Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Foods ; 13(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38472832

ABSTRACT

This study aimed to investigate the effectiveness of dimethyl dicarbonate (DMDC) at various concentrations (0-250 ppm) in inhibiting the growth of Escherichia coli TISTR 117 and spoilage microbes in passion fruit juice (PFJ) and its impact on the physicochemical and antioxidant quality of the juice during refrigerated storage. The highest log reduction in the total viable count, yeast/molds and E. coli was attained in PFJ samples with 250 ppm of DMDC (p ≤ 0.05) added. Microbial growth inhibition by DMDC followed the first-order kinetic model with a coefficient of determination (R2) and inhibition constants (k) ranging from 0.98 to 0.99 and 0.022 to 0.042, respectively. DMDC at 0-250 ppm showed an insignificant effect on pH, °Brix, color (L*, a*, b*), ascorbic acid, total phenolic compound (TPC), total flavonoid content, and antioxidant activity (DPPH, FRAP) (p > 0.05). Control (untreated PFJ), DMDC-250 ppm, and pasteurized (15 s at 72 °C) samples were subjected to 27 days of cold storage at 4 °C. A decreasing trend in pH, total soluble solid, ascorbic acid content, DPPH and FRAP values were observed in all the samples during refrigerated storage. However, the DMDC-250 ppm sample showed a better prospect in physicochemical quality changes compared to the pasteurized and untreated control PFJ samples. ΔE values showed marked changes in the control sample than the DMDC-250 ppm and pasteurized samples at 27 days of storage. Additionally, the total viable count and yeast/mold count were augmented during storage, and an estimated shelf-life of the control, DMDC-250 ppm, and pasteurized samples was approximately 3, 24 and 18 days, respectively. In conclusion, DMDC at 250 ppm could ensure microbial safety without affecting the quality attributes of PFJ during 24 days of storage at 4 °C.

2.
Food Sci Technol Int ; : 10820132231219525, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38086753

ABSTRACT

The effects of juice pH, type of acidulant, and post-treatment refrigeration on the high-pressure processing (HPP) inactivation of Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes in acid beverages were evaluated. Inoculated apple, orange, and grape juices (at their original pH and adjusted to pH 4.00, 4.50, and 5.00) were treated at 550 MPa for 1 min at 5 °C. In addition, inoculated model solutions acidified to a pH of 5.00 with acetic, citric, malic, and tartaric acids were treated at 400 MPa for 1 min at 5 °C. The effect of refrigerated storage for 24 h after treatment on pathogen inactivation in both experiments was also assessed. A greater than 5-log reduction of the three pathogens inoculated was achieved in all juices immediately after HPP at the juices' original pH, and of L. monocytogenes under all experimental conditions. Refrigerated storage for 24 h after HPP treatment improved the inactivation of E. coli O157:H7, to >5-log reduction, at pH 4.00 in apple juice and of Salmonella in the three juices at pH 4.00. The type of acidulant did not significantly (p > 0.01) affect E. coli or Salmonella inactivation in acidified model solutions but a greater than 5-log reduction after HPP was only achieved for L. monocytogenes when acetic acid was used. The effectiveness of HPP for pathogen inactivation depended largely on product pH and the target pathogen of concern.

3.
Article in English | MEDLINE | ID: mdl-37725304

ABSTRACT

The main goal of this study was the evaluation of the probiotic potential of 10 Bacillus spp. strains isolated from 5 bee bread and 3 bee pollen samples. The antagonistic interaction with Staphylococcus aureus and Escherichia coli was a primary criterion for the preliminary selection of the isolates. Three out of ten strains-PY2.3 (isolated from pollen), BP20.15 and BB10.1 (both isolated from bee bread)-were found to be possible probiotic strains. All these strains are safe for humans (exhibiting [Formula: see text]-hemolytic activity) and meet all essential requirements for probiotics in terms of viability in the presence of bile salts and acid conditions, hydrophobicity, auto-aggregation, and co-aggregation with the cells of important human pathogenic bacteria. They also assimilate more than 30% of cholesterol after 24 h of incubation. These three isolates are resistant to penicillin but sensitive (or exhibit moderate resistance) to the other nine antibiotics tested herein. On the basis of whole-genome sequencing, BP20.15 and BB10.1 were classified as B. subtilis and PY2.3 as B. velezensis. Moreover, genomic analyses revealed that all these isolates are potential producers of different antimicrobial compounds, including bacteriocins and secondary metabolites. The outcomes of this study have proven that some of the Bacillus strains isolated from bee pollen or bee bread are potential probiotics.

4.
Foods ; 12(14)2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37509817

ABSTRACT

This study evaluated the efficiency of UV radiation doses (4.68-149.76 J/cm2) and nisin (50-200 ppm) and their combination in comparison with thermal pasteurization on the microbial inhibition kinetics and physicochemical properties of tangerine juice. It was noted that UV-149.76 J/cm2 and nisin (NS) at 200 ppm in conjunction exhibited the highest log reduction in spoilage and pathogenic microbes including Escherichia coli, Lactiplantibacillus plantarum, and Saccharomyces cerevisiae, yeast and molds, and total plate count in tangerine juice. Additionally, the first-order kinetic model provides a better fit for spoilage and pathogenic strains compared with the zero-order model (higher coefficient of determination, R2), particularly for E. coli. UV and NS showed insignificant effects (p > 0.05) on pH, TSS, and TA values compared with pasteurization. However, there were notable differences observed in color analysis, total phenolic compound, total flavonoid content, vitamin C, carotenoid content, and antioxidant activity using DPPH and FRAP assays. The optimized UV + NS samples were subjected to refrigerated storage for 21 days. The results revealed that during the entire storage period, the pH values and the TSS values slightly decreased, and the TA values increased in the treated samples. The UV + NS treatment insignificantly impacted the color properties. The total phenolic, total flavonoid, and carotenoid contents, and vitamin C decreased over time for all sample treatments, whereas the antioxidant properties exhibited varying outcomes, compared with an untreated control and pasteurization. Therefore, UV radiation and nisin (UV-149.76 J/cm2 + NS-200 ppm) in combination could serve as a viable alternative to traditional heat pasteurization of fruit juice during cold storage.

5.
Foods ; 12(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36673368

ABSTRACT

Purple corn kernels were subjected to boiling and steaming times of 5-15 min to extract purple corn milk (PCM). Pasteurized and unpasteurized PCM samples were investigated for changes in anthocyanins, antioxidants, and physicochemical properties. Anthocyanins, total phenolics, antioxidant activity, color and viscosity values showed promising results in pasteurized PCM samples extracted from kernels steamed for 5 min (PPCM-S5) compared to other samples (p ≤ 0.05). Changes in L*, a* and b* values, total phenolics and DPPH activity were lowered in PPCM-S5 samples with higher retention of anthocyanins compared to the PCM extracted from boiled kernels (p ≤ 0.05). PCM extracted from 5 min steamed kernels fortified with 4% sucrose (PCM5-S4) after pasteurization revealed the lowest changes in color, pH, total soluble solid and viscosity during 12 days of storage at 4 °C compared to the unpasteurized PCM without sucrose and pasteurized PCM fortified with 6% sucrose. Additionally, pasteurized PCM5-S4 samples marked the highest anthocyanins, total phenolics and antioxidant activity during storage. Microbial load was lowest in pasteurized PCM5-S4 samples stored at 4 °C for 12 days. However, coliforms, yeast or mold and Escherichia coli were not present in the thermally processed PCM samples. The highest sensory scores were obtained in PCM5-S4 at day 12 of storage compared to PCM without any treatment. Therefore, pasteurized PCM extracted from 5 min steamed purple corn kernels retained bioactivity along with 4% sucrose fortification resulted in higher sensory acceptability. As a consequence the shelf-life of PCM5-S4 sample was extended up to 12 days at 4 °C.

6.
Foods ; 12(2)2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36673504

ABSTRACT

In this study, the extraction of cocoa shell powder (CSP) was optimized, and the optimized extracts were spray-dried for encapsulation purposes. Temperature (45−65 °C), extraction time (30−60 min), and ethanol concentration (60−100%) were the extraction parameters. The response surface methodology analysis revealed that the model was significant (p ≤ 0.05) in interactions between all variables (total phenolic compound, total flavonoid content, and antioxidant activity as measured by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP assays), with a lack of fit test for the model being insignificant (p > 0.05). Temperature (55 °C), time (45 min), and ethanol concentration (60%) were found to be the optimal extraction conditions. For spray-drying encapsulation, some quality metrics (e.g., water solubility, water activity) were insignificant (p > 0.05). The microcapsules were found to be spherical in shape using a scanning electron microscope. Thermogravimetric and differential thermogravimetric measurements of the microcapsules revealed nearly identical results. The gum arabic + maltodextrin microcapsule (GMM) showed potential antibacterial (zone of inhibition: 11.50 mm; lower minimum inhibitory concentration: 1.50 mg/mL) and antioxidant (DPPH: 1063 mM trolox/100g dry wt.) activities (p ≤ 0.05). In conclusion, the microcapsules in this study, particularly GMM, are promising antioxidant and antibacterial agents to be fortified as functional food ingredients for the production of nutraceutical foods with health-promoting properties.

7.
PLoS One ; 17(4): e0266470, 2022.
Article in English | MEDLINE | ID: mdl-35385565

ABSTRACT

Raw honey contains a diverse microbiota originating from honeybees, plants, and soil. Some gram-positive bacteria isolated from raw honey are known for their ability to produce secondary metabolites that have the potential to be exploited as antimicrobial agents. Currently, there is a high demand for natural, broad-spectrum, and eco-friendly bio-fungicides in the food industry. Naturally occurring antifungal products from food-isolated bacteria are ideal candidates for agricultural applications. To obtain novel antifungals from natural sources, we isolated bacteria from raw clover and orange blossom honey to evaluate their antifungal-producing potential. Two Bacillus velezensis isolates showed strong antifungal activity against food-isolated fungal strains. Antifungal compound production was optimized by adjusting the growth conditions of these bacterial isolates. Extracellular proteinaceous compounds were purified via ammonium sulfate precipitation, solid phase extraction, and RP-HPLC. Antifungal activity of purified products was confirmed by deferred overlay inhibition assay. Mass spectrometry (MS) was performed to determine the molecular weight of the isolated compounds. Whole genome sequencing (WGS) was conducted to predict secondary metabolite gene clusters encoded by the two antifungal-producing strains. Using MS and WGS data, we determined that the main antifungal compound produced by these two Bacillus velezensis isolates was iturin A, a lipopeptide exhibiting broad spectrum antifungal activity.


Subject(s)
Bacillus , Honey , Animals , Antifungal Agents/chemistry , Bacillus/genetics , Bacteria/metabolism , Honey/microbiology , Lipopeptides/metabolism
8.
Front Microbiol ; 13: 1099522, 2022.
Article in English | MEDLINE | ID: mdl-36713191

ABSTRACT

Raw honeys contain diverse microbial communities. Previous studies have focused on isolating bacteria and fungi that are culturable, while missing a large proportion of the microbial community due to culture-based constraints. This study utilized next-generation sequencing (NGS) to analyze the composition of microorganisms in raw honey; these data can reveal environmental and physicochemical variables that are associated with different microbial communities. To examine the microbial composition (bacteria and fungi) of raw honey and analyze its association with physicochemical properties, four types of honey (monofloral, wildflower, manuka, and feral; n total = 36) were analyzed via amplicon metagenomics. The analyzed honey samples had relatively similar bacterial communities but more distinct and diverse fungal communities. Honey type was determined as a significant factor influencing alpha and beta diversity metrics of bacterial and fungal communities. For the bacterial communities, titratable acidity (TA) was associated with community richness and diversity. For the fungal communities, Brix, TA, and color were associated with community richness, while water activity and color were associated with community diversity. Additionally, important bacterial and fungal amplicon sequence variants (ASVs) that influenced the overall community were identified. Results from this study provide important insights into the microbial communities associated with different types of raw honey, which could improve our understanding of microbial dynamics in beehives, improve honey production, and prevent honeybee disease.

9.
Int J Food Microbiol ; 358: 109404, 2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34563882

ABSTRACT

The objectives of this research were to study the effect of DMDC (0-250 ppm) on quality and shelf life of mango and passion fruit smoothie during cold storage. The correlation between microbial population (total microorganisms, yeast and mold, E. coli and S. aureus) and DMDC concentration using zero-order kinetic and first-order kinetic was also determined. In addition, the effect of DMDC compared with pasteurization (90 °C, 100 s) on quality of mixed mango and passion fruit smoothie during the cold storage (4 °C) was studied. The results showed that microbial inactivation was best-described by first-order kinetic model due to a higher coefficient of determination (R2). In addition, DMDC did not affect the decreasing trend of total soluble solid, color difference (∆E*) and total phenolic compound as compared to control during the cold storage. DMDC also hindered the increasing trend in microbial population and prevented the loss of antioxidant activity (DPPH and FRAP assays) and total flavonoid content and decreased the PPO activity as compared with the control during the cold storage. In summary, DMDC showed the potential to maintain the quality and to extend the shelf life of mango and passion fruit smoothie during cold storage.


Subject(s)
Food Contamination/analysis , Food Storage , Fruit/microbiology , Mangifera , Passiflora , Cold Temperature , Diethyl Pyrocarbonate/analogs & derivatives , Escherichia coli , Food Microbiology , Mangifera/microbiology , Passiflora/microbiology , Staphylococcus aureus
10.
Antibiotics (Basel) ; 10(6)2021 Jun 13.
Article in English | MEDLINE | ID: mdl-34199247

ABSTRACT

The principal objective of the study was the isolation and identification of bacteria that are present in mature bee bread (BB) and dried (ready for selling and consumption) bee pollen (BP). Obtained isolates were screened for their potential to inhibit select human pathogenic bacteria and their ability to produce enzymes of particular industrial importance. Four and five samples of BP and BB, respectively, were used for the study. In total, 81 strains of bacteria were isolated, and 34 (42%) of them exhibited antagonistic interactions with at least one reference strain of pathogenic bacteria, namely Staphylococcus aureus ATCC 25923, Staphylococcus aureus ATCC 29213, Staphylococcus epidermidis 12228, Pseudomonas aeruginosa ATCC 27857, and Escherichia coli ATCC 25922. The sequencing of the 16S rRNA gene revealed that all strains producing antimicrobials belong to the genus Bacillus spp., and among them, five species were identified: B. pumilus (n = 17), B. altitudinis (n = 9), B. licheniformis (n = 4), B. subtilis (n = 2), and B. safensis (n = 1). Furthermore, 69, 54, 39, and 29 of the strains exhibited lipolytic, proteolytic, cellulolytic, and esterolytic activity, respectively. Alpha amylase and beta galactosidase activity were rarely observed, and none of the strains produced laccase. The outcomes of the study revealed that BP and BB can be considered potential sources of bacteria producing antimicrobial agents and/or enzymes of particular industrial importance. Of course, additional research is required to verify this hypothesis, but the results of preliminary studies are promising.

11.
Antibiotics (Basel) ; 10(2)2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33525690

ABSTRACT

This study aimed at investigation of the antimicrobial potential of ethanolic extracts of bee bread (BB) and bee pollen (BP) and suspensions of these products in MHB (Mueller Hinton Broth). We covered 30 samples of BP and 19 samples of BB harvested in Polish apiaries. Slightly lower activity was observed against Gram-negative bacteria compared to Gram-positive staphylococci. BB extracts exhibited higher inhibitory potential with minimum inhibitory concentration (MIC) values in the range from 2.5 to 10% (v/v) against Staphylococcus aureus ATCC 25923 and ATCC 29213. Most active BB extracts, namely, BB6, BB11 and BB19, effectively inhibited growth of clinical isolates of S. aureus (n = 9), including MRSA (methicillin resistant Staphylococcus aureus) strains (n = 3) at concentrations ranging from 2.5 to 5.0% (v/v). Minimal bactericidal concentration (MBC) values were in the same range of concentrations; however, a shift from 2.5 to 5.0% (v/v) was observed for some products. The most active BP extracts inhibited the growth of reference strains of S. aureus at a concentration of 5% (v/v). Up to the concentration of 20% (v/v) three and seven BP extracts were not able to inhibit the growth of S. aureus ATCC 29213 and S. aureus ATCC 25923 respectively. The growth of staphylococci was also importantly inhibited in suspensions of the products in MHB. No correlation between phenolic content and antimicrobial activity was observed.

12.
J Food Prot ; 84(6): 1023-1032, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33465235

ABSTRACT

ABSTRACT: Wine and alcoholic apple cider are commonly back-sweetened with unpasteurized juice to produce fresh, natural, and palatable sweetened alcoholic beverages. Foodborne pathogens may be introduced from unpasteurized juice into alcoholic beverages through this back-sweetening process. Although foodborne pathogens generally do not survive under low pH conditions or a high alcohol environment, the die-off of these pathogens has not been established to ensure the microbiological safety of the products. To establish the holding conditions that would provide the required 5-log pathogen reduction requirements for these back-sweetened beverages, we evaluated the survival of three common foodborne pathogens, E. coli O157:H7, Salmonella enterica, and Listeria monocytogenes, in modified white grape juice and apple juice models. White grape juice and apple juice were modified with hydrochloric acid and sodium hydroxide and with ethanol to achieve conditions that are similar to back-sweetened white wine and alcoholic apple cider in regard to pH and ethanol content. Foodborne pathogen cocktails were inoculated separately into modified juice models, and their survival in the juice models was recorded over a 96-h period. Our results show that a combination of low pH and high ethanol content resulted in faster pathogen die-off compared with higher pH and lower ethanol conditions. The holding times required for different combinations of pH and ethanol concentration for each juice model to achieve a 5-log reduction were reported. This research provides data to validate pathogen die-off to comply with juice hazard analysis and critical control point 5-log pathogen inactivation requirements for back-sweetened wine and alcoholic apple cider.


Subject(s)
Listeria monocytogenes , Malus , Wine , Alcoholic Beverages , Beverages , Colony Count, Microbial , Food Microbiology
13.
Int J Food Microbiol ; 339: 109034, 2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33388710

ABSTRACT

Increasing consumer demand for high-quality foods has driven adoption by the food industry of non-thermal technologies such as high pressure processing (HPP). The technology is employed as a post-packaging treatment step for inactivation of vegetative microorganisms. In order to evaluate HPP inactivation of Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes in acid and acidified juices and beverages, pressure tolerance parameters were determined using log-linear and Weibull models in pH-adjusted apple juice (pH 4.5) at 5 °C. A commercial processing HPP unit was used. The Weibull model better described the inactivation kinetics of the three tested pathogens. According to estimates from the Weibull model, 1.5, 0.9, and 1.5 min are required at 600 MPa to produce 5-log reductions of E. coli, Salmonella, and L. monocytogenes, respectively, whereas according to the log-linear model, 3.2, 1.8, and 2.1 min are required. The effects of process conditions were verified using commercial products (pH between 3.02 and 4.21). In all tested commercial juices or beverages, greater than 5-log reductions were achieved for all tested pathogens using HPP process conditions of 550 MPa for 1 min. These findings demonstrate that the HPP conditions of 600 MPa for 3 min, typically used by the food industry provide an adequate safety margin for control of relevant vegetative pathogens in acid and acidified juices and beverages (pH < 4.5). Results from this study can be used by food processors to support validation studies and may be useful for the future establishment of safe harbors for the HPP industry.


Subject(s)
Bacterial Physiological Phenomena , Food Handling/methods , Food Microbiology/methods , Fruit and Vegetable Juices , Microbial Viability , Pressure , Acids , Beverages/microbiology , Colony Count, Microbial , Escherichia coli O157/physiology , Food Handling/standards , Fruit and Vegetable Juices/microbiology , Listeria monocytogenes/physiology , Malus/microbiology , Salmonella enterica/physiology
14.
Appl Environ Microbiol ; 87(5)2021 03 01.
Article in English | MEDLINE | ID: mdl-33361369

ABSTRACT

Rapid ATP testing and microbiological enumeration are two common methods to monitor the effectiveness of cleaning and sanitation in the food industry. In this study, ATP testing and microbiological enumeration were implemented at a tofu production facility with the goal of improving cleaning practices and overall plant hygiene. Results from ATP monitoring were used to target areas of the production environment needing additional cleaning; ATP results were verified by microbiological enumeration of aerobic microorganisms, lactic acid bacteria, and yeasts and molds. Products from the production line were enumerated for the same microorganisms to determine if there was an impact on product quality. After the implementation of ATP monitoring and targeted cleaning, there was a statistically lower proportion of swabs that failed to meet established sanitary requirements for ATP, aerobic microorganisms, and lactic acid bacteria (p < 0.05), but not for yeasts and molds. ATP swabs and microbiological enumeration agreed on site hygiene 75.1% (72.3-77.7%, 95% CI) of the time. Product data indicated that unpasteurized finished products contained a statistically lower microbial load of the three groups of organisms following implementation of the practices (p < 0.05).ImportanceCleaning and sanitation are critical to maintaining safe and high-quality food production. Monitoring these activities is important to ensure proper execution of procedure and to assure compliance with regulatory guidelines. The results from monitoring activities can direct targeted cleaning of areas with higher risk of contamination from foodstuffs and microorganisms. The results of this study show that ATP monitoring and microbiological enumeration are useful tools to verify and improve the efficacy of cleaning and sanitation practices, which can have a positive impact on both plant hygiene and product quality. However, testing regimes and critical parameters will vary based on the product and facility.

15.
Pathogens ; 9(8)2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32796690

ABSTRACT

Staphylococci growing in the form of biofilm exhibit high resistance to a plethora of antibiotics. The aim of the study was to assess the influence of ethanolic extract of propolis (EEPs) on S. epidermidis ATCC 35984 biofilm using fluorescent microscopy. Propidium iodide (PI) and SYTO 9 were used for differentiation of live and dead cells, and calcofluor white was used to stain the extracellular matrix, the self-produced extracellular polymeric substances (EPS). The outcomes of the research confirm the promising potential of EEPs for eradication of staphylococcal biofilm. However, its activity cannot be classified as fully satisfactory, either in terms of the effectiveness of elimination of bacterial cells or disturbing the EPS structure. A two or even four times higher concentration of EEPs compared to MIC (Minimum Inhibitory Concentration) against planktonic cells (128 µg/mL) was necessary for effective (estimated for 90%) elimination of living cells from the biofilm structure. Unfortunately, even at that concentration of EEPs, the extracellular matrix was only partially disturbed and effectively protected the residual population of living cells of S. epidermidis ATCC 35984. In our opinion, a combination of EEPs with agents disrupting components of EPS, e.g., proteases, lysines, or enzymes degrading extracellular DNA or PIA (polysaccharide intercellular adhesin).

16.
BMC Res Notes ; 13(1): 280, 2020 Jun 09.
Article in English | MEDLINE | ID: mdl-32517793

ABSTRACT

OBJECTIVE: A Paenibacillus strain isolated in previous research exhibited antimicrobial activity against relevant human pathogens including Staphylococcus aureus and Listeria monocytogenes. In this study, the genome of the aforementioned strain, designated as MP1, was shotgun sequenced. The draft genome of strain MP1 was subject to multiple genomic analyses to taxonomically characterize it and identify the genes potentially responsible for its antimicrobial activity. RESULTS: Here we report the draft genome sequence of an antimicrobial producing Paenibacillus strain, MP1. Average Nucleotide Identity (ANI) analysis established strain MP1 as a new strain of the previously characterized Paenibacillus alvei. The genomic analysis identified several putative secondary metabolite clusters including seven Nonribosomal Peptide Synthetase clusters (NRPS) (> 10,000 nt), one bacteriocin or other unspecified Ribosomally Synthesized and Post-Translationally modified Peptide Product (RiPP), one lanthipeptide, and six hybrid clusters (NRPS-Type I Polyketide synthase (T1PKS) and NRPS-trans Amino Transferase Polyketide Synthase (AT-PKS)).


Subject(s)
Anti-Infective Agents , Genome, Bacterial/genetics , Paenibacillus/genetics , Whole Genome Sequencing
17.
Pathogens ; 9(5)2020 Apr 25.
Article in English | MEDLINE | ID: mdl-32344843

ABSTRACT

An emerging need for new classes of antibiotics is, on the one hand, evident as antimicrobial resistance continues to rise. On the other hand, the awareness of the pros and cons of chemically synthesized compounds' extensive use leads to a search for new metabolites in already known reservoirs. Previous research showed that Paenibacillus strain (P. alvei MP1) recovered from a buckwheat honey sample presented a wide spectrum of antimicrobial activity against both Gram-positive and Gram-negative pathogens. Recent investigation has confirmed that P. alvei MP1 (deposited at DDBJ/ENA/GenBank under the accession WSQB00000000) produces a proteinaceous, heat-stable compound(s) with the maximum antimicrobial production obtained after 18 hours of P. alvei MP1 growth in LB medium at 37 °C with continuous shaking at 200 RPM. The highest activity was found in the 40% ammonium sulfate precipitate, with high activity also remaining in the 50% and 60% ammonium sulfate precipitates. Moderate to high antimicrobial activity that is insensitive to proteases or heat treatment, was confirmed against pathogenic bacteria that included L. monocytogenes FSL - X1-0001 (strain 10403S), S. aureus L1 - 0030 and E. coli O157: H7. Further studies, including de novo sequencing of peptides by mass spectrometry, are in progress.

18.
Braz J Microbiol ; 51(2): 779-785, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31452069

ABSTRACT

Novel processing technologies can be used to improve both the microbiological safety and quality of food products. The application of high pressure processing (HPP) in combination with dimethyl dicarbonate (DMDC) represents a promising alternative to classical thermal technologies. This research work was undertaken to investigate the combined effect of HPP and DMDC, which was aimed at reaching over 5-log reduction in the reference pathogens Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes inoculated in apple juice. Different strains of each species were tested. The pressure (ranging from 100 to 600 MPa), dwell time (from 26 to 194 s), and DMDC (from 116 to 250 mg/L) were tested based on a central composite rotatable design. The dwell time, in the studied range, did not have a significant effect (p > 0.1) on the pathogens´ reduction. All treatments achieved a greater than 5-log reduction for E. coli O157:H7 and L. monocytogenes. The reductions for S. enterica were also greater than 5-log for almost all tested combinations. The results for S. enterica suggested that it is more resistant to HPP and DMDC compared with E. coli O157:H7 and L. monocytogenes. The findings of this study showed that DMDC at low concentrations can be added to apple juice to reduce the parameters conventionally applied in HPP. The combined use of HPP and DMDC was highly effective under the conditions of this study.


Subject(s)
Atmospheric Pressure , Bacteria/drug effects , Diethyl Pyrocarbonate/analogs & derivatives , Fruit and Vegetable Juices/microbiology , Malus/microbiology , Microbial Viability/drug effects , Bacteria/pathogenicity , Colony Count, Microbial , Diethyl Pyrocarbonate/pharmacology , Escherichia coli O157/drug effects , Food Microbiology/methods , Listeria monocytogenes/drug effects , Salmonella enterica/drug effects
19.
J Food Prot ; 82(10): 1736-1743, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31536417

ABSTRACT

Consumption of spicy foods and hot sauces is currently a popular trend worldwide. Shelf-stable acidified sauces are commonly hot-filled to ensure commercial sterility, but cold-fill-hold processes might also be suitable if microbial safety and stability are ensured. For this study, model acidified hot pepper sauces were developed and characterized. The effects of sauce pH and of two different organic acids on the survival of Pichia manshurica and Lactobacillus curvatus isolated from contaminated commercial hot sauces and on pathogenic Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes were assessed. Full factorial designs with three levels for pH (3.2, 3.5, and 3.9) and two for organic acid (citric and acetic) were used to determine the effects of these factors and their interactions on the survival of the microorganisms. Commercially sterile sauces were independently inoculated and kept at ambient temperature. Microbial counts were determined at different sampling times, depending on the treatment evaluated. Sauces acidified to pH 3.2 with citric or acetic acid were inoculated with cocktails of five strains or serotypes of the three pertinent pathogens, and inactivation curves were determined. Trials were performed in triplicate. A greater than 5-log reduction of P. manshurica and L. curvatus was achieved in less than 6 h in sauces adjusted to pH 3.2 with acetic acid. Greater than 5-log reductions of pathogenic bacteria were achieved 0.5 h after inoculation in sauces acidified to pH 3.2 with acetic acid. In contrast, at least 48 h was required to guarantee the same inactivation for the most tolerant pathogen when citric acid was used. Thus, a cold-fill-hold process may be a suitable alternative for acidified hot pepper sauces. Based on survival of the microorganisms evaluated in this study, microbial safety and stability can be achieved by adjusting the pH to 3.2 or less by the addition of acetic acid.


Subject(s)
Capsicum , Food Microbiology , Listeria monocytogenes , Microbial Viability , Vegetable Products , Colony Count, Microbial , Hydrogen-Ion Concentration , Vegetable Products/microbiology
20.
J Food Prot ; 82(8): 1423-1432, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31335189

ABSTRACT

Psychrotolerant growth of Listeria monocytogenes in ready-to-eat (RTE) foods increases the risk to food safety, particularly when spoilage does not occur prior to L. monocytogenes growth of >1 log CFU/g. The purpose of this study was to evaluate the relative rates of quality deterioration and L. monocytogenes growth in six product systems (tomatoes, apples, fresh-cut cantaloupe, fresh-cut lettuce, baby spinach, and commercially processed turkey slices) under various conditions of refrigeration temperatures, atmospheres, and quality. Cantaloupe and spinach leaves supported >1 log CFU/g growth of L. monocytogenes before product spoilage at both 4 and 9°C. In some cases, conditions that improved microbial quality by extending shelf life also allowed L. monocytogenes growth of >1 log CFU/g before deterioration due to microbial spoilage. For example, storage with modified atmosphere packaging enhanced L. monocytogenes growth relative to spoilage microbiota in lettuce leaves (1.0-log increase 7 days before spoilage). In contrast, the use of secondary quality produce (i.e., apples, tomatoes, and lettuce with physical damage) reduced shelf life and, consequently, limited the time for L. monocytogenes proliferation. Therefore, spoilage cannot be considered a fail-safe indicator or proxy for limitation of shelf life across refrigerated RTE products.


Subject(s)
Food Handling , Food Microbiology , Listeria monocytogenes , Microbiota , Colony Count, Microbial , Food Handling/standards , Listeria monocytogenes/growth & development , Microbiota/physiology , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...