Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
J Clin Endocrinol Metab ; 107(7): e2952-e2961, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35306566

ABSTRACT

BACKGROUND: Accelerated reproductive aging, in women indicated by early natural menopause, is associated with increased coronary heart disease (CHD) risk in observational studies. Conversely, an adverse CHD risk profile has been suggested to accelerate menopause. OBJECTIVES: To study the direction and evidence for causality of the relationship between reproductive aging and (non-)fatal CHD and CHD risk factors in a bidirectional Mendelian randomization (MR) approach, using age at natural menopause (ANM) genetic variants as a measure for genetically determined reproductive aging in women. We also studied the association of these variants with CHD risk (factors) in men. DESIGN: Two-sample MR, using both cohort data as well as summary statistics, with 4 methods: simple and weighted median-based, standard inverse-variance weighted (IVW) regression, and MR-Egger regression. PARTICIPANTS: Data from EPIC-CVD and summary statistics from UK Biobank and publicly available genome-wide association studies were pooled for the different analyses. MAIN OUTCOME MEASURES: CHD, CHD risk factors, and ANM. RESULTS: Across different methods of MR, no association was found between genetically determined reproductive aging and CHD risk in women (relative risk estimateIVW = 0.99; 95% confidence interval (CI), 0.97-1.01), or any of the CHD risk factors. Similarly, no associations were found in men. Neither did the reversed analyses show evidence for an association between CHD (risk factors) and reproductive aging. CONCLUSION: Genetically determined reproductive aging is not causally associated with CHD risk (factors) in women, nor were the genetic variants associated in men. We found no evidence for a reverse association in a combined sample of women and men.


Subject(s)
Coronary Disease , Genome-Wide Association Study , Aging/genetics , Coronary Disease/epidemiology , Coronary Disease/genetics , Female , Genome-Wide Association Study/methods , Humans , Male , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide
2.
Cardiovasc Res ; 118(4): 1088-1102, 2022 03 16.
Article in English | MEDLINE | ID: mdl-33878186

ABSTRACT

AIMS: Coronary artery disease (CAD) has a strong genetic predisposition. However, despite substantial discoveries made by genome-wide association studies (GWAS), a large proportion of heritability awaits identification. Non-additive genetic effects might be responsible for part of the unaccounted genetic variance. Here, we attempted a proof-of-concept study to identify non-additive genetic effects, namely epistatic interactions, associated with CAD. METHODS AND RESULTS: We tested for epistatic interactions in 10 CAD case-control studies and UK Biobank with focus on 8068 SNPs at 56 loci with known associations with CAD risk. We identified a SNP pair located in cis at the LPA locus, rs1800769 and rs9458001, to be jointly associated with risk for CAD [odds ratio (OR) = 1.37, P = 1.07 × 10-11], peripheral arterial disease (OR = 1.22, P = 2.32 × 10-4), aortic stenosis (OR = 1.47, P = 6.95 × 10-7), hepatic lipoprotein(a) (Lp(a)) transcript levels (beta = 0.39, P = 1.41 × 10-8), and Lp(a) serum levels (beta = 0.58, P = 8.7 × 10-32), while individual SNPs displayed no association. Further exploration of the LPA locus revealed a strong dependency of these associations on a rare variant, rs140570886, that was previously associated with Lp(a) levels. We confirmed increased CAD risk for heterozygous (relative OR = 1.46, P = 9.97 × 10-32) and individuals homozygous for the minor allele (relative OR = 1.77, P = 0.09) of rs140570886. Using forward model selection, we also show that epistatic interactions between rs140570886, rs9458001, and rs1800769 modulate the effects of the rs140570886 risk allele. CONCLUSIONS: These results demonstrate the feasibility of a large-scale knowledge-based epistasis scan and provide rare evidence of an epistatic interaction in a complex human disease. We were directed to a variant (rs140570886) influencing risk through additive genetic as well as epistatic effects. In summary, this study provides deeper insights into the genetic architecture of a locus important for cardiovascular diseases.


Subject(s)
Cardiovascular Diseases , Coronary Artery Disease , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/genetics , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/genetics , Epistasis, Genetic , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Lipoprotein(a)/genetics , Polymorphism, Single Nucleotide
3.
Biomolecules ; 8(4)2018 12 05.
Article in English | MEDLINE | ID: mdl-30563176

ABSTRACT

Despite its substantial clinical importance, specific genetic variants associated with depression have not yet been identified. We sought to identify genetic variants associated with depression by (a) focusing on a more homogenous subsample (vascular depression) and (b) applying a three-stage approach. First, we contacted 730 participants with a confirmed atherosclerotic disease (coronary artery disease) from a population-based study population (German Myocardial Infarction Family Study IV) for psychiatric assessment with the Mini International Neuropsychiatric Interview. Second, we genotyped these patients using genome-wide single nucleotide polymorphism (SNP) arrays. Third, we characterized the SNP via in-silico analysis. The final sample consisted of 342 patients (78.3% male, age = 63.2 ± 9.9 years), 22.8% with a severe depressive disorder. Variant rs528732638 on chromosome 18q11.2 was a genome-wide significant variant and was associated with 3.6-fold increase in the odds of lifetime depression. The locus belongs to a linkage disequilibrium block showing expression quantitative trait loci effects on three putative cis-regulated genes, including the aquaporin 4 (AQP4) locus. AQP4 is already known to mediate the formation of ischemic edema in the brain and heart, increasing the size and extent of resulting lesions. Our findings indicate that AQP4 may also play a role in the etiopathology of vascular depression.


Subject(s)
Aquaporin 4/genetics , Depression/genetics , Genetic Association Studies , Vascular Diseases/genetics , Depression/physiopathology , Female , Genetic Predisposition to Disease , Genotype , Humans , Linkage Disequilibrium , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Vascular Diseases/physiopathology
4.
Front Psychiatry ; 9: 338, 2018.
Article in English | MEDLINE | ID: mdl-30100883

ABSTRACT

Background: Psychological problems are common in patients with coronary artery disease (CAD) and are associated with poor outcome. However, data on the prevalence of distinct mental disorders and their relevance to patients' functioning in daily life are scarce. Method: In this retrospective study, a total of 514 German patients with CAD as diagnosed by cardiac catheterization were assessed using the Mini International Neuropsychiatric Interview 5.0.0 (M.I.N.I.) and psychosocial functioning was evaluated using the Global Assessment of Functioning (GAF) scale. Results: Twenty-nine percent of the participants suffered from at least one mental disorder after the onset of their CAD (mean time since onset = 10.86 years, SD = 8.15). In comparison to the period before onset of CAD, elevated prevalence rates were found for severe depressive episodes, agoraphobia, dysthymia, panic disorder, and hypochondria. Predictors of mental disorders after the onset of CAD were female gender, younger age at onset of CAD as well as mental disorders and low GAF scores before onset. GAF scores decreased after the onset of CAD, recovered only partially, and were influenced by mental disorders before onset in women but not in men. Conclusions: Mental disorders-especially depression and agoraphobia-are frequent in patients with CAD, with women, patients with a younger age at onset of CAD and patients with any history of mental disorders especially at risk. Regardless of whether patients meet any specific diagnostic criteria, psychosocial functioning is markedly impaired after the onset of CAD, underscoring the need for specific mental health programs for this patient population. Future research, ideally using a prospective design, is necessary to confirm these findings and to further the knowledge of prevalence rates of mental disorders and of modifiable risk factors for the development of mental disorders in patients with CAD.

5.
Front Psychiatry ; 9: 75, 2018.
Article in English | MEDLINE | ID: mdl-29593584

ABSTRACT

BACKGROUND: Comorbid mental disorders in patients with coronary artery disease (CAD) are common and associated with adverse somatic outcomes. However, data on utilization rates of mental health care and treatment efficiency are scarce and inconsistent, which we tried to remedy with the present preliminary study on Northern German CAD patients. METHOD: A total of 514 German CAD patients, as diagnosed by cardiac catheterization, were assessed using the Mini International Neuropsychiatric Interview and the Global Assessment of Functioning (GAF) scale. RESULTS: Global utilization of mental health care since onset of CAD was 21.0%. Depressive disorders, younger age, and lower GAF at onset of CAD were associated with higher utilization rates, while anxiety disorders and gender were not. Lower GAF at onset of CAD, female gender, and psychotherapy was positively associated with higher gains in GAF, while younger age and anxiety disorders were negatively associated. CONCLUSION: The majority of CAD patients with comorbid depression reported to have received mental health treatment and seemed to have benefited from it. However, we found preliminary evidence of insufficiencies in the diagnosis and treatment of anxiety disorders in CAD patients. Further studies, preferably prospective and with representative samples, are needed to corroborate or falsify these findings and explore possible further mediators of health-care utilization by CAD patients such as race, ethnicity, and socioeconomic status.

6.
Sci Rep ; 8(1): 3434, 2018 02 21.
Article in English | MEDLINE | ID: mdl-29467471

ABSTRACT

Genome-wide association studies (GWAS) have identified over two hundred chromosomal loci that modulate risk of coronary artery disease (CAD). The genes affected by variants at these loci are largely unknown and an untapped resource to improve our understanding of CAD pathophysiology and identify potential therapeutic targets. Here, we prioritized 68 genes as the most likely causal genes at genome-wide significant loci identified by GWAS of CAD and examined their regulatory roles in 286 metabolic and vascular tissue gene-protein sub-networks ("modules"). The modules and genes within were scored for CAD druggability potential. The scoring enriched for targets of cardiometabolic drugs currently in clinical use and in-depth analysis of the top-scoring modules validated established and revealed novel target tissues, biological processes, and druggable targets. This study provides an unprecedented resource of tissue-defined gene-protein interactions directly affected by genetic variance in CAD risk loci.


Subject(s)
Coronary Artery Disease/genetics , Gene Regulatory Networks , Coronary Artery Disease/drug therapy , Drug Discovery , Gene Regulatory Networks/drug effects , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Linkage Disequilibrium , Molecular Targeted Therapy , Polymorphism, Single Nucleotide/drug effects , Quantitative Trait Loci/drug effects
8.
Sci Rep ; 7(1): 10252, 2017 08 31.
Article in English | MEDLINE | ID: mdl-28860667

ABSTRACT

Cyclooxygenase-2 inhibitors (coxibs) are characterized by multiple molecular off-target effects and increased coronary artery disease (CAD) risk. Here, we systematically explored common variants of genes representing molecular targets of coxibs for association with CAD. Given a broad spectrum of pleiotropic effects of coxibs, our intention was to narrow potential mechanisms affecting CAD risk as we hypothesized that the affected genes may also display genomic signals of coronary disease risk. A Drug Gene Interaction Database search identified 47 gene products to be affected by coxibs. We traced association signals in 200-kb regions surrounding these genes in 84,813 CAD cases and 202,543 controls. Based on a threshold of 1 × 10-5 (Bonferroni correction for 3131 haplotype blocks), four gene loci yielded significant associations. The lead SNPs were rs7270354 (MMP9), rs4888383 (BCAR1), rs6905288 (VEGFA1), and rs556321 (CACNA1E). By additional genotyping, rs7270354 at MMP9 and rs4888383 at BCAR1 also reached the established GWAS threshold for genome-wide significance. The findings demonstrate overlap of genes affected by coxibs and those mediating CAD risk and points to further mechanisms, which are potentially responsible for coxib-associated CAD risk. The novel approach furthermore suggests that genetic studies may be useful to explore the clinical relevance of off-target drug effects.


Subject(s)
Cardiotoxicity/etiology , Cyclooxygenase 2 Inhibitors/adverse effects , Pharmacogenetics , Chromosome Mapping , Computational Biology/methods , Cyclooxygenase 2 Inhibitors/therapeutic use , Databases, Genetic , Databases, Pharmaceutical , Gene Expression Profiling , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Pharmacogenetics/methods , Polymorphism, Single Nucleotide
9.
PLoS One ; 12(8): e0182999, 2017.
Article in English | MEDLINE | ID: mdl-28829817

ABSTRACT

Glatiramer acetate is used therapeutically in multiple sclerosis but also known for adverse effects including elevated coronary artery disease (CAD) risk. The mechanisms underlying the cardiovascular side effects of the medication are unclear. Here, we made use of the chromosomal variation in the genes that are known to be affected by glatiramer treatment. Focusing on genes and gene products reported by drug-gene interaction database to interact with glatiramer acetate we explored a large meta-analysis on CAD genome-wide association studies aiming firstly, to investigate whether variants in these genes also affect cardiovascular risk and secondly, to identify new CAD risk genes. We traced association signals in a 200-kb region around genomic positions of genes interacting with glatiramer in up to 60 801 CAD cases and 123 504 controls. We validated the identified association in additional 21 934 CAD cases and 76 087 controls. We identified three new CAD risk alleles within the TGFB1 region on chromosome 19 that independently affect CAD risk. The lead SNP rs12459996 was genome-wide significantly associated with CAD in the extended meta-analysis (odds ratio 1.09, p = 1.58×10-12). The other two SNPs at the locus were not in linkage disequilibrium with the lead SNP and by a conditional analysis showed p-values of 4.05 × 10-10 and 2.21 × 10-6. Thus, studying genes reported to interact with glatiramer acetate we identified genetic variants that concordantly with the drug increase the risk of CAD. Of these, TGFB1 displayed signal for association. Indeed, the gene has been associated with CAD previously in both in vivo and in vitro studies. Here we establish genome-wide significant association with CAD in large human samples.


Subject(s)
Cardiovascular Diseases/genetics , Genetic Predisposition to Disease , Glatiramer Acetate/adverse effects , Cardiovascular Diseases/chemically induced , Case-Control Studies , Humans , Linkage Disequilibrium , Polymorphism, Single Nucleotide
10.
Circulation ; 135(24): 2336-2353, 2017 Jun 13.
Article in English | MEDLINE | ID: mdl-28461624

ABSTRACT

BACKGROUND: Common diseases such as coronary heart disease (CHD) are complex in etiology. The interaction of genetic susceptibility with lifestyle factors may play a prominent role. However, gene-lifestyle interactions for CHD have been difficult to identify. Here, we investigate interaction of smoking behavior, a potent lifestyle factor, with genotypes that have been shown to associate with CHD risk. METHODS: We analyzed data on 60 919 CHD cases and 80 243 controls from 29 studies for gene-smoking interactions for genetic variants at 45 loci previously reported to be associated with CHD risk. We also studied 5 loci associated with smoking behavior. Study-specific gene-smoking interaction effects were calculated and pooled using fixed-effects meta-analyses. Interaction analyses were declared to be significant at a P value of <1.0×10-3 (Bonferroni correction for 50 tests). RESULTS: We identified novel gene-smoking interaction for a variant upstream of the ADAMTS7 gene. Every T allele of rs7178051 was associated with lower CHD risk by 12% in never-smokers (P=1.3×10-16) in comparison with 5% in ever-smokers (P=2.5×10-4), translating to a 60% loss of CHD protection conferred by this allelic variation in people who smoked tobacco (interaction P value=8.7×10-5). The protective T allele at rs7178051 was also associated with reduced ADAMTS7 expression in human aortic endothelial cells and lymphoblastoid cell lines. Exposure of human coronary artery smooth muscle cells to cigarette smoke extract led to induction of ADAMTS7. CONCLUSIONS: Allelic variation at rs7178051 that associates with reduced ADAMTS7 expression confers stronger CHD protection in never-smokers than in ever-smokers. Increased vascular ADAMTS7 expression may contribute to the loss of CHD protection in smokers.


Subject(s)
Coronary Disease/genetics , Coronary Disease/prevention & control , Genetic Loci/genetics , Genetic Predisposition to Disease/genetics , Smoking/genetics , ADAMTS7 Protein/genetics , Adult , Aged , Aged, 80 and over , Cells, Cultured , Coronary Disease/epidemiology , Coronary Vessels/pathology , Coronary Vessels/physiology , Female , Gene-Environment Interaction , Genetic Predisposition to Disease/epidemiology , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Smoking/adverse effects , Smoking/epidemiology
11.
Hum Mol Genet ; 26(13): 2577-2588, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28449029

ABSTRACT

Periodontitis is one of the most common inflammatory diseases, with a prevalence of 11% worldwide for the severe forms and an estimated heritability of 50%. The disease is characterized by destruction of the alveolar bone due to an aberrant host inflammatory response to a dysbiotic oral microbiome. Previous genome-wide association studies (GWAS) have reported several suggestive susceptibility loci. Here, we conducted a GWAS using a German and Dutch case-control sample of aggressive periodontitis (AgP, 896 cases, 7,104 controls), a rare but highly severe and early-onset form of periodontitis, validated the associations in a German sample of severe forms of the more moderate phenotype chronic periodontitis (CP) (993 cases, 1,419 controls). Positive findings were replicated in a Turkish sample of AgP (223 cases, 564 controls). A locus at SIGLEC5 (sialic acid binding Ig-like lectin 5) and a chromosomal region downstream of the DEFA1A3 locus (defensin alpha 1-3) showed association with both disease phenotypes and were associated with periodontitis at a genome-wide significance level in the pooled samples, with P = 1.09E-08 (rs4284742,-G; OR = 1.34, 95% CI = 1.21-1.48) and P = 5.48E-10 (rs2738058,-T; OR = 1.28, 95% CI = 1.18-1.38), respectively. SIGLEC5 is expressed in various myeloid immune cells and classified as an inhibitory receptor with the potential to mediate tyrosine phosphatases SHP-1/-2 dependent signaling. Alpha defensins are antimicrobial peptides with expression in neutrophils and mucosal surfaces and a role in phagocyte-mediated host defense. This study identifies the first shared genetic risk loci of AgP and CP with genome-wide significance and highlights the role of innate and adaptive immunity in the etiology of periodontitis.


Subject(s)
Antigens, CD/genetics , Antigens, Differentiation, Myelomonocytic/genetics , Chronic Periodontitis/genetics , Lectins/genetics , Peptides, Cyclic/genetics , alpha-Defensins/genetics , Adult , Aggressive Periodontitis/genetics , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Case-Control Studies , Female , Genetic Loci , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans , Lectins/metabolism , Male , Middle Aged , Nucleotides , Peptides, Cyclic/metabolism , Phenotype , Polymorphism, Single Nucleotide/genetics , Risk Factors , Turkey , alpha-Defensins/metabolism
12.
J Am Coll Cardiol ; 69(7): 823-836, 2017 Feb 21.
Article in English | MEDLINE | ID: mdl-28209224

ABSTRACT

BACKGROUND: Genome-wide association studies have so far identified 56 loci associated with risk of coronary artery disease (CAD). Many CAD loci show pleiotropy; that is, they are also associated with other diseases or traits. OBJECTIVES: This study sought to systematically test if genetic variants identified for non-CAD diseases/traits also associate with CAD and to undertake a comprehensive analysis of the extent of pleiotropy of all CAD loci. METHODS: In discovery analyses involving 42,335 CAD cases and 78,240 control subjects we tested the association of 29,383 common (minor allele frequency >5%) single nucleotide polymorphisms available on the exome array, which included a substantial proportion of known or suspected single nucleotide polymorphisms associated with common diseases or traits as of 2011. Suggestive association signals were replicated in an additional 30,533 cases and 42,530 control subjects. To evaluate pleiotropy, we tested CAD loci for association with cardiovascular risk factors (lipid traits, blood pressure phenotypes, body mass index, diabetes, and smoking behavior), as well as with other diseases/traits through interrogation of currently available genome-wide association study catalogs. RESULTS: We identified 6 new loci associated with CAD at genome-wide significance: on 2q37 (KCNJ13-GIGYF2), 6p21 (C2), 11p15 (MRVI1-CTR9), 12q13 (LRP1), 12q24 (SCARB1), and 16q13 (CETP). Risk allele frequencies ranged from 0.15 to 0.86, and odds ratio per copy of the risk allele ranged from 1.04 to 1.09. Of 62 new and known CAD loci, 24 (38.7%) showed statistical association with a traditional cardiovascular risk factor, with some showing multiple associations, and 29 (47%) showed associations at p < 1 × 10-4 with a range of other diseases/traits. CONCLUSIONS: We identified 6 loci associated with CAD at genome-wide significance. Several CAD loci show substantial pleiotropy, which may help us understand the mechanisms by which these loci affect CAD risk.


Subject(s)
Coronary Artery Disease/genetics , Genetic Loci , Genetic Pleiotropy , Case-Control Studies , Coronary Artery Disease/epidemiology , Female , Gene Frequency , Genome-Wide Association Study , Humans , Male , Odds Ratio , Polymorphism, Single Nucleotide
13.
J Rheumatol ; 44(1): 4-10, 2017 01.
Article in English | MEDLINE | ID: mdl-27744395

ABSTRACT

OBJECTIVE: Inflammatory diseases, specifically rheumatoid arthritis (RA), are assumed to increase the risk of coronary artery disease (CAD). More recently, multiple single-nucleotide polymorphisms (SNP) associated with RA risk were identified. If causal mechanisms affecting risks of RA and CAD are overlapping, risk alleles for RA might also increase the risk of CAD. METHODS: Sixty-one SNP associating with RA in genome-wide significant analyses were tested for association with CAD in CARDIoGRAM (Coronary ARtery DIsease Genome wide Replication and Meta-analysis), a metaanalysis including genome-wide association data (22,233 CAD cases, 64,762 controls). In parallel, a set of SNP being associated with low-density lipoprotein cholesterol (LDL-C) was tested as a positive control. RESULTS: Twenty-nine RA-associated SNP displayed a directionality-consistent association with CAD (OR range 1.002-1.073), whereas 32 RA-associated SNP were not associated with CAD (OR range 0.96-0.99 per RA risk-increasing allele). The proportion (48%) of directionality-consistent associated SNP equaled the proportion expected by chance (50%, p = 0.09). Of only 5 RA-associated SNP showing p values for CAD < 0.05, 4 loci (C5orf30, IL-6R, PTPN22, and RAD51B) showed directionality-consistent effects on CAD, and 1 (rs10774624, locus SH2B3) reached study-wide significance (p = 7.29E-06). By contrast, and as a proof of concept, 46 (74%) out of 62 LDL-C-associated SNP displayed a directionality-consistent association with CAD, a proportion that was significantly different from 50% (p = 5.9E-05). CONCLUSION: We found no evidence that RA-associated SNP as a group are associated with CAD. Even though we were not able to study potential effects of all genetic variants individually, shared nongenetic factors may more plausibly explain the observed coincidence of the 2 conditions.


Subject(s)
Arthritis, Rheumatoid/genetics , Coronary Artery Disease/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Alleles , Cholesterol, LDL/genetics , Gene Frequency , Genome-Wide Association Study , Genotype , Humans
14.
Sci Rep ; 6: 35278, 2016 10 12.
Article in English | MEDLINE | ID: mdl-27731410

ABSTRACT

In recent years, genome-wide association studies have identified 58 independent risk loci for coronary artery disease (CAD) on the autosome. However, due to the sex-specific data structure of the X chromosome, it has been excluded from most of these analyses. While females have 2 copies of chromosome X, males have only one. Also, one of the female X chromosomes may be inactivated. Therefore, special test statistics and quality control procedures are required. Thus, little is known about the role of X-chromosomal variants in CAD. To fill this gap, we conducted a comprehensive X-chromosome-wide meta-analysis including more than 43,000 CAD cases and 58,000 controls from 35 international study cohorts. For quality control, sex-specific filters were used to adequately take the special structure of X-chromosomal data into account. For single study analyses, several logistic regression models were calculated allowing for inactivation of one female X-chromosome, adjusting for sex and investigating interactions between sex and genetic variants. Then, meta-analyses including all 35 studies were conducted using random effects models. None of the investigated models revealed genome-wide significant associations for any variant. Although we analyzed the largest-to-date sample, currently available methods were not able to detect any associations of X-chromosomal variants with CAD.


Subject(s)
Chromosomes, Human, X , Coronary Artery Disease/genetics , Cohort Studies , Female , Humans , Internationality , Male
15.
Nat Commun ; 7: 10558, 2016 Jan 29.
Article in English | MEDLINE | ID: mdl-26822151

ABSTRACT

Metabolites derived from dietary choline and L-carnitine, such as trimethylamine N-oxide and betaine, have recently been identified as novel risk factors for atherosclerosis in mice and humans. We sought to identify genetic factors associated with plasma betaine levels and determine their effect on risk of coronary artery disease (CAD). A two-stage genome-wide association study (GWAS) identified two significantly associated loci on chromosomes 2q34 and 5q14.1. The lead variant on 2q24 (rs715) localizes to carbamoyl-phosphate synthase 1 (CPS1), which encodes a mitochondrial enzyme that catalyses the first committed reaction and rate-limiting step in the urea cycle. Rs715 is also significantly associated with decreased levels of urea cycle metabolites and increased plasma glycine levels. Notably, rs715 yield a strikingly significant and protective association with decreased risk of CAD in only women. These results suggest that glycine metabolism and/or the urea cycle represent potentially novel sex-specific mechanisms for the development of atherosclerosis.


Subject(s)
Carbamoyl-Phosphate Synthase (Ammonia)/metabolism , Coronary Disease/genetics , Gene Expression Regulation, Enzymologic/physiology , Genetic Predisposition to Disease , Betaine/blood , Carbamoyl-Phosphate Synthase (Ammonia)/genetics , Female , Genome-Wide Association Study , Genotype , Humans , Male , Metabolomics , Polymorphism, Single Nucleotide , Sex Factors
16.
Nat Genet ; 47(10): 1121-1130, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26343387

ABSTRACT

Existing knowledge of genetic variants affecting risk of coronary artery disease (CAD) is largely based on genome-wide association study (GWAS) analysis of common SNPs. Leveraging phased haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of ∼185,000 CAD cases and controls, interrogating 6.7 million common (minor allele frequency (MAF) > 0.05) and 2.7 million low-frequency (0.005 < MAF < 0.05) variants. In addition to confirming most known CAD-associated loci, we identified ten new loci (eight additive and two recessive) that contain candidate causal genes newly implicating biological processes in vessel walls. We observed intralocus allelic heterogeneity but little evidence of low-frequency variants with larger effects and no evidence of synthetic association. Our analysis provides a comprehensive survey of the fine genetic architecture of CAD, showing that genetic susceptibility to this common disease is largely determined by common SNPs of small effect size.


Subject(s)
Coronary Artery Disease/genetics , Genome, Human , Genome-Wide Association Study , Humans , Phenotype
17.
PLoS Genet ; 11(7): e1005230, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26132169

ABSTRACT

Reference panels from the 1000 Genomes (1000G) Project Consortium provide near complete coverage of common and low-frequency genetic variation with minor allele frequency ≥0.5% across European ancestry populations. Within the European Network for Genetic and Genomic Epidemiology (ENGAGE) Consortium, we have undertaken the first large-scale meta-analysis of genome-wide association studies (GWAS), supplemented by 1000G imputation, for four quantitative glycaemic and obesity-related traits, in up to 87,048 individuals of European ancestry. We identified two loci for body mass index (BMI) at genome-wide significance, and two for fasting glucose (FG), none of which has been previously reported in larger meta-analysis efforts to combine GWAS of European ancestry. Through conditional analysis, we also detected multiple distinct signals of association mapping to established loci for waist-hip ratio adjusted for BMI (RSPO3) and FG (GCK and G6PC2). The index variant for one association signal at the G6PC2 locus is a low-frequency coding allele, H177Y, which has recently been demonstrated to have a functional role in glucose regulation. Fine-mapping analyses revealed that the non-coding variants most likely to drive association signals at established and novel loci were enriched for overlap with enhancer elements, which for FG mapped to promoter and transcription factor binding sites in pancreatic islets, in particular. Our study demonstrates that 1000G imputation and genetic fine-mapping of common and low-frequency variant association signals at GWAS loci, integrated with genomic annotation in relevant tissues, can provide insight into the functional and regulatory mechanisms through which their effects on glycaemic and obesity-related traits are mediated.


Subject(s)
Chromosome Mapping , Genetic Predisposition to Disease , Glycemic Index/genetics , Obesity/genetics , Quantitative Trait Loci/genetics , Body Mass Index , Gene Frequency/genetics , Genome-Wide Association Study , Germinal Center Kinases , Glucose-6-Phosphatase/genetics , Humans , Polymorphism, Single Nucleotide/genetics , Protein Serine-Threonine Kinases/genetics , Thrombospondins/genetics
18.
Nat Genet ; 47(6): 589-97, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25961943

ABSTRACT

Using a genome-wide screen of 9.6 million genetic variants achieved through 1000 Genomes Project imputation in 62,166 samples, we identify association to lipid traits in 93 loci, including 79 previously identified loci with new lead SNPs and 10 new loci, 15 loci with a low-frequency lead SNP and 10 loci with a missense lead SNP, and 2 loci with an accumulation of rare variants. In six loci, SNPs with established function in lipid genetics (CELSR2, GCKR, LIPC and APOE) or candidate missense mutations with predicted damaging function (CD300LG and TM6SF2) explained the locus associations. The low-frequency variants increased the proportion of variance explained, particularly for low-density lipoprotein cholesterol and total cholesterol. Altogether, our results highlight the impact of low-frequency variants in complex traits and show that imputation offers a cost-effective alternative to resequencing.


Subject(s)
Lipid Metabolism/genetics , Dyslipidemias/genetics , Gene Frequency , Genetic Loci , Genome-Wide Association Study , Humans , Linkage Disequilibrium , Mutation, Missense , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
19.
Arterioscler Thromb Vasc Biol ; 35(7): 1712-22, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25977570

ABSTRACT

OBJECTIVE: Genome-wide association studies have identified multiple genetic variants affecting the risk of coronary artery disease (CAD). However, individually these explain only a small fraction of the heritability of CAD and for most, the causal biological mechanisms remain unclear. We sought to obtain further insights into potential causal processes of CAD by integrating large-scale GWA data with expertly curated databases of core human pathways and functional networks. APPROACHES AND RESULTS: Using pathways (gene sets) from Reactome, we carried out a 2-stage gene set enrichment analysis strategy. From a meta-analyzed discovery cohort of 7 CAD genome-wide association study data sets (9889 cases/11 089 controls), nominally significant gene sets were tested for replication in a meta-analysis of 9 additional studies (15 502 cases/55 730 controls) from the Coronary ARtery DIsease Genome wide Replication and Meta-analysis (CARDIoGRAM) Consortium. A total of 32 of 639 Reactome pathways tested showed convincing association with CAD (replication P<0.05). These pathways resided in 9 of 21 core biological processes represented in Reactome, and included pathways relevant to extracellular matrix (ECM) integrity, innate immunity, axon guidance, and signaling by PDRF (platelet-derived growth factor), NOTCH, and the transforming growth factor-ß/SMAD receptor complex. Many of these pathways had strengths of association comparable to those observed in lipid transport pathways. Network analysis of unique genes within the replicated pathways further revealed several interconnected functional and topologically interacting modules representing novel associations (eg, semaphoring-regulated axonal guidance pathway) besides confirming known processes (lipid metabolism). The connectivity in the observed networks was statistically significant compared with random networks (P<0.001). Network centrality analysis (degree and betweenness) further identified genes (eg, NCAM1, FYN, FURIN, etc) likely to play critical roles in the maintenance and functioning of several of the replicated pathways. CONCLUSIONS: These findings provide novel insights into how genetic variation, interpreted in the context of biological processes and functional interactions among genes, may help define the genetic architecture of CAD.


Subject(s)
Coronary Artery Disease/genetics , Genome-Wide Association Study , Coronary Artery Disease/metabolism , Humans
20.
N Engl J Med ; 372(17): 1608-18, 2015 Apr 23.
Article in English | MEDLINE | ID: mdl-25853659

ABSTRACT

BACKGROUND: The nature and underlying mechanisms of an inverse association between adult height and the risk of coronary artery disease (CAD) are unclear. METHODS: We used a genetic approach to investigate the association between height and CAD, using 180 height-associated genetic variants. We tested the association between a change in genetically determined height of 1 SD (6.5 cm) with the risk of CAD in 65,066 cases and 128,383 controls. Using individual-level genotype data from 18,249 persons, we also examined the risk of CAD associated with the presence of various numbers of height-associated alleles. To identify putative mechanisms, we analyzed whether genetically determined height was associated with known cardiovascular risk factors and performed a pathway analysis of the height-associated genes. RESULTS: We observed a relative increase of 13.5% (95% confidence interval [CI], 5.4 to 22.1; P<0.001) in the risk of CAD per 1-SD decrease in genetically determined height. There was a graded relationship between the presence of an increased number of height-raising variants and a reduced risk of CAD (odds ratio for height quartile 4 versus quartile 1, 0.74; 95% CI, 0.68 to 0.84; P<0.001). Of the 12 risk factors that we studied, we observed significant associations only with levels of low-density lipoprotein cholesterol and triglycerides (accounting for approximately 30% of the association). We identified several overlapping pathways involving genes associated with both development and atherosclerosis. CONCLUSIONS: There is a primary association between a genetically determined shorter height and an increased risk of CAD, a link that is partly explained by the association between shorter height and an adverse lipid profile. Shared biologic processes that determine achieved height and the development of atherosclerosis may explain some of the association. (Funded by the British Heart Foundation and others.).


Subject(s)
Body Height/genetics , Coronary Artery Disease/genetics , Genetic Variation , Adult , Cholesterol, LDL/blood , Coronary Artery Disease/etiology , Humans , Hyperlipidemias/complications , Odds Ratio , Risk Factors , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL