Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 278
Filter
2.
N Engl J Med ; 390(19): 1781-1792, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38587247

ABSTRACT

BACKGROUND: Familial chylomicronemia syndrome is a genetic disorder associated with severe hypertriglyceridemia and severe acute pancreatitis. Olezarsen reduces the plasma triglyceride level by reducing hepatic synthesis of apolipoprotein C-III. METHODS: In a phase 3, double-blind, placebo-controlled trial, we randomly assigned patients with genetically identified familial chylomicronemia syndrome to receive olezarsen at a dose of 80 mg or 50 mg or placebo subcutaneously every 4 weeks for 49 weeks. There were two primary end points: the difference between the 80-mg olezarsen group and the placebo group in the percent change in the fasting triglyceride level from baseline to 6 months, and (to be assessed if the first was significant) the difference between the 50-mg olezarsen group and the placebo group. Secondary end points included the mean percent change from baseline in the apolipoprotein C-III level and an independently adjudicated episode of acute pancreatitis. RESULTS: A total of 66 patients underwent randomization; 22 were assigned to the 80-mg olezarsen group, 21 to the 50-mg olezarsen group, and 23 to the placebo group. At baseline, the mean (±SD) triglyceride level among the patients was 2630±1315 mg per deciliter, and 71% had a history of acute pancreatitis within the previous 10 years. Triglyceride levels at 6 months were significantly reduced with the 80-mg dose of olezarsen as compared with placebo (-43.5 percentage points; 95% confidence interval [CI], -69.1 to -17.9; P<0.001) but not with the 50-mg dose (-22.4 percentage points; 95% CI, -47.2 to 2.5; P = 0.08). The difference in the mean percent change in the apolipoprotein C-III level from baseline to 6 months in the 80-mg group as compared with the placebo group was -73.7 percentage points (95% CI, -94.6 to -52.8) and between the 50-mg group as compared with the placebo group was -65.5 percentage points (95% CI, -82.6 to -48.3). By 53 weeks, 11 episodes of acute pancreatitis had occurred in the placebo group, and 1 episode had occurred in each olezarsen group (rate ratio [pooled olezarsen groups vs. placebo], 0.12; 95% CI, 0.02 to 0.66). Adverse events of moderate severity that were considered by a trial investigator at the site to be related to the trial drug or placebo occurred in 4 patients in the 80-mg olezarsen group. CONCLUSIONS: In patients with familial chylomicronemia syndrome, olezarsen may represent a new therapy to reduce plasma triglyceride levels. (Funded by Ionis Pharmaceuticals; Balance ClinicalTrials.gov number, NCT04568434.).


Subject(s)
Apolipoprotein C-III , Hyperlipoproteinemia Type I , Pancreatitis , Triglycerides , Humans , Pancreatitis/drug therapy , Male , Female , Double-Blind Method , Apolipoprotein C-III/blood , Middle Aged , Adult , Triglycerides/blood , Hyperlipoproteinemia Type I/drug therapy , Hyperlipoproteinemia Type I/blood , Hyperlipoproteinemia Type I/complications , Acute Disease , Oligonucleotides/therapeutic use , Oligonucleotides/adverse effects , Aged , Hypertriglyceridemia/drug therapy , Hypertriglyceridemia/blood , Young Adult
4.
Nat Rev Cardiol ; 21(3): 170-191, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37848630

ABSTRACT

Prolonged or excessive exposure to oxidized phospholipids (OxPLs) generates chronic inflammation. OxPLs are present in atherosclerotic lesions and can be detected in plasma on apolipoprotein B (apoB)-containing lipoproteins. When initially conceptualized, OxPL-apoB measurement in plasma was expected to reflect the concentration of minimally oxidized LDL, but, surprisingly, it correlated more strongly with plasma lipoprotein(a) (Lp(a)) levels. Indeed, experimental and clinical studies show that Lp(a) particles carry the largest fraction of OxPLs among apoB-containing lipoproteins. Plasma OxPL-apoB levels provide diagnostic information on the presence and extent of atherosclerosis and improve the prognostication of peripheral artery disease and first and recurrent myocardial infarction and stroke. The addition of OxPL-apoB measurements to traditional cardiovascular risk factors improves risk reclassification, particularly in patients in intermediate risk categories, for whom improving decision-making is most impactful. Moreover, plasma OxPL-apoB levels predict cardiovascular events with similar or greater accuracy than plasma Lp(a) levels, probably because this measurement reflects both the genetics of elevated Lp(a) levels and the generalized or localized oxidation that modifies apoB-containing lipoproteins and leads to inflammation. Plasma OxPL-apoB levels are reduced by Lp(a)-lowering therapy with antisense oligonucleotides and by lipoprotein apheresis, niacin therapy and bariatric surgery. In this Review, we discuss the role of role OxPLs in the pathophysiology of atherosclerosis and Lp(a) atherogenicity, and the use of OxPL-apoB measurement for improving prognosis, risk reclassification and therapeutic interventions.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Humans , Phospholipids , Apolipoproteins B , Lipoprotein(a) , Inflammation
5.
bioRxiv ; 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38045410

ABSTRACT

Macrophages detect invading microorganisms via pattern recognition receptors that recognize pathogen-associated molecular patterns, or via sensing the activity of virulence factors that initiates effector-triggered immunity (ETI). Tissue damage that follows pathogen encounter leads to the release of host-derived factors that participate to inflammation. How these self-derived molecules are sensed by macrophages and their impact on immunity remain poorly understood. Here we demonstrate that, in mice and humans, host-derived oxidized phospholipids (oxPLs) are formed upon microbial encounter. oxPL blockade restricts inflammation and prevents the death of the host, without affecting pathogen burden. Mechanistically, oxPLs bind and inhibit AKT, a master regulator of immunity and metabolism. AKT inhibition potentiates the methionine cycle, and epigenetically dampens Il10, a pluripotent anti-inflammatory cytokine. Overall, we found that host-derived inflammatory cues act as "self" virulence factors that initiate ETI and that their activity can be targeted to protect the host against excessive inflammation upon microbial encounter.

6.
J Thromb Thrombolysis ; 56(2): 226-232, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37338713

ABSTRACT

BACKGROUND: Pelacarsen decreases plasma levels of lipoprotein(a) [Lp(a)] and oxidized phospholipids (OxPL). It was previously reported that pelacarsen does not affect the platelet count. We now report the effect of pelacarsen on on-treatment platelet reactivity. METHODS: Subjects with established cardiovascular disease and screening Lp(a) levels ≥60 mg per deciliter (~ ≥150 nmol/L) were randomized to receive pelacarsen (20, 40, or 60 mg every 4 weeks; 20 mg every 2 weeks; or 20 mg every week), or placebo for 6-12 months. Aspirin Reaction Units (ARU) and P2Y12 Reaction Units (PRU) were measured at baseline and the primary analysis timepoint (PAT) at 6 months. RESULTS: Of the 286 subjects randomized, 275 had either an ARU or PRU test, 159 (57.8%) were on aspirin alone and 94 (34.2%) subjects were on dual anti-platelet therapy. As expected, the baseline ARU and PRU were suppressed in subjects on aspirin or on dual anti-platelet therapy, respectively. There were no significant differences in baseline ARU in the aspirin groups or in PRU in the dual anti-platelet groups. At the PAT there were no statistically significant differences in ARU in subjects on aspirin or PRU in subjects on dual anti-platelet therapy among any of the pelacarsen groups compared to the pooled placebo group (p > 0.05 for all comparisons). CONCLUSION: Pelacarsen does not modify on-treatment platelet reactivity through the thromboxane A2 or P2Y12 platelet receptor pathways.


Subject(s)
Platelet Aggregation Inhibitors , Thromboxanes , Humans , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/therapeutic use , Clopidogrel/pharmacology , Prospective Studies , Blood Platelets , Aspirin/therapeutic use , Platelet Function Tests , Treatment Outcome , Purinergic P2Y Receptor Antagonists/therapeutic use
7.
J Lipid Res ; 64(6): 100391, 2023 06.
Article in English | MEDLINE | ID: mdl-37211249

ABSTRACT

Immunoglobulin M (IgM) autoantibodies to oxidation-specific epitopes (OSEs) can be present at birth and protect against atherosclerosis in experimental models. This study sought to determine whether high titers of IgM titers to OSE (IgM OSE) are associated with a lower risk of acute myocardial infarction (AMI) in humans. IgM to malondialdehyde (MDA)-LDL, phosphocholine-modified BSA, IgM apolipoprotein B100-immune complexes, and a peptide mimotope of MDA were measured within 24 h of first AMI in 4,559 patients and 4,617 age- and sex-matched controls in the Pakistan Risk of Myocardial Infarction Study. Multivariate-adjusted logistic regression was used to estimate odds ratio (OR) and 95% confidence interval for AMI. All four IgM OSEs were lower in AMI versus controls (P < 0.001 for all). Males, smokers and individuals with hypertension and diabetes had lower levels of all four IgM OSE than unaffected individuals (P < 0.001 for all). Compared to the lowest quintile, the highest quintiles of IgM MDA-LDL, phosphocholine-modified BSA, IgM apolipoprotein B100-immune complexes, and MDA mimotope P1 had a lower OR of AMI: OR (95% confidence interval) of 0.67 (0.58-0.77), 0.64 (0.56-0.73), 0.70 (0.61-0.80) and 0.72 (0.62-0.82) (P < 0.001 for all), respectively. Upon the addition of IgM OSE to conventional risk factors, the C-statistic improved by 0.0062 (0.0028-0.0095) and net reclassification by 15.5% (11.4-19.6). These findings demonstrate that IgM OSE provides clinically meaningful information and supports the hypothesis that higher levels of IgM OSE may be protective against AMI.


Subject(s)
Antigen-Antibody Complex , Myocardial Infarction , Male , Infant, Newborn , Humans , Epitopes , Phosphorylcholine , Autoantibodies , Immunoglobulin M , Apolipoproteins , Lipoproteins, LDL
8.
J Clin Lipidol ; 17(3): 406-411, 2023.
Article in English | MEDLINE | ID: mdl-37164837

ABSTRACT

ApoC-III inhibits lipoprotein lipase and hepatic uptake of triglyceride-rich lipoproteins. It is unknown whether targeting apoC-III affects hepatic steatosis in patients with hypertriglyceridemia. We studied the effect of volanesorsen, a potent antisense oligonucleotide targeting APOC3 mRNA, on hepatic fat fraction (HFF) assessed by MRI in patients with severe hypertriglyceridemia (SHTG, triglycerides ≥500 mg/dL), familial partial lipodystrophy (FPL, triglycerides ≥200 mg/dL) and familial chylomicronemia syndrome (FCS, triglycerides ≥750 mg/dL). The data were evaluated individually in COMPASS (SHTG), APPROACH (FCS), and BROADEN (FPL) trials. The baseline absolute HFF were elevated in all three trials and ranged from 6.3-18.1%. In COMPASS, compared to placebo, volanesorsen significantly reduced the absolute HFF by -3.02% (95% CI, (-5.60, -0.60), p = 0.009) (placebo-adjusted % change from baseline -24.2%, p = 0.034) from baseline to 6 months. In APPROACH a non-significant absolute -1.0% (95% CI, -2.9, 0.0, p = 0.13) reduction in HFF was noted from baseline to 12 months (placebo-adjusted % change from baseline -37.1%, p = 0.20). In BROADEN volanesorsen significantly reduced the absolute HFF by -8.34% (95% CI, -13.01, -3.67, p = 0.001) from baseline to 12 months (placebo-adjusted % change from baseline -52.7%, p = 0.004). In all 3 trials individually, a strong inverse correlation was present between the baseline HFF and the change in HFF in the volanesorsen groups, but not in the placebo groups. In conclusion, apoC-III inhibition with volanesorsen has favorable effects in HFF in patients with different etiologies of hypertriglyceridemia.


Subject(s)
Hypertriglyceridemia , Oligonucleotides , Humans , Apolipoprotein C-III , Oligonucleotides/pharmacology , Oligonucleotides/therapeutic use , Hypertriglyceridemia/complications , Hypertriglyceridemia/drug therapy , Hypertriglyceridemia/chemically induced , Triglycerides
9.
J Clin Lipidol ; 17(3): 342-355, 2023.
Article in English | MEDLINE | ID: mdl-37100699

ABSTRACT

BACKGROUND: Familial chylomicronemia syndrome (FCS) is a rare, autosomal recessive genetic disorder characterized by a marked increase in plasma triglyceride (TG) levels and recurrent episodes of pancreatitis. The response to conventional TG-lowering therapies is suboptimal. Volanesorsen, an antisense oligonucleotide that targets hepatic apoC-III mRNA, has been shown to significantly reduce TGs in patients with FCS. OBJECTIVE: To further evaluate the safety and efficacy of extended treatment with volanesorsen in patients with FCS. METHODS: This phase 3 open-label extension study evaluated the efficacy and safety of extended treatment with volanesorsen in three groups of patients with FCS: Those who had previously received volanesorsen or placebo in the APPROACH and COMPASS studies, and treatment-naive patients not participating in either study. Key endpoints included change in fasting TG and other lipid measurements, and safety over 52 weeks. RESULTS: Volanesorsen treatment resulted in sustained reductions in plasma TG levels in previously treated patients from the APPROACH and COMPASS studies. Volanesorsen-treated patients from the three populations studied had mean decreases in fasting plasma TGs from index study baseline to months 3, 6, 12 and 24 as follows: decreases of 48%, 55%, 50%, and 50%, respectively (APPROACH); decreases of 65%, 43%, 42%, and 66%, respectively (COMPASS); and decreases of 60%, 51%, 47%, and 46%, respectively (treatment-naive). Common adverse events were injection site reactions and platelet count decrease, consistent with previous studies. CONCLUSION: Extended open-label treatment with volanesorsen in patients with FCS resulted in sustained reductions of plasma TG levels and safety consistent with the index studies.


Subject(s)
Hyperlipoproteinemia Type I , Humans , Hyperlipoproteinemia Type I/drug therapy , Hyperlipoproteinemia Type I/genetics , Oligonucleotides/adverse effects , Apolipoprotein C-III , Triglycerides
11.
J Clin Lipidol ; 16(6): 833-849, 2022.
Article in English | MEDLINE | ID: mdl-36402670

ABSTRACT

BACKGROUND: Volanesorsen, an antisense oligonucleotide, is designed to inhibit hepatic apolipoprotein C-III synthesis and reduce plasma apolipoprotein C-III and triglyceride concentrations. OBJECTIVE: The present study assessed efficacy and safety of volanesorsen in patients with familial partial lipodystrophy (FPLD) and concomitant hypertriglyceridemia and diabetes. METHODS: BROADEN was a randomized, placebo-controlled, phase 2/3, 52-week study with open-label extension and post-treatment follow-up periods. Patients received weekly subcutaneous volanesorsen 300 mg or placebo. The primary endpoint was percent change from baseline in fasting triglycerides at 3 months. Secondary endpoints included relative percent change in hepatic fat fraction (HFF), visceral adiposity, and glycated hemoglobin levels. RESULTS: Forty patients (11 men, 29 women) were enrolled, majority of whom were aged <65 years (mean, 47 years) and White. Least squares mean (LSM) percent change in triglycerides from baseline to 3 months was -88% (95% CI, -134 to -43) in the volanesorsen group versus -22% (95% CI, -61 to 18) in the placebo group, with a difference in LSM of -67% (95% CI, -104 to -30; P=0.0009). Volanesorsen induced a significant LSM relative reduction in HFF of 53% at month 12 versus placebo (observed mean [SD]: 9.7 [7.65] vs. 18.0 [8.89]; P=0.0039). No statistically significant changes were noted in body volume measurements (fat, liver, spleen, visceral/subcutaneous adipose tissue) or glycated hemoglobin. Serious adverse events in patients assigned to volanesorsen included 1 case each of sarcoidosis, anaphylactic reaction, and systemic inflammatory response syndrome. CONCLUSION: In BROADEN, volanesorsen significantly reduced serum triglyceride levels and hepatic steatosis in patients with FPLD.


Subject(s)
Lipodystrophy, Familial Partial , Female , Humans , Male , Apolipoprotein C-III , Glycated Hemoglobin , Triglycerides
12.
Front Immunol ; 13: 909475, 2022.
Article in English | MEDLINE | ID: mdl-35935999

ABSTRACT

Immunoglobulin M (IgM) to oxidation specific epitopes (OSE) are inversely associated with atherosclerosis in mice and humans. The B-1b subtype of B-1 cells secrete IgM to OSE, and unlike B-1a cells, are capable of long-lasting IgM memory. What attributes make B-1b cells different than B-1a cells is unknown. Our objectives were to determine how B-1b cells produce more IgM compared to B-1a cells at homeostatic condition and to see the differences in the B-1a and B-1b cell distribution and IgM CDR-H3 sequences in mice with advanced atherosclerosis. Here, in-vivo studies demonstrated greater migration to spleen, splenic production of IgM and plasma IgM levels in ApoE-/-Rag1-/- mice intraperitoneally injected with equal numbers of B-1b compared to B-1a cells. Bulk RNA seq analysis and flow cytometry of B-1a and B-1b cells identified CCR6 as a chemokine receptor more highly expressed on B-1b cells compared to B-1a. Knockout of CCR6 resulted in reduced B-1b cell migration to the spleen. Moreover, B-1b cell numbers were significantly higher in spleen of aged atherosclerotic ApoE-/- mice compared to young ApoE-/- mice. Single cell sequencing results of IgHM in B-1a and B-1b cells from peritoneal cavity and spleen of atherosclerotic aged ApoE-/- mice revealed significantly more N additions at the V-D and D-J junctions, greater diversity in V region usage and CDR-H3 sequences in B-1b compared to B-1a cells. In summary, B-1b cells demonstrated enhanced CCR6-mediated splenic migration, IgM production, and IgM repertoire diversification compared to B-1a cells. These findings suggest that potential strategies to selectively augment B-1b cell numbers and splenic trafficking could lead to increased and more diverse IgM targeting OSE to limit atherosclerosis.


Subject(s)
Atherosclerosis , Aged , Animals , Apolipoproteins E , Atherosclerosis/genetics , Homeostasis , Humans , Immunoglobulin M , Mice , Mice, Inbred C57BL
13.
JCI Insight ; 7(17)2022 09 08.
Article in English | MEDLINE | ID: mdl-35917178

ABSTRACT

Cardiovascular diseases, especially atherosclerosis and its complications, are a leading cause of death. Inhibition of the noncanonical IκB kinases TANK-binding kinase 1 and IKKε with amlexanox restores insulin sensitivity and glucose homeostasis in diabetic mice and human patients. Here we report that amlexanox improves diet-induced hypertriglyceridemia and hypercholesterolemia in Western diet-fed (WD-fed) Ldlr-/- mice and protects against atherogenesis. Amlexanox ameliorated dyslipidemia, inflammation, and vascular dysfunction through synergistic actions that involve upregulation of bile acid synthesis to increase cholesterol excretion. Transcriptomic profiling demonstrated an elevated expression of key bile acid synthesis genes. Furthermore, we found that amlexanox attenuated monocytosis, eosinophilia, and vascular dysfunction during WD-induced atherosclerosis. These findings demonstrate the potential of amlexanox as a therapy for hypercholesterolemia and atherosclerosis.


Subject(s)
Atherosclerosis , Diabetes Mellitus, Experimental , Hypercholesterolemia , Aminopyridines , Animals , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Atherosclerosis/prevention & control , Bile Acids and Salts , Humans , Hypercholesterolemia/drug therapy , I-kappa B Kinase/metabolism , Mice , Protein Serine-Threonine Kinases
14.
Semin Liver Dis ; 42(4): 455-464, 2022 11.
Article in English | MEDLINE | ID: mdl-36008083

ABSTRACT

The burden of nonalcoholic fatty liver disease (NAFLD) is rising globally. Cardiovascular disease is the leading cause of death in patients with NAFLD. Nearly half of individuals with NAFLD have coronary heart disease, and more than a third have carotid artery atherosclerosis. Individuals with NAFLD are at a substantially higher risk of fatal and nonfatal cardiovascular events. NAFLD and cardiovascular disease share multiple common disease mechanisms, such as systemic inflammation, insulin resistance, genetic risk variants, and gut microbial dysbiosis. In this review, we discuss the epidemiology of cardiovascular disease in NAFLD, and highlight common risk factors. In addition, we examine recent advances evaluating the shared disease mechanisms between NAFLD and cardiovascular disease. In conclusion, multidisciplinary collaborations are required to further our understanding of the complex relationship between NAFLD and cardiovascular disease and potentially identify therapeutic targets.


Subject(s)
Cardiovascular Diseases , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/complications , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Risk Factors , Inflammation/complications
15.
J Clin Lipidol ; 16(5): 617-625, 2022.
Article in English | MEDLINE | ID: mdl-35902351

ABSTRACT

BACKGROUND: Olezarsen is a hepatocyte-targeted, GalNAc-modified antisense oligonucleotide that decreases plasma levels of apolipoprotein C-III (apoC-III) and triglyceride-rich lipoproteins (TRLs). OBJECTIVE: To define the effect of olezarsen on NMR-derived lipoprotein particle size and concentration. METHODS: Patients (n=114) with or at risk for atherosclerotic cardiovascular disease and fasting triglycerides ≥200 and <500 mg/dL received olezarsen (10 or 50 mg every 4 weeks, 15 mg every 2 weeks, or 10 mg every week) or saline placebo subcutaneously for 6-12 months. NMR LipoProfile® analysis was performed in frozen EDTA plasma samples collected at baseline and at the primary analysis timepoint (PAT) at 6 months. RESULTS: A dose-dependent relationship was generally noted with increasing cumulative doses of olezarsen in TRL particle (TRLP), LDL particle (LDL-P) and HDL (HDL-P) particle concentrations. In the 50 mg every 4 weeks dose, compared to placebo, olezarsen resulted in a significant reduction in total TRL-P (51%, P<0.0001) with largest reductions in large-size (68%, P<0.0001) and medium-size (63%, P<0.0001) TRL-P. Total LDL-P concentration was not changed, but large LDL-P increased by 186% (p=0.0034), and small LDL-P decreased by 39% (p=0.0713). Total HDL-P concentration increased by 15% (P=0.0006), driven primarily by a 32% increase in small HDL subspecies (diameters <8.3 nm) (P=0.0008). CONCLUSION: Olezarsen results in favorable changes in lipoprotein concentration and particle size, primarily manifested by reduction in TRLs, remodeling to larger LDL particles, and increase in small HDL-P. These findings suggest that apoC-III inhibition improves the overall atherogenic risk profile.


Subject(s)
Hyperlipidemias , Hypertriglyceridemia , Humans , Apolipoprotein C-III , Hypertriglyceridemia/drug therapy , Triglycerides , Lipoproteins , Particle Size
16.
JCI Insight ; 7(13)2022 07 08.
Article in English | MEDLINE | ID: mdl-35653195

ABSTRACT

Apolipoprotein C-III (apoC-III) is a critical regulator of triglyceride metabolism and correlates positively with hypertriglyceridemia and cardiovascular disease (CVD). It remains unclear if therapeutic apoC-III lowering reduces CVD risk and if the CVD correlation depends on the lipid-lowering or antiinflammatory properties. We determined the impact of interventional apoC-III lowering on atherogenesis using an apoC-III antisense oligonucleotide (ASO) in 2 hypertriglyceridemic mouse models where the intervention lowers plasma triglycerides and in a third lipid-refractory model. On a high-cholesterol Western diet apoC-III ASO treatment did not alter atherosclerotic lesion size but did attenuate advanced and unstable plaque development in the triglyceride-responsive mouse models. No lesion size or composition improvement was observed with apoC-III ASO in the lipid-refractory mice. To circumvent confounding effects of continuous high-cholesterol feeding, we tested the impact of interventional apoC-III lowering when switching to a cholesterol-poor diet after 12 weeks of Western diet. In this diet switch regimen, apoC-III ASO treatment significantly reduced plasma triglycerides, atherosclerotic lesion progression, and necrotic core area and increased fibrous cap thickness in lipid-responsive mice. Again, apoC-III ASO treatment did not alter triglyceride levels, lesion development, and lesion composition in lipid-refractory mice after the diet switch. Our findings suggest that interventional apoC-III lowering might be an effective strategy to reduce atherosclerosis lesion size and improve plaque stability when lipid lowering is achieved.


Subject(s)
Atherosclerosis , Hyperlipidemias , Plaque, Atherosclerotic , Animals , Apolipoprotein C-III , Carrier Proteins , Cholesterol , Mice , Oligonucleotides , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/therapeutic use , Triglycerides/metabolism
17.
J Lipid Res ; 63(8): 100239, 2022 08.
Article in English | MEDLINE | ID: mdl-35688187

ABSTRACT

The study aims were to develop a new isoform-independent enzyme-linked immunoassay (ELISA) for the measurement of lipoprotein(a) [Lp(a)], validate its performance characteristics, and demonstrate its accuracy by comparison with the gold-standard ELISA method and an LC-MS/MS candidate reference method, both developed at the University of Washington. The principle of the new assay is the capture of Lp(a) with monoclonal antibody LPA4 primarily directed to an epitope in apolipoprotein(a) KIV2 and its detection with monoclonal antibody LPA-KIV9 directed to a single antigenic site present on KIV9. Validation studies were performed following the guidelines of the Clinical Laboratory Improvement Amendments and the College of American Pathologists. The analytical measuring range of the LPA4/LPA-KIV9 ELISA is 0.27-1,402 nmol/L, and the method meets stringent criteria for precision, linearity, spike and recovery, dilutability, comparison of plasma versus serum, and accuracy. Method comparison with both the gold-standard ELISA and the LC-MS/MS method performed in 64 samples with known apolipoprotein(a) isoforms resulted in excellent correlation with both methods (r=0.987 and r=0.976, respectively). Additionally, the variation in apolipoprotein(a) size accounted for only 0.2% and 2.2% of the bias variation, respectively, indicating that the LPA4/LPA-KIV9 ELISA is not affected by apolipoprotein(a) size polymorphism. Peptide mapping and competition experiments demonstrated that the measuring monoclonal antibodies used in the gold-standard ELISA (a-40) and in the newly developed ELISA (LPA-KIV9) are directed to the same epitope, 4076LETPTVV4082, on KIV9. In conclusion, no statistically or clinically significant bias was observed between Lp(a) measurements obtained by the LPA4/LPA-KIV9 ELISA and those obtained by the gold-standard ELISA or LC-MS/MS, and therefore, the methods are considered equivalent.


Subject(s)
Antibodies, Monoclonal , Lipoprotein(a) , Apolipoproteins A , Apoprotein(a) , Chromatography, Liquid , Enzyme-Linked Immunosorbent Assay , Epitopes , Humans , Protein Isoforms , Tandem Mass Spectrometry
18.
Atherosclerosis ; 346: 68-74, 2022 04.
Article in English | MEDLINE | ID: mdl-35290813

ABSTRACT

BACKGROUND AND AIMS: Observational studies have demonstrated that the pneumococcal polysaccharide vaccine (PPV) is associated with reduced risk of cardiovascular events. This may be mediated through IgM antibodies to OxLDL, which have previously been associated with cardioprotective effects. The Australian Study for the Prevention through Immunisation of Cardiovascular Events (AUSPICE) is a double-blind, randomised controlled trial (RCT) of PPV in preventing ischaemic events. Participants received PPV or placebo once at baseline and are being followed-up for incident fatal and non-fatal myocardial infarction or stroke over 6 years. METHODS: A subgroup of participants at one centre (Canberra; n = 1,001) were evaluated at 1 month and 2 years post immunisation for changes in surrogate markers of atherosclerosis, as pre-specified secondary outcomes: high-sensitive C-reactive protein (CRP), pulse wave velocity (PWV), and carotid intima-media thickness (CIMT). In addition, 100 participants were randomly selected in each of the intervention and control groups for measurement of anti-pneumococcal antibodies (IgG, IgG2, IgM) as well as anti-OxLDL antibodies (IgG and IgM to CuOxLDL, MDA-LDL, and PC-KLH). RESULTS: Concentrations of anti-pneumococcal IgG and IgG2 increased and remained high at 2 years in the PPV group compared to the placebo group, while IgM increased and then declined, but remained detectable, at 2 years. There were statistically significant increases in all anti-OxLDL IgM antibodies at 1 month, which were no longer detectable at 2 years; there was no increase in anti-OxLDL IgG antibodies. There were no significant changes in CRP, PWV or CIMT between the treatment groups at the 2-year follow-up. CONCLUSIONS: PPV engenders a long-lasting increase in anti-pneumococcal IgG, and to a lesser extent, IgM titres, as well as a transient increase in anti-OxLDL IgM antibodies. However, there were no detectable changes in surrogate markers of atherosclerosis at the 2-year follow-up. Long-term, prospective follow-up of clinical outcomes is continuing to assess if PPV reduces CVD events.


Subject(s)
Atherosclerosis , Pneumococcal Vaccines , Atherosclerosis/prevention & control , Australia , Biomarkers , Humans , Immunoglobulin G , Immunoglobulin M , Streptococcus pneumoniae
19.
J Am Coll Cardiol ; 79(11): 1035-1046, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35300814

ABSTRACT

BACKGROUND: Laboratory methods that report low-density lipoprotein cholesterol (LDL-C) include both LDL-C and lipoprotein(a) cholesterol [Lp(a)-C] content. OBJECTIVES: The purpose of this study was to assess the effect of pelacarsen on directly measured Lp(a)-C and LDL-C corrected for its Lp(a)-C content. METHODS: The authors evaluated subjects with a history of cardiovascular disease and elevated Lp(a) randomized to 5 groups of cumulative monthly doses of 20-80 mg pelacarsen vs placebo. Direct Lp(a)-C was measured on isolated Lp(a) using LPA4-magnetic beads directed to apolipoprotein(a). LDL-C was reported as: 1) LDL-C as reported by the clinical laboratory; 2) LDL-Ccorr = laboratory-reported LDL-C - direct Lp(a)-C; and 3) LDL-CcorrDahlén = laboratory LDL-C - [Lp(a) mass × 0.30] estimated by the Dahlén formula. RESULTS: The baseline median Lp(a)-C values in the groups ranged from 11.9 to 15.6 mg/dL. Compared with placebo, pelacarsen resulted in dose-dependent decreases in Lp(a)-C (2% vs -29% to -67%; P = 0.001-<0.0001). Baseline laboratory-reported mean LDL-C ranged from 68.5 to 89.5 mg/dL, whereas LDL-Ccorr ranged from 55 to 74 mg/dL. Pelacarsen resulted in mean percent/absolute changes of -2% to -19%/-0.7 to -8.0 mg/dL (P = 0.95-0.05) in LDL-Ccorr, -7% to -26%/-5.4 to -9.4 mg/dL (P = 0.44-<0.0001) in laboratory-reported LDL-C, and 3.1% to 28.3%/0.1 to 9.5 mg/dL (P = 0.006-0.50) increases in LDL-CcorrDahlén. Total apoB declined by 3%-16% (P = 0.40-<0.0001), but non-Lp(a) apoB was not significantly changed. CONCLUSIONS: Pelacarsen significantly lowers direct Lp(a)-C and has neutral to mild lowering of LDL-Ccorr. In patients with elevated Lp(a), LDL-Ccorr provides a more accurate reflection of changes in LDL-C than either laboratory-reported LDL-C or the Dahlén formula.


Subject(s)
Cholesterol , Lipoprotein(a) , Apolipoproteins A , Cholesterol, LDL , Humans , Oligonucleotides, Antisense
20.
Ann N Y Acad Sci ; 1511(1): 87-106, 2022 05.
Article in English | MEDLINE | ID: mdl-35218041

ABSTRACT

Recent research has shed light on the cellular and molecular functions of bioactive lipids that go far beyond what was known about their role as dietary lipids. Bioactive lipids regulate inflammation and its resolution as signaling molecules. Genetic studies have identified key factors that can increase the risk of cardiovascular diseases and metabolic syndrome through their effects on lipogenesis. Lipid scientists have explored how these signaling pathways affect lipid metabolism in the liver, adipose tissue, and macrophages by utilizing a variety of techniques in both humans and animal models, including novel lipidomics approaches and molecular dynamics models. Dissecting out these lipid pathways can help identify mechanisms that can be targeted to prevent or treat cardiometabolic conditions. Continued investigation of the multitude of functions mediated by bioactive lipids may reveal additional components of these pathways that can provide a greater understanding of metabolic homeostasis.


Subject(s)
Metabolic Syndrome , Animals , Dietary Fats , Homeostasis/physiology , Humans , Lipid Metabolism/physiology , Lipids/physiology , Metabolic Syndrome/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...