Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 13390, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37591901

ABSTRACT

Xanthines such as caffeine and theobromine are among the most consumed psychoactive stimulants in the world, either as natural components of coffee, tea and chocolate, or as added ingredients. The present study assessed if xanthines affect liver sinusoidal endothelial cells (LSEC). Cultured primary rat LSEC were challenged with xanthines at concentrations typically obtained from normal consumption of xanthine-containing beverages, food or medicines; and at higher concentrations below the in vitro toxic limit. The fenestrated morphology of LSEC were examined with scanning electron and structured illumination microscopy. All xanthine challenges had no toxic effects on LSEC ultrastructure as judged by LSEC fenestration morphology, or function as determined by endocytosis studies. All xanthines in high concentrations (150 µg/mL) increased fenestration frequency but at physiologically relevant concentrations, only theobromine (8 µg/mL) showed an effect. LSEC porosity was influenced only by high caffeine doses which also shifted the fenestration distribution towards smaller pores. Moreover, a dose-dependent increase in fenestration number was observed after caffeine treatment. If these compounds induce similar changes in vivo, age-related reduction of LSEC porosity can be reversed by oral treatment with theobromine or with other xanthines using targeted delivery.


Subject(s)
Caffeine , Theobromine , Animals , Rats , Caffeine/pharmacology , Xanthine , Theobromine/pharmacology , Endothelial Cells , Liver
2.
Light Sci Appl ; 12(1): 56, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36864022

ABSTRACT

In 1934, Frits Zernike demonstrated that it is possible to exploit the sample's refractive index to obtain superior contrast images of biological cells. The refractive index contrast of a cell surrounded by media yields a change in the phase and intensity of the transmitted light wave. This change can be due to either scattering or absorption caused by the sample. Most cells are transparent at visible wavelengths, which means the imaginary component of their complex refractive index, also known as extinction coefficient k, is close to zero. Here, we explore the use of c-band ultra-violet (UVC) light for high-contrast high-resolution label-free microscopy, as k is naturally substantially higher in the UVC than at visible wavelengths. Using differential phase contrast illumination and associated processing, we achieve a 7- to 300-fold improvement in contrast compared to visible-wavelength and UVA differential interference contrast microscopy or holotomography, and quantify the extinction coefficient distribution within liver sinusoidal endothelial cells. With a resolution down to 215 nm, we are, for the first time in a far-field label-free method, able to image individual fenestrations within their sieve plates which normally requires electron or fluorescence superresolution microscopy. UVC illumination also matches the excitation peak of intrinsically fluorescent proteins and amino acids and thus allows us to utilize autofluorescence as an independent imaging modality on the same setup.

3.
Microsc Res Tech ; 85(5): 2016-2022, 2022 May.
Article in English | MEDLINE | ID: mdl-35045219

ABSTRACT

The point spread function of a fixed fluorophore with its dipole axis colinear to the optical axis appears donut-shaped when seen through a microscope, and its light distribution in the pupil plane is radially polarized. Yet other techniques, such as photolithography, report that this same light distribution in the pupil plane appears as a solid spot. How can this same distribution lead to a spot in one case but a donut in the other? Here, we show how the tube lens of the system plays a critical role in determining this shape. Using a vectorial treatment of image formation, we simulate the relative contributions of both longitudinal and radial components to the image of a dipole emitter and thus show how the donut (typically reported for z-polarized single molecule fluorescence microscopy) transforms into a solid spot (as commonly reported for photolithography) as the numerical aperture of the tube lens increases. We find that the transition point occurs around 0.7 NA, which is significantly higher than used for most microscopy systems and lower than for common photolithography systems, thus resolving the seeming paradox of dipole shape.


Subject(s)
Algorithms , Lenses , Microscopy/methods
4.
Viruses ; 13(9)2021 08 31.
Article in English | MEDLINE | ID: mdl-34578310

ABSTRACT

During HIV-1 transmission through T cell virological synapses, the recruitment of the envelope (Env) glycoprotein to the site of cell-cell contact is important for adhesion and for packaging onto nascent virus particles which assemble at the site. Live imaging studies in CD4 T cells have captured the rapid recruitment of the viral structural protein Gag to VSs. We explored the role of endocytic trafficking of Env initiated by a membrane proximal tyrosine motif during HIV transfer into target cells and examined the factors that allow Gag and Env to be transferred together across the synapse. To facilitate tracking of Env in live cells, we adapted an Env tagging method and introduced a biotin acceptor peptide (BAP) into the V4 loop of Env gp120, enabling sensitive fluorescent tracking of V4-biotinylated Env. The BAP-tagged and biotinylated HIVs were replication-competent in cell-free and cell-to-cell infection assays. Live cell fluorescent imaging experiments showed rapid internalized cell surface Env on infected cells. Cell-cell transfer experiments conducted with the Env endocytosis mutant (Y712A) showed increased transfer of Env. Paradoxically, this increase in Env transfer was associated with significantly reduced Gag transfer into target cells, when compared to viral transfer associated with WT Env. This Y712A Env mutant also exhibited an altered Gag/biotin Env fluorescence ratio during transfer that correlated with decreased productive cell-to-cell infection. These results may suggest that the internalization of Env into recycling pools plays an important role in the coordinated transfer of Gag and Env across the VS, which optimizes productive infection in target cells.


Subject(s)
Biotin/metabolism , HIV Infections/transmission , HIV-1/metabolism , Biotin/analogs & derivatives , CD4-Positive T-Lymphocytes/virology , Cell Membrane , HIV Infections/virology , Humans , Virion/metabolism , Virus Assembly , Virus Internalization , Virus Replication , gag Gene Products, Human Immunodeficiency Virus/metabolism
5.
Nat Commun ; 12(1): 2169, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33846317

ABSTRACT

Quantifying small, rapidly evolving forces generated by cells is a major challenge for the understanding of biomechanics and mechanobiology in health and disease. Traction force microscopy remains one of the most broadly applied force probing technologies but typically restricts itself to slow events over seconds and micron-scale displacements. Here, we improve >2-fold spatially and >10-fold temporally the resolution of planar cellular force probing compared to its related conventional modalities by combining fast two-dimensional total internal reflection fluorescence super-resolution structured illumination microscopy and traction force microscopy. This live-cell 2D TIRF-SIM-TFM methodology offers a combination of spatio-temporal resolution enhancement relevant to forces on the nano- and sub-second scales, opening up new aspects of mechanobiology to analysis.


Subject(s)
Microscopy, Atomic Force , Microscopy, Fluorescence , Animals , Computer Simulation , Fluorescence , HeLa Cells , Humans , Rats , Salmon
6.
Fish Shellfish Immunol ; 99: 119-129, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32014587

ABSTRACT

Rab GTPases control trafficking of intracellular vesicles and are key regulators of endocytic and secretory pathways. Due to their specific distribution, they may serve as markers for different endolysosomal compartments. Since Rab GTPases are involved in uptake and trafficking of endocytosed ligands and cell receptors, as well as secretion of immune mediators, they have been implicated in diverse immunological processes and their functions are often exploited by intracellular pathogens such as viruses. While Rab proteins have been studied extensively in mammals, their functions in vesicle trafficking in teleosts are not well known. In the present work, Atlantic salmon Rab5c, Rab7a and Rab27a homologs were studied in terms of intracellular distribution and gene expression. Structured illumination microscopy demonstrated that transgenic, GFP-tagged salmon Rab5c and Rab7a are, predominantly, located within early endosomes and late endosomes/lysosomes, respectively. In contrast, Rab27a showed a broader distribution, which indicates that it associates with diverse intracellular vesicles and organelles. Infection of salmon with Salmonid alphavirus subtype 3 (SAV3) enhanced the mRNA levels of all of the studied Rab isoforms in heart and head kidney and most of them were upregulated in spleen. This may reflect the capacity of the virus to exploit the functions of these rab proteins. It is also possible that the transcriptional regulation of Rab proteins in SAV3-infected organs may play a role in the antiviral immune response. The latter was further supported by in vitro experiments with adherent head kidney leukocytes. The expression of Rab5c and Rab27a was upregulated in these cells following stimulation with TLR ligands including CpG oligonucleotides and polyI:C. The expression of most of the analyzed Rab isoforms in the primary leukocytes was also enhanced by stimulation with type I IFN. Interestingly, IFN-gamma had a negative effect on Rab7a expression which may be linked to the priming activity of this cytokine on monocytes and macrophages. Overall, these data demonstrate that the intracellular distribution of Rab5c, Rab7a and Rab27a is phylogenetically conserved within vertebrates and that these molecules might be implicated in viral infections and the regulation of the antiviral immune response in Atlantic salmon.


Subject(s)
Alphavirus Infections/veterinary , Fish Proteins/genetics , Salmo salar/genetics , rab GTP-Binding Proteins/genetics , rab27 GTP-Binding Proteins/genetics , rab5 GTP-Binding Proteins/genetics , Alphavirus , Alphavirus Infections/immunology , Animals , Cells, Cultured , Endosomes/genetics , Fish Proteins/immunology , Gene Expression , Gene Expression Regulation , Head Kidney/cytology , Head Kidney/immunology , Leukocytes/immunology , Lysosomes/genetics , Salmo salar/immunology , Sequence Homology , rab GTP-Binding Proteins/immunology , rab27 GTP-Binding Proteins/immunology , rab5 GTP-Binding Proteins/immunology
7.
Sci Rep ; 10(1): 898, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31965000

ABSTRACT

The liver is constantly exposed to dietary antigens, viruses, and bacterial products with inflammatory potential. For decades cellular uptake of virus has been studied in connection with infection, while the few studies designed to look into clearance mechanisms focused mainly on the role of macrophages. In recent years, attention has been directed towards the liver sinusoidal endothelial cells (LSECs), which play a central role in liver innate immunity by their ability to scavenge pathogen- and damage-associated molecular patterns. Every day our bodies are exposed to billions of gut-derived pathogens which must be efficiently removed from the circulation to prevent inflammatory and/or immune reactions in other vascular beds. Here, we have used GFP-labelled Enterobacteria phage T4 (GFP-T4-phage) as a model virus to study the viral scavenging function and metabolism in LSECs. The uptake of GFP-T4-phages was followed in real-time using deconvolution microscopy, and LSEC identity confirmed by visualization of fenestrae using structured illumination microscopy. By combining these imaging modalities with quantitative uptake and inhibition studies of radiolabelled GFP-T4-phages, we demonstrate that the bacteriophages are effectively degraded in the lysosomal compartment. Due to their high ability to take up and degrade circulating bacteriophages the LSECs may act as a primary anti-viral defence mechanism.


Subject(s)
Bacteriophage T4/pathogenicity , Liver/cytology , Liver/virology , Animals , Bacteriophage T4/genetics , Bacteriophage T4/metabolism , Cells, Cultured , Endocytosis , Endothelial Cells/metabolism , Endothelial Cells/virology , Green Fluorescent Proteins/genetics , Host-Pathogen Interactions/physiology , Lysosomes/virology , Male , Microorganisms, Genetically-Modified , Pathogen-Associated Molecular Pattern Molecules/metabolism , Rats, Sprague-Dawley
8.
Lab Chip ; 18(19): 3025-3036, 2018 09 26.
Article in English | MEDLINE | ID: mdl-30132501

ABSTRACT

Red blood cells (RBCs) have the ability to undergo morphological deformations during microcirculation, such as changes in surface area, volume and sphericity. Optical waveguide trapping is suitable for trapping, propelling and deforming large cell populations along the length of the waveguide. Bright field microscopy employed with waveguide trapping does not provide quantitative information about structural changes. Here, we have combined quantitative phase microscopy and waveguide trapping techniques to study changes in RBC morphology during planar trapping and transportation. By using interference microscopy, time-lapsed interferometric images of trapped RBCs were recorded in real-time and subsequently utilized to reconstruct optical phase maps. Quantification of the phase differences before and after trapping enabled study of the mechanical effects during planar trapping. During planar trapping, a decrease in the maximum phase values, an increase in the surface area and a decrease in the volume and sphericity of RBCs were observed. QPM was used to analyze the phase values for two specific regions within RBCs: the annular rim and the central donut. The phase value of the annular rim decreases whereas it increases for the central donut during planar trapping. These changes correspond to a redistribution of cytosol inside the RBC during planar trapping and transportation.


Subject(s)
Erythrocytes/cytology , Microscopy , Optical Tweezers , Cytosol/metabolism , Erythrocyte Count , Humans , Male
9.
Opt Express ; 26(16): 19864-19876, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-30119307

ABSTRACT

Total internal reflection fluorescence (TIRF) microscopy benefits from high-sensitivity, low background noise, low photo-toxicity and high-contrast imaging of sub-cellular structures close to the membrane surface. Although, TIRF microscopy provides high-contrast imaging it does not provide quantitative information about morphological features of the biological cells. Here, we propose an integrated waveguide chip-based TIRF microscopy and label-free quantitative phase imaging (QPI). The evanescent field present on top of a waveguide surface is used to excite the fluorescence and an upright microscope is used to collect the signal. The upright microscope is converted into a Linnik-type interferometer to sequentially extract both the quantitative phase information and TIRF images of the cells. Waveguide chip-based TIRF microscopy benefits from decoupling of illumination and collection light path, large field of view imaging and pre-aligned configuration for multi-color TIRF imaging. The proposed multi-modal microscopy is used to study inflammation caused by lipopolysaccharide (LPS) on rat macrophages. The TIRF microscopy showed that LPS inflammatory molecule disrupts the cell membrane and causes cells to significantly expand across a substrate. While, QPI module quantified changes in the sub-cellular content of the LPS challenged macrophages, showing a net decrease in its maximum phase values.


Subject(s)
Inflammation/pathology , Macrophages/pathology , Microscopy, Fluorescence/instrumentation , Microscopy, Phase-Contrast/instrumentation , Molecular Imaging/methods , Animals , Carcinoma, Merkel Cell/pathology , Cell Line, Tumor , Fluorescent Dyes/pharmacology , Lipopolysaccharides/pharmacology , Macrophages/immunology , Multimodal Imaging , Rats , Skin Neoplasms/pathology
10.
Nat Commun ; 7: 13711, 2016 12 13.
Article in English | MEDLINE | ID: mdl-27958271

ABSTRACT

Imaging non-adherent cells by super-resolution far-field fluorescence microscopy is currently not possible because of their rapid movement while in suspension. Holographic optical tweezers (HOTs) enable the ability to freely control the number and position of optical traps, thus facilitating the unrestricted manipulation of cells in a volume around the focal plane. Here we show that immobilizing non-adherent cells by optical tweezers is sufficient to achieve optical resolution well below the diffraction limit using localization microscopy. Individual cells can be oriented arbitrarily but preferably either horizontally or vertically relative to the microscope's image plane, enabling access to sample sections that are impossible to achieve with conventional sample preparation and immobilization. This opens up new opportunities to super-resolve the nanoscale organization of chromosomal DNA in individual bacterial cells.


Subject(s)
Escherichia coli/ultrastructure , Microscopy, Fluorescence/methods , Optical Tweezers
11.
J Vis Exp ; (75): e50047, 2013 May 03.
Article in English | MEDLINE | ID: mdl-23665532

ABSTRACT

Prostate cancer is the leading form of malignancies among men in the U.S. While surgery carries a significant risk of impotence and incontinence, traditional chemotherapeutic approaches have been largely unsuccessful. Hormone therapy is effective at early stage, but often fails with the eventual development of hormone-refractory tumors. We have been interested in developing therapeutics targeting specific metabolic deficiency of tumor cells. We recently showed that prostate tumor cells specifically lack an enzyme (argininosuccinate synthase, or ASS) involved in the synthesis of the amino acid arginine(1). This condition causes the tumor cells to become dependent on exogenous arginine, and they undergo metabolic stress when free arginine is depleted by arginine deiminase (ADI)(1,10). Indeed, we have shown that human prostate cancer cells CWR22Rv1 are effectively killed by ADI with caspase-independent apoptosis and aggressive autophagy (or macroautophagy)(1,2,3). Autophagy is an evolutionarily-conserved process that allows cells to metabolize unwanted proteins by lysosomal breakdown during nutritional starvation(4,5). Although the essential components of this pathway are well-characterized(6,7,8,9), many aspects of the molecular mechanism are still unclear - in particular, what is the role of autophagy in the death-response of prostate cancer cells after ADI treatment? In order to address this question, we required an experimental method to measure the level and extent of autophagic response in cells - and since there are no known molecular markers that can accurately track this process, we chose to develop an imaging-based approach, using quantitative 3D fluorescence microscopy(11,12). Using CWR22Rv1 cells specifically-labeled with fluorescent probes for autophagosomes and lysosomes, we show that 3D image stacks acquired with either widefield deconvolution microscopy (and later, with super-resolution, structured-illumination microscopy) can clearly capture the early stages of autophagy induction. With commercially available digital image analysis applications, we can readily obtain statistical information about autophagosome and lysosome number, size, distribution, and degree of colocalization from any imaged cell. This information allows us to precisely track the progress of autophagy in living cells and enables our continued investigation into the role of autophagy in cancer chemotherapy.


Subject(s)
Autophagy/physiology , Microscopy, Fluorescence/methods , Cell Line, Tumor , Fluorescent Dyes/chemistry , Humans , Imaging, Three-Dimensional/methods , Lysosomes/physiology , Male , Prostatic Neoplasms/chemistry , Prostatic Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...