Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Gut Microbes ; 5(1): 28-39, 2014.
Article in English | MEDLINE | ID: mdl-24637807

ABSTRACT

The intestinal microbiota changes dynamically from birth to adulthood. In this study we identified γ-Proteobacteria as a dominant phylum present in newborn mice that is suppressed in normal adult microbiota. The transition from a neonatal to a mature microbiota was in part regulated by induction of a γ-Proteobacteria-specific IgA response. Neocolonization experiments in germ-free mice further revealed a dominant Proteobacteria-specific IgA response triggered by the immature microbiota. Finally, a role for B cells in the regulation of microbiota maturation was confirmed in IgA-deficient mice. Mice lacking IgA had persistent intestinal colonization with γ-Proteobacteria that resulted in sustained intestinal inflammation and increased susceptibility to neonatal and adult models of intestinal injury. Collectively, these results identify an IgA-dependent mechanism responsible for the maturation of the intestinal microbiota.


Subject(s)
Antibodies, Bacterial/immunology , Colitis/immunology , Immunoglobulin A/immunology , Intestines/growth & development , Intestines/immunology , Microbiota , Proteobacteria/immunology , Animals , Colitis/genetics , Colitis/microbiology , Female , Humans , Intestines/microbiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Proteobacteria/classification , Proteobacteria/genetics , Proteobacteria/isolation & purification
3.
Proc Natl Acad Sci U S A ; 110(26): 10711-6, 2013 Jun 25.
Article in English | MEDLINE | ID: mdl-23754402

ABSTRACT

IFN-γ is a major cytokine that is critical for host resistance to a broad range of intracellular pathogens. Production of IFN-γ by natural killer and T cells is initiated by the recognition of pathogens by Toll-like receptors (TLRs). In an experimental model of toxoplasmosis, we have identified the presence of a nonlymphoid source of IFN-γ that was particularly evident in the absence of TLR-mediated recognition of Toxoplasma gondii. Genetically altered mice lacking all lymphoid cells due to deficiencies in Recombination Activating Gene 2 and IL-2Rγc genes also produced IFN-γ in response to the protozoan parasite. Flow-cytometry and morphological examinations of non-NK/non-T IFN-γ(+) cells identified neutrophils as the cell type capable of producing IFN-γ. Selective elimination of neutrophils in TLR11(-/-) mice infected with the parasite resulted in acute susceptibility similar to that observed in IFN-γ-deficient mice. Similarly, Salmonella typhimurium infection of TLR-deficient mice induces the appearance of IFN-γ(+) neutrophils. Thus, neutrophils are a crucial source for IFN-γ that is required for TLR-independent host protection against intracellular pathogens.


Subject(s)
Host-Pathogen Interactions/immunology , Interferon-gamma/physiology , Neutrophils/immunology , Neutrophils/metabolism , Toll-Like Receptors/immunology , Animals , Host-Parasite Interactions/immunology , Immunity, Innate , Interferon-gamma/deficiency , Mice , Mice, Inbred C57BL , Mice, Knockout , Salmonella typhimurium/immunology , Salmonella typhimurium/pathogenicity , T-Lymphocytes/immunology , Toll-Like Receptors/deficiency , Toll-Like Receptors/genetics , Toxoplasma/immunology , Toxoplasma/pathogenicity
4.
Nat Immunol ; 14(2): 136-42, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23263554

ABSTRACT

Activation of Toll-like receptors (TLRs) by pathogens triggers cytokine production and T cell activation, immune defense mechanisms that are linked to immunopathology. Here we show that IFN-γ production by CD4(+) T(H)1 cells during mucosal responses to the protozoan parasite Toxoplasma gondii resulted in dysbiosis and the elimination of Paneth cells. Paneth cell death led to loss of antimicrobial peptides and occurred in conjunction with uncontrolled expansion of the Enterobacteriaceae family of Gram-negative bacteria. The expanded intestinal bacteria were required for the parasite-induced intestinal pathology. The investigation of cell type-specific factors regulating T(H)1 polarization during T. gondii infection identified the T cell-intrinsic TLR pathway as a major regulator of IFN-γ production in CD4(+) T cells responsible for Paneth cell death, dysbiosis and intestinal immunopathology.


Subject(s)
Enterobacteriaceae Infections/pathology , Enterobacteriaceae/growth & development , Paneth Cells/pathology , Signal Transduction/immunology , Th1 Cells/pathology , Toxoplasma/growth & development , Toxoplasmosis, Animal/pathology , Animals , CD4-Positive T-Lymphocytes , Cell Death , Enterobacteriaceae/immunology , Enterobacteriaceae Infections/complications , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/microbiology , Gene Expression Regulation , Host-Parasite Interactions , Host-Pathogen Interactions , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-12/genetics , Interleukin-12/immunology , Lymphocyte Activation , Mice , Mice, Transgenic , Paneth Cells/microbiology , Paneth Cells/parasitology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Th1 Cells/microbiology , Th1 Cells/parasitology , Toxoplasma/immunology , Toxoplasmosis, Animal/complications , Toxoplasmosis, Animal/immunology , Toxoplasmosis, Animal/parasitology , alpha-Defensins/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL
...