experimental/pathology , Mice , Neuroblastoma/genetics , Neuroblastoma/metabolism , Neuroblastoma/therapy , Tumor Cells, Cultured , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL