Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Cell Death Dis ; 15(5): 369, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806478

ABSTRACT

Signal transducer and activator of transcription 3 (STAT3) is frequently overexpressed in patients with acute myeloid leukemia (AML). STAT3 exists in two distinct alternatively spliced isoforms, the full-length isoform STAT3α and the C-terminally truncated isoform STAT3ß. While STAT3α is predominantly described as an oncogenic driver, STAT3ß has been suggested to act as a tumor suppressor. To elucidate the role of STAT3ß in AML, we established a mouse model of STAT3ß-deficient, MLL-AF9-driven AML. STAT3ß deficiency significantly shortened survival of leukemic mice confirming its role as a tumor suppressor. Furthermore, RNA sequencing revealed enhanced STAT1 expression and interferon (IFN) signaling upon loss of STAT3ß. Accordingly, STAT3ß-deficient leukemia cells displayed enhanced sensitivity to blockade of IFN signaling through both an IFNAR1 blocking antibody and the JAK1/2 inhibitor Ruxolitinib. Analysis of human AML patient samples confirmed that elevated expression of IFN-inducible genes correlated with poor overall survival and low STAT3ß expression. Together, our data corroborate the tumor suppressive role of STAT3ß in a mouse model in vivo. Moreover, they provide evidence that its tumor suppressive function is linked to repression of the STAT1-mediated IFN response. These findings suggest that the STAT3ß/α mRNA ratio is a significant prognostic marker in AML and holds crucial information for targeted treatment approaches. Patients displaying a low STAT3ß/α mRNA ratio and unfavorable prognosis could benefit from therapeutic interventions directed at STAT1/IFN signaling.


Subject(s)
Leukemia, Myeloid, Acute , STAT3 Transcription Factor , Animals , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , Humans , STAT3 Transcription Factor/metabolism , Mice , Signal Transduction , Interferons/metabolism , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , Mice, Inbred C57BL , Receptor, Interferon alpha-beta/metabolism , Receptor, Interferon alpha-beta/genetics , Cell Line, Tumor , Nitriles , Pyrazoles , Pyrimidines
2.
Blood ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38498036

ABSTRACT

Patients with T- and NK-cell neoplasms frequently have somatic STAT5B gain-of-function mutations. The most frequent STAT5B mutation is STAT5BN642H, which is known to drive murine T-cell leukemia although its role in NK-cell malignancies is unclear. Introduction of the STAT5BN642H mutation into human NK-cell lines enhances their potential to induce leukemia in mice. We have generated a mouse model that enables tissue-specific expression of STAT5BN642H and have selectively expressed the mutated STAT5B in hematopoietic cells (N642Hvav/+) or exclusively in NK cells (N642HNK/NK). All N642Hvav/+ mice rapidly develop an aggressive T-/NK T-cell leukemia, whereas N642HNK/NK mice display an indolent NK-large granular lymphocytic leukemia (NK-LGLL) that progresses to an aggressive leukemia with age. Samples from NK-cell leukemia patients have a distinctive transcriptional signature driven by mutant STAT5B, which overlaps with that of murine leukemic N642HNK/NK NK cells. We have generated the first reliable STAT5BN642H-driven pre-clinical mouse model that displays an indolent NK-LGLL progressing to aggressive NK-cell leukemia. This novel in vivo tool will enable us to explore the transition from an indolent to an aggressive disease and will thus permit the study of prevention and treatment options for NK-cell malignancies.

3.
Front Immunol ; 13: 947568, 2022.
Article in English | MEDLINE | ID: mdl-35865518

ABSTRACT

Signal transducer and activator of transcription 3 (STAT3) is a member of the Janus kinase (JAK)-STAT pathway, which is one of the key pathways contributing to cancer. STAT3 regulates transcription downstream of many cytokines including interleukin (IL)-6 and IL-10. In cancer, STAT3 is mainly described as a tumor promoter driving tumor cell proliferation, resistance to apoptosis, angiogenesis and metastasis and aberrant activation of STAT3 is associated with poor prognosis. STAT3 is also an important driver of immune evasion. Among many other immunosuppressive mechanisms, STAT3 aids tumor cells to escape natural killer (NK) cell-mediated immune surveillance. NK cells are innate lymphocytes, which can directly kill malignant cells but also regulate adaptive immune responses and contribute to the composition of the tumor microenvironment. The inborn ability to lyse transformed cells renders NK cells an attractive tool for cancer immunotherapy. Here, we provide an overview of the role of STAT3 in the dynamic interplay between NK cells and tumor cells. On the one hand, we summarize the current knowledge on how tumor cell-intrinsic STAT3 drives the evasion from NK cells. On the other hand, we describe the multiple functions of STAT3 in regulating NK-cell cytotoxicity, cytokine production and their anti-tumor responses in vivo. In light of the ongoing research on STAT3 inhibitors, we also discuss how targeting STAT3 would affect the two arms of STAT3-dependent regulation of NK cell-mediated anti-tumor immunity. Understanding the complexity of this interplay in the tumor microenvironment is crucial for future implementation of NK cell-based immunotherapies.


Subject(s)
Killer Cells, Natural , Neoplasms , STAT3 Transcription Factor , Cytokines/metabolism , Humans , Interleukin-6/metabolism , Janus Kinases/metabolism , Killer Cells, Natural/immunology , Neoplasms/immunology , Neoplasms/metabolism , STAT3 Transcription Factor/metabolism , Tumor Microenvironment
4.
Cell Death Dis ; 12(11): 991, 2021 10 23.
Article in English | MEDLINE | ID: mdl-34689158

ABSTRACT

Triple-negative breast cancer (TNBC) is an aggressive malignant disease that is responsible for approximately 15% of breast cancers. The standard of care relies on surgery and chemotherapy but the prognosis is poor and there is an urgent need for new therapeutic strategies. Recent in silico studies have revealed an inverse correlation between recurrence-free survival and the level of cyclin-dependent kinase 8 (CDK8) in breast cancer patients. CDK8 is known to have a role in natural killer (NK) cell cytotoxicity, but its function in TNBC progression and immune cell recognition or escape has not been investigated. We have used a murine model of orthotopic breast cancer to study the tumor-intrinsic role of CDK8 in TNBC. Knockdown of CDK8 in TNBC cells impairs tumor regrowth upon surgical removal and prevents metastasis. In the absence of CDK8, the epithelial-to-mesenchymal transition (EMT) is impaired and immune-mediated tumor-cell clearance is facilitated. CDK8 drives EMT in TNBC cells in a kinase-independent manner. In vivo experiments have confirmed that CDK8 is a crucial regulator of NK-cell-mediated immune evasion in TNBC. The studies also show that CDK8 is involved in regulating the checkpoint inhibitor programmed death-ligand 1 (PD-L1). The CDK8-PD-L1 axis is found in mouse and human TNBC cells, underlining the importance of CDK8-driven immune cell evasion in these highly aggressive breast cancer cells. Our data link CDK8 to PD-L1 expression and provide a rationale for investigating the possibility of CDK8-directed therapy for TNBC.


Subject(s)
Cyclin-Dependent Kinase 8/metabolism , Killer Cells, Natural/metabolism , Triple Negative Breast Neoplasms/genetics , Animals , Humans , Mice , Triple Negative Breast Neoplasms/pathology
5.
Biomedicines ; 9(8)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34440253

ABSTRACT

Aberrant Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling is implicated in the pathogenesis of acute myeloid leukemia (AML), a highly heterogeneous hematopoietic malignancy. The management of AML is complex and despite impressive efforts into better understanding its underlying molecular mechanisms, survival rates in the elderly have not shown a substantial improvement over the past decades. This is particularly due to the heterogeneity of AML and the need for personalized approaches. Due to the crucial role of the deregulated JAK-STAT signaling in AML, selective targeting of the JAK-STAT pathway, particularly constitutively activated STAT3 and STAT5 and their associated upstream JAKs, is of great interest. This strategy has shown promising results in vitro and in vivo with several compounds having reached clinical trials. Here, we summarize recent FDA approvals and current potential clinically relevant inhibitors for AML patients targeting JAK and STAT proteins. This review underlines the need for detailed cytogenetic analysis and additional assessment of JAK-STAT pathway activation. It highlights the ongoing development of new JAK-STAT inhibitors with better disease specificity, which opens up new avenues for improved disease management.

6.
Front Immunol ; 12: 650977, 2021.
Article in English | MEDLINE | ID: mdl-34248938

ABSTRACT

The cyclin-dependent kinase 6 (CDK6) regulates the transition through the G1-phase of the cell cycle, but also acts as a transcriptional regulator. As such CDK6 regulates cell survival or cytokine secretion together with STATs, AP-1 or NF-κB. In the hematopoietic system, CDK6 regulates T cell development and promotes leukemia and lymphoma. CDK4/6 kinase inhibitors are FDA approved for treatment of breast cancer patients and have been reported to enhance T cell-mediated anti-tumor immunity. The involvement of CDK6 in T cell functions remains enigmatic. We here investigated the role of CDK6 in CD8+ T cells, using previously generated CDK6 knockout (Cdk6-/-) and kinase-dead mutant CDK6 (Cdk6K43M) knock-in mice. RNA-seq analysis indicated a role of CDK6 in T cell metabolism and interferon (IFN) signaling. To investigate whether these CDK6 functions are T cell-intrinsic, we generated a T cell-specific CDK6 knockout mouse model (Cdk6fl/fl CD4-Cre). T cell-intrinsic loss of CDK6 enhanced mitochondrial respiration in CD8+ T cells, but did not impact on cytotoxicity and production of the effector cytokines IFN-γ and TNF-α by CD8+ T cells in vitro. Loss of CDK6 in peripheral T cells did not affect tumor surveillance of MC38 tumors in vivo. Similarly, while we observed an impaired induction of early responses to type I IFN in CDK6-deficient CD8+ T cells, we failed to observe any differences in the response to LCMV infection upon T cell-intrinsic loss of CDK6 in vivo. This apparent contradiction might at least partially be explained by the reduced expression of Socs1, a negative regulator of IFN signaling, in CDK6-deficient CD8+ T cells. Therefore, our data are in line with a dual role of CDK6 in IFN signaling; while CDK6 promotes early IFN responses, it is also involved in the induction of a negative feedback loop. These data assign CDK6 a role in the fine-tuning of cytokine responses.


Subject(s)
Antiviral Agents/immunology , CD8-Positive T-Lymphocytes/immunology , Cyclin-Dependent Kinase 6/immunology , Cytotoxicity, Immunologic/immunology , Interferons/immunology , Neoplasms, Experimental/immunology , Animals , Antiviral Agents/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , Cell Line , Cell Line, Tumor , Cyclin-Dependent Kinase 6/genetics , Cyclin-Dependent Kinase 6/metabolism , Humans , Interferons/metabolism , Lymphocytic choriomeningitis virus/immunology , Lymphocytic choriomeningitis virus/physiology , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neoplasms, Experimental/metabolism , Signal Transduction/immunology
7.
Cancers (Basel) ; 13(11)2021 May 26.
Article in English | MEDLINE | ID: mdl-34073410

ABSTRACT

The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway propagates signals from a variety of cytokines, contributing to cellular responses in health and disease. Gain of function mutations in JAKs or STATs are associated with malignancies, with JAK2V617F being the main driver mutation in myeloproliferative neoplasms (MPN). Therefore, inhibition of this pathway is an attractive therapeutic strategy for different types of cancer. Numerous JAK inhibitors (JAKinibs) have entered clinical trials, including the JAK1/2 inhibitor Ruxolitinib approved for the treatment of MPN. Importantly, loss of function mutations in JAK-STAT members are a cause of immune suppression or deficiencies. MPN patients undergoing Ruxolitinib treatment are more susceptible to infections and secondary malignancies. This highlights the suppressive effects of JAKinibs on immune responses, which renders them successful in the treatment of autoimmune diseases but potentially detrimental for cancer patients. Here, we review the current knowledge on the effects of JAKinibs on immune cells in the context of hematological malignancies. Furthermore, we discuss the potential use of JAKinibs for the treatment of diseases in which lymphocytes are the source of malignancies. In summary, this review underlines the necessity of a robust immune profiling to provide the best benefit for JAKinib-treated patients.

8.
Front Immunol ; 11: 2189, 2020.
Article in English | MEDLINE | ID: mdl-33042133

ABSTRACT

Natural killer (NK) cells are important components of the innate immune defense against infections and cancers. Signal transducer and activator of transcription 1 (STAT1) is a transcription factor that is essential for NK cell maturation and NK cell-dependent tumor surveillance. Two alternatively spliced isoforms of STAT1 exist: a full-length STAT1α and a C-terminally truncated STAT1ß isoform. Aberrant splicing is frequently observed in cancer cells and several anti-cancer drugs interfere with the cellular splicing machinery. To investigate whether NK cell-mediated tumor surveillance is affected by a switch in STAT1 splicing, we made use of knock-in mice expressing either only the STAT1α (Stat1α/α) or the STAT1ß (Stat1ß/ß ) isoform. NK cells from Stat1α/α mice matured normally and controlled transplanted tumor cells as efficiently as NK cells from wild-type mice. In contrast, NK cells from Stat1ß/ß mice showed impaired maturation and effector functions, albeit less severe than NK cells from mice that completely lack STAT1 (Stat1-/- ). Mechanistically, we show that NK cell maturation requires the presence of STAT1α in the niche rather than in NK cells themselves and that NK cell maturation depends on IFNγ signaling under homeostatic conditions. The impaired NK cell maturation in Stat1ß/ß mice was paralleled by decreased IL-15 receptor alpha (IL-15Rα) surface levels on dendritic cells, macrophages and monocytes. Treatment of Stat1ß/ß mice with exogenous IL-15/IL-15Rα complexes rescued NK cell maturation but not their effector functions. Collectively, our findings provide evidence that STAT1 isoforms are not functionally redundant in regulating NK cell activity and that the absence of STAT1α severely impairs, but does not abolish, NK cell-dependent tumor surveillance.


Subject(s)
Killer Cells, Natural/cytology , Lymphopoiesis/physiology , STAT1 Transcription Factor/immunology , Animals , Bone Marrow Transplantation , Cell Line, Tumor , Cytotoxicity, Immunologic , Immunologic Surveillance/drug effects , Immunologic Surveillance/immunology , Interferon-Stimulated Gene Factor 3/deficiency , Interferon-Stimulated Gene Factor 3/genetics , Interferon-Stimulated Gene Factor 3/immunology , Interleukin-15/pharmacology , Interleukin-15 Receptor alpha Subunit , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Lymphocyte Depletion , Lymphoid Tissue/cytology , Lymphoma/immunology , Lymphoma/pathology , Lymphopoiesis/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Organ Specificity , Protein Isoforms/genetics , Protein Isoforms/immunology , Receptors, Interferon/deficiency , STAT1 Transcription Factor/deficiency , STAT1 Transcription Factor/genetics , Specific Pathogen-Free Organisms , Spleen/cytology , Interferon gamma Receptor
9.
Eur J Immunol ; 50(6): 880-890, 2020 06.
Article in English | MEDLINE | ID: mdl-32052406

ABSTRACT

NK cells are innate lymphocytes responsible for lysis of pathogen-infected and transformed cells. One of the major activating receptors required for target cell recognition is the NK group 2D (NKG2D) receptor. Numerous reports show the necessity of NKG2D for effective tumor immune surveillance. Further studies identified NKG2D as a key element allowing tumor immune escape. We here use a mouse model with restricted deletion of NKG2D in mature NKp46+ cells (NKG2DΔNK ). NKG2DΔNK NK cells develop normally, have an unaltered IFN-γ production but kill tumor cell lines expressing NKG2D ligands (NKG2DLs) less efficiently. However, upon long-term stimulation with IL-2, NKG2D-deficient NK cells show increased levels of the lytic molecule perforin. Thus, our findings demonstrate a dual function of NKG2D for NK cell cytotoxicity; while NKG2D is a crucial trigger for cytotoxicity of tumor cells expressing activating ligands it is also capable to limit perforin production in IL-2 activated NK cells.


Subject(s)
Interleukin-2/pharmacology , Killer Cells, Natural/immunology , NK Cell Lectin-Like Receptor Subfamily K/immunology , Pore Forming Cytotoxic Proteins/immunology , Animals , Cell Line, Tumor , Immunity, Cellular/drug effects , Immunity, Cellular/genetics , Interferon-gamma/genetics , Interferon-gamma/immunology , Killer Cells, Natural/pathology , Mice , Mice, Knockout , NK Cell Lectin-Like Receptor Subfamily K/genetics , Pore Forming Cytotoxic Proteins/genetics
10.
J Allergy Clin Immunol ; 145(1): 345-357.e9, 2020 01.
Article in English | MEDLINE | ID: mdl-31600547

ABSTRACT

BACKGROUND: Patients with signal transducer and activator of transcription 5b (STAT5b) deficiency have impairment in T-cell homeostasis and natural killer (NK) cells which leads to autoimmunity, recurrent infections, and combined immune deficiency. OBJECTIVE: In this study we characterized the NK cell defect in STAT5b-deficient human NK cells, as well as Stat5b-/- mice. METHODS: We used multiparametric flow cytometry, functional NK cell assays, microscopy, and a Stat5b-/- mouse model to elucidate the effect of impaired and/or absent STAT5b on NK cell development and function. RESULTS: This alteration generated a nonfunctional CD56bright NK cell subset characterized by low cytokine production. The CD56dim NK cell subset had decreased expression of perforin and CD16 and a greater frequency of cells expressing markers of immature NK cells. We observed low NK cell numbers and impaired NK cell maturation, suggesting that STAT5b is involved in terminal NK cell maturation in Stat5b-/- mice. Furthermore, human STAT5b-deficient NK cells had low cytolytic capacity, and fixed-cell microscopy showed poor convergence of lytic granules. This was accompanied by decreased expression of costimulatory and activating receptors. Interestingly, granule convergence and cytolytic function were restored after IL-2 stimulation. CONCLUSIONS: Our results show that in addition to the impaired terminal maturation of NK cells, human STAT5b mutation leads to impairments in early activation events in NK cell lytic synapse formation. Our data provide further insight into NK cell defects caused by STAT5b deficiency.


Subject(s)
Immunity, Cellular , Immunological Synapses/immunology , Killer Cells, Natural/immunology , Mutation , STAT5 Transcription Factor/immunology , Animals , Female , Humans , Immunological Synapses/genetics , Killer Cells, Natural/pathology , Male , Mice , Mice, Knockout , STAT5 Transcription Factor/genetics
11.
Pharmaceuticals (Basel) ; 12(2)2019 Jun 19.
Article in English | MEDLINE | ID: mdl-31248103

ABSTRACT

Improvements in cancer therapy frequently stem from the development of new small-molecule inhibitors, paralleled by the identification of biomarkers that can predict the treatment response. Recent evidence supports the idea that cyclin-dependent kinase 8 (CDK8) may represent a potential drug target for breast and prostate cancer, although no CDK8 inhibitors have entered the clinics. As the available inhibitors have been recently reviewed, we focus on the biological functions of CDK8 and provide an overview of the complexity of CDK8-dependent signaling throughout evolution and CDK8-dependent effects that may open novel treatment avenues.

13.
J Immunol ; 202(6): 1724-1734, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30718299

ABSTRACT

Tyrosine kinase 2 (TYK2) is a widely expressed receptor-associated kinase that is involved in signaling by a variety of cytokines with important immune regulatory activities. Absence of TYK2 in mice results in impaired NK cell maturation and antitumor activity, although underlying mechanisms are largely unknown. Using conditional ablation of TYK2 in NK cells we show that TYK2 is required for IFN-γ production by NK cells in response to IL-12 and for an efficient immune defense against Listeria monocytogenes Deletion of TYK2 in NK cells did not impact NK cell maturation and IFN-γ production upon NK cell activating receptor (actR) stimulation. Similarly, NK cell-mediated tumor surveillance was unimpaired upon deletion of TYK2 in NK cells only. In line with the previously reported maturation-associated Ifng promoter demethylation, the less mature phenotype of Tyk2-/- NK cells correlated with an increased CpG methylation at the Ifng locus. Treatment with the DNA hypomethylating agent 5-aza-2-deoxycytidine restored the ability of Tyk2-/- NK cells to produce IFN-γ upon actR but not upon IL-12 stimulation. NK cell maturation was dependent on the presence of TYK2 in dendritic cells and could be rescued in Tyk2-deficient mice by treatment with exogenous IL-15/IL-15Rα complexes. IL-15 treatment also rescued the in vitro cytotoxicity defect and the impaired actR-induced IFN-γ production of Tyk2-/- NK cells. Collectively, our findings provide the first evidence, to our knowledge, for a key role of TYK2 in the host environment in promoting NK cell maturation and antitumor activity.


Subject(s)
Bacterial Infections/immunology , Immunity, Innate/immunology , Immunologic Surveillance/immunology , Killer Cells, Natural/immunology , Neoplasms/immunology , TYK2 Kinase/immunology , Animals , Lymphocyte Activation/immunology , Mice , Mice, Knockout
14.
Cancer Immunol Res ; 6(4): 458-466, 2018 04.
Article in English | MEDLINE | ID: mdl-29386186

ABSTRACT

Cyclin-dependent kinase 8 (CDK8) is a member of the transcription-regulating CDK family. CDK8 activates or represses transcription by associating with the mediator complex or by regulating transcription factors. Oncogenic activity of CDK8 has been demonstrated in several cancer types. Targeting CDK8 represents a potential therapeutic strategy. Because knockdown of CDK8 in a natural killer (NK) cell line enhances cytotoxicity and NK cells provide the first line of immune defense against transformed cells, we asked whether inhibiting CDK8 would improve NK-cell antitumor responses. In this study, we investigated the role of CDK8 in NK-cell function in vivo using mice with conditional ablation of CDK8 in NKp46+ cells (Cdk8fl/flNcr1Cre). Regardless of CDK8 expression, NK cells develop and mature normally in bone marrow and spleen. However, CDK8 deletion increased expression of the lytic molecule perforin, which correlated with enhanced NK-cell cytotoxicity in vitro This translates into improved NK cell-mediated tumor surveillance in vivo in three independent models: B16F10 melanoma, v-abl+ lymphoma, and a slowly developing oncogene-driven leukemia. Our results thereby define a suppressive effect of CDK8 on NK-cell activity. Therapies that target CDK8 in cancer patients may enhance NK-cell responses against tumor cells. Cancer Immunol Res; 6(4); 458-66. ©2018 AACR.


Subject(s)
Cyclin-Dependent Kinase 8/genetics , Gene Deletion , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Neoplasms/genetics , Neoplasms/immunology , Animals , Cell Differentiation/genetics , Cell Line, Tumor , Cytotoxicity, Immunologic , Disease Models, Animal , Immunity, Innate , Killer Cells, Natural/cytology , Melanoma, Experimental , Mice , Mice, Transgenic , Neoplasms/pathology
15.
Front Immunol ; 9: 3108, 2018.
Article in English | MEDLINE | ID: mdl-30671064

ABSTRACT

The Janus kinase-signal transducers and activators of transcription (JAK-STAT) signaling pathway is critical in tuning immune responses and its dysregulation is tightly associated with cancer and immune disorders. Disruption of interleukin (IL)-15/STAT5 signaling pathway due to the loss of IL-15 receptor chains, JAK3 or STAT5 leads to immune deficiencies with natural killer (NK) cell abnormalities. JAK1, together with JAK3 transmits signals downstream of IL-15, but the exact contribution of JAK1 to NK cell biology remains to be elucidated. To study the consequences of JAK1 deficiency in NK cells, we generated mice with conditional deletion of JAK1 in NKp46+ cells (Jak1fl/flNcr1Cre). We show here that deletion of NK cell-intrinsic JAK1 significantly reduced NK cell numbers in the bone marrow and impaired their development. In line, we observed almost a complete loss of NK cells in the spleen, blood, and liver, proving a crucial role of JAK1 in peripheral NK cells. In line, Jak1fl/+Ncr1Cre mice showed significantly impaired NK cell-mediated tumor surveillance. Our data suggest that JAK2 is not able to compensate for the loss of JAK1 in NK cells. Importantly, conditional deletion of JAK2 in NKp46+ cells had no effect on peripheral NK cells revealing that NK cell-intrinsic JAK2 is dispensable for NK cell survival. In summary, we identified that loss of JAK1 in NK cells drives innate immune deficiency, whereas JAK2 deficiency leaves NK cell numbers and maturation unaltered. We thus propose that in contrast to currently used JAK1/JAK2 inhibitors, the use of JAK2-specific inhibitors would be advantageous for the patients by leaving NK cells intact.


Subject(s)
Janus Kinase 1/metabolism , Janus Kinase 2/metabolism , Killer Cells, Natural/metabolism , Lymphoma/enzymology , Alleles , Analysis of Variance , Animals , CD11b Antigen/metabolism , Cell Differentiation/physiology , Cell Line, Tumor , Cell Survival/physiology , Disease Models, Animal , Immunity, Innate , Janus Kinase 1/genetics , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphoma/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Nuclear Matrix-Associated Proteins/metabolism , Nucleocytoplasmic Transport Proteins/metabolism , Tumor Burden , Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
16.
Int J Biochem Cell Biol ; 84: 46-57, 2017 03.
Article in English | MEDLINE | ID: mdl-28089712

ABSTRACT

Heme oxygenase-1 (HO-1), a heme-degrading enzyme, is suggested to play an important role in kidney pathophysiology, mostly due to its anti-fibrotic, anti-apoptotic and anti-oxidant properties. One of the mycotoxin, ochratoxin A (OTA) was previously shown to affect HO-1 expression, however, the mechanisms of OTA-induced nephrotoxicity during HO-1 deficiency are unknown. We have shown that OTA regulates the number of pro-fibrotic, pro-inflammatory, anti-oxidative and pro-apoptotic factors in HO-1 dependent manner, as the lack of HO-1 accelerates whereas the induction of HO-1 expression by cobalt protoporphyrin (CoPP) attenuates nephrotoxic effect of OTA. The down-regulation of the nuclear factor-erythroid-2- related factor 2 (Nrf2) transcription factor by OTA, observed in HO-1 knock-out animals, might be another mechanism of OTA toxicity. Moreover, HO-1 level and OTA treatment influences the expression of microRNAs. Namely, p53-regulated miR-34a and pro-fibrotic miR-21 were already increased in HO-1-/- kidneys and were further induced by OTA administration, whereas anti-fibrotic miR-29c was down-regulated by this mycotoxin. Our study indicates that complex mechanisms of OTA nephrotoxicity may be partially overcome by HO-1 induction.


Subject(s)
Heme Oxygenase-1/physiology , Kidney/drug effects , Membrane Proteins/physiology , Ochratoxins/toxicity , Animals , Antioxidants/metabolism , Apoptosis/drug effects , Apoptosis/physiology , Biomarkers/metabolism , Cytokines/metabolism , Female , Gene Expression/drug effects , Heme Oxygenase-1/deficiency , Heme Oxygenase-1/genetics , Inflammation Mediators/metabolism , Kidney/pathology , Kidney/physiopathology , LLC-PK1 Cells , MAP Kinase Signaling System/drug effects , Male , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Protoporphyrins/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Swine
17.
Cytokine ; 89: 209-218, 2017 01.
Article in English | MEDLINE | ID: mdl-26631911

ABSTRACT

Tyrosine kinase 2 (TYK2) is a member of the Janus kinase (JAK) family, which transduces cytokine and growth factor signalling. Analysis of TYK2 loss-of-function revealed its important role in immunity to infection, (auto-) immunity and (auto-) inflammation. TYK2-deficient patients unravelled high similarity between mice and men with respect to cellular signalling functions and basic immunology. Genome-wide association studies link TYK2 to several autoimmune and inflammatory diseases as well as carcinogenesis. Due to its cytokine signalling functions TYK2 was found to be essential in tumour surveillance. Lately TYK2 activating mutants and fusion proteins were detected in patients diagnosed with leukaemic diseases suggesting that TYK2 is a potent oncogene. Here we review the cell intrinsic and extrinsic functions of TYK2 in the characteristics preventing and enabling carcinogenesis. In addition we describe an unexpected function of kinase-inactive TYK2 in tumour rejection.


Subject(s)
Leukemia/immunology , Mutation , Neoplasm Proteins/immunology , Oncogenes/immunology , Signal Transduction/immunology , TYK2 Kinase/immunology , Animals , Genome-Wide Association Study , Humans , Leukemia/genetics , Mice , Neoplasm Proteins/genetics , Signal Transduction/genetics , TYK2 Kinase/genetics
18.
Cancer Discov ; 6(4): 414-29, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26873347

ABSTRACT

UNLABELLED: Natural killer (NK) cells are tightly regulated by the JAK-STAT signaling pathway and cannot survive in the absence of STAT5. We now report that STAT5-deficient NK cells can be rescued by overexpression of BCL2. Our experiments define STAT5 as a master regulator of NK-cell proliferation and lytic functions. Although NK cells are generally responsible for killing tumor cells, the rescued STAT5-deficient NK cells promote tumor formation by producing enhanced levels of the angiogenic factor VEGFA. The importance of VEGFA produced by NK cells was verified by experiments with a conditional knockout of VEGFA in NK cells. We show that STAT5 normally represses the transcription of VEGFA in NK cells, in both mice and humans. These findings reveal that STAT5-directed therapies may have negative effects: In addition to impairing NK-cell-mediated tumor surveillance, they may even promote tumor growth by enhancing angiogenesis. SIGNIFICANCE: The importance of the immune system in effective cancer treatment is widely recognized. We show that the new signal interceptors targeting the JAK-STAT5 pathway may have dangerous side effects that must be taken into account in clinical trials: inhibiting JAK-STAT5 has the potential to promote tumor growth by enhancing NK-cell-mediated angiogenesis.


Subject(s)
Cell Transformation, Neoplastic/immunology , Cell Transformation, Neoplastic/metabolism , Immunologic Surveillance , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Neoplasms/immunology , Neoplasms/metabolism , STAT5 Transcription Factor/metabolism , Animals , Cell Differentiation , Cell Proliferation , Cell Survival/genetics , Cytotoxicity, Immunologic , Disease Models, Animal , Gene Expression , Gene Knockout Techniques , Humans , Killer Cells, Natural/cytology , Lymphocyte Activation , Mice , Mice, Transgenic , Neoplasms/mortality , Neoplasms/pathology , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , STAT5 Transcription Factor/deficiency , Vascular Endothelial Growth Factor A/metabolism , Xenograft Model Antitumor Assays
19.
Oncoimmunology ; 4(11): e1047579, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26451322

ABSTRACT

Tyrosine kinase 2 (TYK2) is a Janus kinase (JAK) that is crucially involved in inflammation, carcinogenesis and defense against infection. The cytotoxic activity of natural killer (NK) cells in TYK2-deficient (Tyk2-/-) mice is severely reduced, although the underlying mechanisms are largely unknown. Using Tyk2-/- mice and mice expressing a kinase-inactive version of TYK2 (Tyk2K923E ), we show that NK cell function is partly independent of the enzymatic activity of TYK2. Tyk2-/- and Tyk2K923E NK cells develop normally in the bone marrow, but the maturation of splenic Tyk2-/- NK cells (and to a lesser extent of Tyk2K923E NK cells) is impaired. In contrast, the production of interferon γ (IFNγ) in response to interleukin 12 (IL-12) or to stimulation through NK cell-activating receptors strictly depends on the presence of enzymatically active TYK2. The cytotoxic activity of Tyk2K923E NK cells against a range of target cells in vitro is higher than that of Tyk2-/- NK cells. Consistently, Tyk2K923E mice control the growth of NK cell-targeted tumors significantly better than TYK2-deficient mice, showing the physiological relevance of the finding. Inhibitors of TYK2's kinase activity are being developed for the treatment of inflammatory diseases and cancers, but their effects on tumor immune surveillance have not been investigated. Our finding that TYK2 has kinase-independent functions in vivo suggests that such inhibitors will leave NK cell mediated tumor surveillance largely intact and that they will be suitable for use in cancer therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...