Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
Sci Total Environ ; 950: 175402, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39127206

ABSTRACT

It is of great significance to develop an energy-efficient and external oxidant-free strategy for antibiotics removal. In this study, the novel light-dark tandem strategy was established to enhance tetracycline (TC) removal by bifunctional FeCu-doped carbon composites (FeCu@BC) derived from waste cotton fabrics. Interestingly, over 95 % TC was removed by FeCu@BC under light alone and dark alone in 10 min, with the same preferred conditions of pH 7.50 and 0.04 g/L catalyst dosage. Surprisingly, the enhanced mineralization efficiency of TC was achieved by the light-dark tandem without adjusting the parameters as 86.65 %, which was 1.13, 1.46 and 2.12 times higher than those of the dark-light tandem, light alone and dark alone, respectively. The mechanisms were elucidated as that 83.28 % direct degradation and 4.37 % indirect degradation under light while 47.63 % direct degradation and 24.16 % indirect degradation under darkness contributed for TC removal. The synergetic effects of persistent free radicals (PFRs) and FeCu interactions enabled FeCu@BC to work efficiently under both light and darkness, and light enhanced electron transfer between PFRs and FeCu interactions. Furthermore, energetic electrons stored in these active sites under light could be extracted to enhance electron transfer under subsequent darkness and the strongly catalytically active species initiated under light remained in action after cessation of light. Finally, high molecular TC was easily decomposed by energetic photo-catalysis and low molecular intermediates were mineralized under subsequent enhanced dark-catalysis to increase the mineralization efficiency. In general, this study provided an eco-friendly organics removal strategy and mechanisms insights based on the natural day-night cycle.

2.
J Hazard Mater ; 473: 134656, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38776817

ABSTRACT

Stabilized heavy metals-containing phases and low chlorine utilization limit heavy metals chlorination reactions. The traditional method of adding chlorinating agents can promote heavy metals chlorination volatilization, but the limiting factor has not been resolved and more chlorides are emitted. Herein, a new reaction pathway to promote heavy metals chlorination volatilization through the transformation of stabilized heavy metals-containing phases and chlorine species by the addition of biomass at the sintering is first reported. The Cu volatilization efficiency increased sharply from 50.50% to 93.21% compared with the control, Zn, Pb, and Cd were nearly completely volatilized. Results show that the biomass carbonization process was more important for Cu chlorination volatilization. Stabilized heavy metals-containing phases were converted from Cu2S to CuO and Cu2O with the biochar and oxygen, increasing the activity of Cu. The chlorine species KCl reacted with CH3-containing groups to form CH3Cl, which reacted with CuO with a lower Delta G than HCl and Cl2, increasing the tendency for the conversion of CuO to CuCl. Cu chlorination volatilization process, following shrinking core kinetic model and controlled by chemical reactions. The outcomes fundamentally addresses the limiting step for heavy metals chlorination volatilization, supporting the incineration fly ash harmless treatment.

3.
Water Res ; 257: 121656, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38677110

ABSTRACT

Schwertmannite (Sch) is considered as an effective remover of Chromium (Cr) due to its strong affinity for toxic Cr species. Since the instability of Sch, the environmental fate of Cr deserves attention during the transformation of Sch into a more stable crystalline phase. The ubiquitous manganese(II) (Mn(II)) probably affects the transformation of Sch and thus the environmental fate of Cr. Therefore, this study investigated the impact of Mn(II) on the transformation of Cr-absorbed Sch (Cr-Sch) and the associated behavior of SO42- and Cr. We revealed that the transformation products of Cr-Sch at pH 3.0 and 7.0 were goethite and Sch, respectively. The presence of Mn(II) weakened the crystallinity of the transformation products, and the trend was positively correlated with the concentration of Mn(II). However, Mn(II) changed the transformation products of Cr-Sch from hematite to goethite at pH 10.0. Mn(II) replaced Fe(III) in the mineral structures or formed Mn-O complexes with surface hydroxyl groups (-OH), thereby affecting the transformation pathways of Sch. The presence of Mn(II) enhanced the immobilization of Cr on minerals at pH 3.0 and 7.0. Sch is likely to provide an channel for electron transfer between Mn(II) and Cr(VI), which promotes the reduction of Cr(VI). Meanwhile, Mn(Ⅱ) induced more -OH production on the surface of secondary minerals, which played an important role in increasing the Cr fixation. In addition, part of the Mn(Ⅱ) was oxidized to Mn(Ⅲ)/Mn(Ⅳ) at pH 3.0 and pH 7.0. This study helps to predict the role of Mn(II) in the transformations of Cr-Sch in environments and design remediation strategies for Cr contamination.


Subject(s)
Chromium , Iron Compounds , Manganese , Minerals , Chromium/chemistry , Manganese/chemistry , Minerals/chemistry , Iron Compounds/chemistry , Phase Transition , Hydrogen-Ion Concentration , Ferric Compounds/chemistry
4.
J Environ Manage ; 358: 120883, 2024 May.
Article in English | MEDLINE | ID: mdl-38631167

ABSTRACT

Applying organic fertilizer is the main way to enhance soil fertility through the interfacial reaction between mineral and dissolved organic matter (DOM). However, the interfacial reaction between minerals and DOM may influence antimony(V) (Sb(V)) mobility in agricultural soils around antimony mines. In our study the ferrihydrite (Fh) was chosen as a representative mineral, to reveal the effect of its interaction with chicken manure organic fertilizer (CM-DOM) with Fh on Sb(V) migration. In this study, we investigated different organic matter molecular weights and C/Fe molar ratios. Our findings indicated that the addition of CM-DOM decreased the adsorption of Sb(V) by Fh and promoted the re-release of Sb(V) adsorbed on Fh. This effect was enhanced by increasing the C/Fe molar ratio. Fh mainly affects its interaction with Sb(V) through electrostatic gravitational interaction and ligand exchange, but the presence of CM-DOM weakens the electrostatic interaction between Fh and Sb(V) as well as competes with Sb(V) for the hydroxyl reactive site on Fh surface. In addition, the smaller molecular weight fraction (<10 kDa) of CM-DOM has higher aromaticity and hydrophobicity, which potentially leads to more intense competition with Sb(V) for the reaction sites on Fh. Therefore, the application of organic fertilizer may promote Sb(V) migration, posing significant risks to soil ecosystems and human health, which should be a concern in field soil cultivation.


Subject(s)
Antimony , Chickens , Manure , Antimony/chemistry , Adsorption , Animals , Ferric Compounds/chemistry , Molecular Weight , Soil/chemistry , Soil Pollutants/chemistry , Fertilizers
5.
J Environ Manage ; 355: 120506, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38447514

ABSTRACT

Plenty of heavy metals (HMs) that are adsorbed on clay minerals (such as kaolinite), in addition to low molecular-weight organic acids (such as oxalic acid (OA)) with high activities, are widespread in the natural environment. In the present study, the effects of OA on the environmental behaviors of Pb2+/Cd2+ adsorbed by kaolinite have been investigated. The effectiveness and mechanisms of calcium silicate (CS) and magnesium silicate (MS) in reducing the environmental risks of the HMs have also been studied. The results showed that the releases of Pb2+/Cd2+ increased with an increasing concentration of OA. When different dosages of CS/MS were added to the aging system, a redistribution of HMs took place and the free form of Pb2+/Cd2+ decreased to very low levels. Also, the unextractable Pb2+/Cd2+ increased to high levels. Furthermore, a series of characterizations showed that the released HMs were re-captured by the CS/MS. In addition, the CS immobilized the OA in the solution during the aging process, which also facilitated an immobilization of the carbon element in the environment. In general, the present study has contributed to a further understanding of the transport behaviors of the HMs in natural environments, and of the interactions between CS (or MS), the environmental media, and the heavy metal contaminants. In addition, this study has also provided an eco-friendly strategy for an effective remediation of heavy metal pollution.


Subject(s)
Metals, Heavy , Soil Pollutants , Kaolin , Cadmium , Lead , Metals, Heavy/analysis , Environmental Pollution , Soil Pollutants/analysis , Soil
6.
Sci Total Environ ; 901: 165928, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37527713

ABSTRACT

Nanoplastics (NPs) usually coexist with impurity-bearing ferrihydrite (ImFh), and their interaction is related to their environmental fate. In this study, the aggregation between ImFh (impurities: Al, Mn and Si) and polystyrene nanoplastics (PSNPs), as well as the sedimentation of ImFh-PSNP complex particles in the aqueous phase were investigated systematically with particle concentrations of 100 mg/L ImFh and 10 mg/L PSNPs. Our results revealed that the PSNP suspension was dispersive and stable under various pH values and low ion strength. After coexisting with ImFh, PSNPs aggregated with the positively charged ImFh to form ImFh-PSNP complex particles, which destroyed the stability of PSNPs. The increase in pH and Na+ concentration could inhibit their aggregation, but high Na+ concentration (>20 mM) caused the homoaggregation of PSNPs. The aggregation capacity of PSNPs with ImFh was in the order of Al-bearing Fh > Fh > Mn-bearing Fh > Si-bearing Fh. Zeta potential and Derjaguin-Landau-Verwey-Overbeek (DLVO) calculations indicated that Al-bearing Fh showed higher positive potential than pure Fh, which caused stronger electrostatic interactions with PSNPs. However, Mn and Si in ImFh decreased the positive potential and inhibited the electrostatic interaction with PSNPs, and the effect of Si was greater than that of Mn. The aggregation between ImFh and PSNPs inhibited the sedimentation of their complex particles, and the higher aggregation capacity appeared to have a greater inhibition degree. Due to the "electrostatic patches" effect of PSNPs, the energy barrier of the ImFh-PSNPs particles was higher than that of the ImFh particles. Our findings clarified the influence of impurities on the interaction between ImFh and PSNPs and provided insight regarding their fate in the environment.

7.
J Environ Manage ; 345: 118581, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37451030

ABSTRACT

Here, tobermorite was prepared by a solvothermal technology using calcite and quartz with a mixed solvent of ethanol and water. Factors including reaction temperature, time and KOH content were studied to optimize the preparation procedure. To study the relationship between ethanol content-material structural characteristics-adsorption capacity, a series of materials were prepared in different mixed solvent proportions of ethanol and water, and their structural characteristics and adsorption capacity were compared. We found that the adsorption capacity of different samples for Pb2+ and Cd2+ was positively correlated with negatively correlated with the surface area and negatively correlated with the crystallinity of materials. Then, the material prepared by 30% ethanol solution (30-T) with the best adsorption performance was used for further research; the results were fitted by kinetic and thermodynamic models, and adsorbed materials were analyzed by various characterizations, suggesting that the adsorption process was ascribed to comprehensive pathways including ion exchange, chemical precipitation, and surface-complexation. Then, the 30-T was further used to remediate heavy metals contaminated soil, and the remediation effect was examined by the DTPA-extractable method and the European Community Bureau of Reference (BCR) sequential extraction method. The DTPA-extractable results showed that tobermorite observably reduced the bioavailability of Pb and Cd, and the BCR results suggested that the acid-soluble and reducible fractions of Pb and Cd were transformed to the oxidizable and residual fractions after remediation. In summary, tobermorite has great potential in the remediation of heavy metal polluted-aquatic environment/system and soil.


Subject(s)
Metals, Heavy , Soil Pollutants , Cadmium , Solvents , Water , Soil/chemistry , Lead , Soil Pollutants/chemistry , Metals, Heavy/chemistry , Pentetic Acid , Ethanol
8.
Bioresour Technol ; 383: 129195, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37207699

ABSTRACT

Microalgae-based Carbon Capture, Utilization and Storage is vital for mitigating global climate change. A filled sphere carrier reactor was developed to achieve high biomass production and carbon sequestration rate of Chlorella pyrenoidosa. By introducing air (0.04% CO2) into the reactor, the dry biomass production achieved 8.26 g/L with the optimized parameters of polyester carrier, 80% packing density, 5-fold concentrated nutrient combining 0.2 mol/L phosphate buffer. At simulated flue gas CO2 concentration of 7%, the dry biomass yield and carbon sequestration rate reached up to 9.98 g/L and 18.32 g/L/d in one day, which were as high as 249.5 and 79.65 times comparing with those of suspension culture at day 1, respectively. The mechanism was mainly attributed to the obvious intensification of electron transfer rate and remarkable increase of RuBisCO enzyme activity in the photosynthetic chloroplast matrix. This work provided a novel approach for potential microalgae-based carbon capture and storage.


Subject(s)
Chlorella , Microalgae , Biomass , Carbon Dioxide , Carbon Sequestration , Carbon
9.
Sci Total Environ ; 879: 163066, 2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37004292

ABSTRACT

Microplastic contamination is a global problem which has been threatening human health and the environment. There is still a knowledge gap about the effect of persistent rain on microplastics distribution and plastisphere community in fluvial environments. In this study, the abundance and composition of microplastics in the sediment and surface water from the Pearl River was investigated. Thirty polymers (10-500 µm) were identified from thirty-eight samples collected at ten sites using the newly developed laser direct infrared (LDIR) technique. The average concentrations of microplastics in the sediment and surface water were 1974 particles kg-1 and 290 particles L-1, respectively. Abnormally high concentrations of polyurethanes (PU) were possibly due to particulate pollution from ship antifouling. The persistent rain increased the abundance and diversity of microplastics in the surface water, whereas an opposite trend was observed in the sediment. Sediments could temporarily switch from microplastics sinks to potential sources under the effect of violent hydrodynamic disturbances. Additionally, plastisphere communities and predicted functional profiles indicated significant differences before and after the rain. Our study highlights the important impact of persistent rain on microplastic contamination in the environment.

10.
Chemosphere ; 321: 138123, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36781002

ABSTRACT

The water polluted by lead(Pb(II)) and cadmium(Cd(II)) seriously endangers ecological safety and needs to be solved urgently. Because of the relatively low adsorption rate of pure hydroxyapatite for heavy metals, a series of manganese-doped hydroxyapatites (MnHAPs) were prepared by using manganese, a common impurity in hydroxyapatite, as a doping element to improve the adsorption performance. The structural and functional groups of the materials with different Mn/(Ca +Mn) molar ratios (0%, 5%, 10%, 20%, and 30%) were investigated by scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET), X-Ray diffraction (XRD), Raman spectrometer and Fourier transform infrared spectroscopy (FTIR) characterization. The presence of manganese influenced the formation and growth of hydroxyapatite crystals, resulting in lattice distortion and a large number of lattice defects in materials. Among them, manganese-doped hydroxyapatite with a Mn/(Ca +Mn) molar ratio of 10% (MnHAP-10) could most effectively remove Pb(II) and Cd(II), with the adsorption capacity of 1806.09 mg g-1 for Pb(II) at pH = 5 and 176.88 mg g-1 for Cd(II) at pH = 5.5. Then the adsorption behavior and mechanism were further researched systemically. It was concluded that the immobilization of Pb(II) by MnHAP-10 was mainly through dissolution precipitation and ion exchange, while Cd(II) was adsorbed by ion exchange and electrostatic interaction. In conclusion, MnHAP-10 has the potential to be applied as an effective adsorbent for the removal of Pb(II) and Cd(II) pollution.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Cadmium/analysis , Manganese , Durapatite/chemistry , Lead , Adsorption , Water Pollutants, Chemical/analysis , Kinetics , Hydrogen-Ion Concentration
11.
Environ Sci Pollut Res Int ; 30(14): 39319-39337, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36740617

ABSTRACT

With illegal discharge of wastewater containing inorganic and organic pollutants, combined pollution is common and needs urgent attention. Understanding the migration and transformation laws of pollutants in the environment has important guiding significance for environmental remediation. Due to the characteristics of adsorption, oxidation, and catalysis, manganese minerals play important role in the environment fate of pollutants. This review summarizes the forms of interaction between manganese minerals and metals, the environmental importance of the interaction between manganese minerals and metals, and the contribution of this interaction in improving performance of Mn-based composite for environmental remediation. The literatures have indicated that the interactions between manganese minerals and metals involve in surface adsorption, lattice replacement, and formation of association minerals. The interaction between manganese minerals and metals plays an important role in environmental behavior of element and environmental significance of manganese minerals. The synergistic or antagonistic effect resulted from the interaction influence the purification of heavy metal and organism pollutant. The synergistic effect benefited from the coordination of adsorption and oxidation, convenient electron transfer, abundant oxygen vacancies, and fast migration of lattice oxygen. Based on the synergy, Mn-based composites have been widely used for environmental remediation. The synthesize methods of Mn-based composites mainly include homogeneous coprecipitation, chemical etching route, hydrothermal, homogeneous chelating sol-gel, and ethylene glycol reduction strategy. This review is helpful to fully understand the migration and transformation process of pollutants in the environment, expand the resource utilization of manganese minerals for environmental remediation.


Subject(s)
Environmental Pollutants , Environmental Restoration and Remediation , Metals, Heavy , Manganese/chemistry , Manganese Compounds/chemistry , Minerals/chemistry , Metals, Heavy/chemistry , Adsorption
12.
Sci Total Environ ; 866: 161351, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36603619

ABSTRACT

A deep understanding of the binding relationship between Fe2SiO4 and heavy metals from the perspective of lattice site substitution is essential to improve the theoretical knowledge regarding heavy metals binding in copper smelting slags (CSS). Here, we proposed the lattice site substitution behavior of heavy metals in Fe2SiO4 by preparing M-Fe2SiO4 (M = Cu, Pb, and As). X-ray diffraction refinement, scanning electron microscopy, and Fourier transform-infrared spectroscopy analysis showed that heavy metals were involved in the formation of Fe2SiO4 during the smelting process. Compared with pure Fe2SiO4, the fine structure of M-Fe2SiO4 was significantly changed by the lattice substitution of heavy metals. X-ray photoelectron spectroscopy and Raman and Mossbauer spectra combined with Density Functional Theory calculation confirmed that the divalent metal elements including Cu and Pb were bound to the Fe2SiO4 lattice by replacing M2 site. However, the trivalent As element could substitute both the positions of M2 site and part of the central Si atom through a charge compensation mechanism. Overall, the proposed lattice site substitution behavior of heavy metals in Fe2SiO4 could enrich the theory of the lattice substitution of heavy metals in CSS, also further provide guidance for the comprehensive disposal of CSS.

13.
Sci Total Environ ; 870: 161787, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-36706999

ABSTRACT

Nanoplastics have attracted extensive attention in recent years. However, little is known about the heteroaggregation behavior of nanoplastics on goethite (FeOOH), especially the contribution of surface functional groups. In this study, the heteroaggregation behavior between polystyrene nanoplastics (PSNPs) and FeOOH was systematically investigated under different reaction conditions. Moreover, the effect of different functional groups (-NH2, -COOH, and bare) of PSNPs and solution chemistry was evaluated. The results showed that PSNPs could heteroaggregate with FeOOH, and the heteroaggregation rate of PSNPs with surface functionalization was significantly faster. The removal of suspended PSNPs was enhanced with increasing NaCl or CaCl2 concentration. However, heteroaggregation was significantly inhibited with the increase of solution pH. The zeta potentials analysis, time-resolved dynamic light scattering (DLS) and heteroaggregation experiments suggested that the electrostatic force affected the heteroaggregation process significantly. Fourier transform infrared (FTIR) spectra proved that the adsorption affinity between PSNPs and FeOOH was stronger after surface functionalization, especially for CH, O-C=O, and -CH2- groups, indicating that chemical bonding also made a contribution during the heteroaggregation process. This work is expected to provide a theoretical basis for predicting the environmental behavior between PSNPs and FeOOH.

14.
Sci Total Environ ; 861: 160613, 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36481158

ABSTRACT

This work aims to establish an analytical and comparative model of pavement stormwater runoff and determine how to solve water pollution in saturated porous media pavements. Heavy metal element particles in the stormwater runoff due to the rainfall will cause inevitable environmental pollution. First, the pavement runoff and materials of saturated porous media are analyzed. Besides, particle migration laws and separation effects of different materials are compared. Based on this, microplastics are selected as the primary material for pavement filling. Then, the adsorption effect of microplastics and the parameters of rainwater infiltration rate and infiltration ratio are analyzed to propose a multi-level ecological integrated treatment system for pavement runoff. Specifically, the environmental resource pollution and saturated porous media materials are analyzed. In addition, the adsorption effect of microplastic particles is analyzed to establish a model to study the selection process of the optimal adsorption material. The main contribution of the research is to analyze the migration process of metal particles in the soil in combination with the internal particle migration rules of plastic granular materials. The research results demonstrate that the rain runoff coefficient gradually increases with the expansion of the permeable area of the pavement. The rain runoff coefficient reaches the maximum value under the pavement of 120 square meters. In addition, a comparative analysis of three street pavements is conducted on the residential street pavement (RSP), commercial street pavement (CSP), and active street pavement (ASP). When comparing the two sets of data, the overall average permeability of the RSP is better than CSP and ASP. The research materials are compared under isothermal conditions. The particle adsorption effect of the same material at 50 °C is significantly better than that at 30 °C. Therefore, it is feasible to resolve the pavement runoff water pollution through technical schemes.


Subject(s)
Microplastics , Plastics , Porosity , Water Movements , Water Pollution , Rain
15.
Environ Technol ; 44(19): 2924-2945, 2023.
Article in English | MEDLINE | ID: mdl-35225746

ABSTRACT

Lead and cadmium are toxic to human, animal, and plant health; they enhance oxidative stress indirectly while simultaneously acting through other toxicodynamic mechanisms. In this study, pristine vermiculite (VER) was functionalized with butylamine (BUT) and a novel organoclay (BUT-VER) adsorbent material was produced for simultaneous removal of Pb(II) and Cd(II) in aquatic medium. The adsorbents were characterized by spectroscopic, microscopic, spectrometric, and potentiometric techniques. The adsorption affecting parameters, including pH, time, initial concentration, temperature, and co-existing cations were investigated and optimized. The kinetic data results were in better agreement with pseudo-second-order (PSO) model (R2 > 0.992). Multiple isotherm models were used to study the adsorption system and results showed that adsorption was monolayer. The BUT-VER showed an improvement in adsorption capacity in a single system (Pb(II): from 134.2 to 160.6 mg g-1) and (Cd(II): from 51.1 to 58.9 mg g-1) while in binary system (Pb(II): from 107.3 to 114.5 mg g-1) and (Cd(II): from 33.7 to 39.7 mg g-1), respectively. Furthermore, BUT-VER was tested in real river water and removed efficiency of >99% was achieved in just 1 h. The dominant mechanisms were electrostatic attraction and complexation. BUT-VER was regenerated for five consecutive cycles and showed >90% removal efficiency. These findings suggest that the proposed inexpensive adsorbent has the potential for practical applications of toxic metals removal from water.


Subject(s)
Cadmium , Water Pollutants, Chemical , Humans , Cadmium/chemistry , Butylamines , Lead/analysis , Adsorption , Rivers , Water/chemistry , Ions/chemistry , Water Pollutants, Chemical/chemistry , Kinetics , Hydrogen-Ion Concentration
16.
Environ Sci Pollut Res Int ; 30(10): 26107-26119, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36352071

ABSTRACT

This study reports the mercury binding by bentonite clay influenced by cattle manure-derived dissolved organic matter (DOM). The DOM (as total organic carbon; TOC) was reacted with bentonite at 5.2 pH to monitor the subsequent uptake of Hg2+ for 5 days. The binding kinetics of Hg2+ to the resulting composite was studied (metal = 350 µM/L, pH 5.2). Bentonite-DOM bound much more Hg2+ than original bentonite and accredited to the establishment of further binding sites. On the other hand, the presence of DOM was found to decrease the Hg2+ binding on the clay surface, specifically, the percent decrease of metal with increasing DOM concentration. Post to binding of DOM with bentonite resulted in increased particle size diameter (~ 33.37- ~ 87.67 nm) by inducing the mineral modification of the pore size distribution, thus increasing the binding sites. The XPS and FTIR results confirm the pronounced physico-chemical features of bentonite-DOM more than that of bentonite. Hydroxyl and oxygen vacancies on the surface were found actively involved in Hg2+ uptake by bentonite-DOM composite. Furthermore, DOM increased the content of Hg2+ binding by ~ 10% (pseudo-second-order qe = 90.9-100.0) through boosting up Fe3+ reduction with the DOM. The quenching experiment revealed that more oxygen functionalities were generated in bentonite-DOM, where hydroxyl was found to be dominant specie for Hg2+ binding. The findings of this study can be used as theoretical reference for mineral metal interaction under inhibitory or facilitating role of DOM, risk assessment, management, and mobilization/immobilization of mercury in organic matter-containing environment.


Subject(s)
Mercury , Animals , Cattle , Mercury/chemistry , Bentonite/chemistry , Dissolved Organic Matter , Reactive Oxygen Species , Manure , Clay , Minerals , Oxygen
17.
J Environ Manage ; 323: 116201, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36099868

ABSTRACT

When microorganisms are challenged with toxic metals, intracellular granules are commonly observed, however, the exact nature of these granules is poorly understood. Here we show that when Pseudomonas aeruginosa CCTCC AB93066 were exposed to Cr(VI), Cr can enter the cell in the form of both Cr(VI) and Cr(III), and intracellular granules of several hundred nanometers were formed in the nucleoid region and were built up by aggregation of nanocrystals. We suggested that these nanocrystals are organic crystals. Transcriptomic profiles and liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis indicated that pseudopaline (a metallophore that can complex with Zn2+) production and pseudopaline-Zn2+ import into bacterial cells were enhanced upon Cr(VI) exposure. It was proposed that pseudopaline can scavenge Zn2+ which is essential for transcription alteration and DNA repair. Excessive pseudopaline might precipitate as nanospheres in the nuclear region that are further agglomerated by Cr(III) to form larger granules. During this process, Cr(III) is sequestered and immobilized. Hence we revealed pseudopaline production and zinc acquisition is crucial for alleviation of Cr(VI) toxicity and intracellular granules are composed of organic nanospheres which are aggregated by Cr(III).


Subject(s)
Nanoparticles , Pseudomonas aeruginosa , Chromatography, Liquid , Chromium , Oligopeptides , Tandem Mass Spectrometry , Zinc
18.
Appl Microbiol Biotechnol ; 106(17): 5771-5783, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35864327

ABSTRACT

The emergence and spread of antibiotic resistance genes (ARGs) induced by the overuse of antibiotics has become a serious threat to public health. Heavy metals will bring longer-term selection pressure to ARGs when the concentration of their residues is higher than that of antibiotics in environmental media. To explore the potential roles of montmorillonite (Mt) in the emergence of ARGs under divalent cadmium ion (Cd2+) stress, Escherichia coli (E. coli) was induced continuously for 15 days under Cd2+ gradient concentrations (16, 32, 64, 96, and 128 µg∙mL-1) with and without Mt. Subsequently, antibiotic resistance testing, transcriptomics, transmission electron microscope, scanning electron microscopy, and Fourier transform infrared were conducted for analysis. The results of characterization analysis showed that Cd2+could enhance the expression of resistance genes such as penicillin, tetracycline, macrolactone, and chloramphenicol in E. coli. Moreover, compared with Cd2+, Mt-Cd could inhibit the promotion of these resistances by alleviating the expressions of genes involved in cell wall/membrane, protein synthesis, transport systems, signal transduction, and energy supply processes. Therefore, the study promoted the understanding of Cd2+ in triggering bacterial antibiotic resistance and highlighted a novel theme of clay's ability to mitigate ecological risk of antibiotic resistance caused by heavy metals. KEY POINTS: • Montmorillonite (Mt) could inhibit the promotion of antibiotic resistances. • E. coli formed a unique resistance mechanism by interacting with Mt and Cd2+. • Mt stimulated cellular signal transduction, cellular component, and energy supply.


Subject(s)
Escherichia coli Infections , Metals, Heavy , Anti-Bacterial Agents , Bentonite , Cadmium , Drug Resistance, Bacterial , Escherichia coli , Genes, Bacterial , Humans
19.
J Hazard Mater ; 435: 128964, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35490632

ABSTRACT

The ubiquitous Al2O3 is anticipated to interact with nanoplastics, affecting their fate and transport in aquatic environments. In this study, the heteroaggregation and deposition behaviors of polystyrene nanoplastics (PSNPs) on Al2O3 were systematically investigated under different conditions (ionic strength, pH, and natural organic matter). The results showed that significant heteroaggregation occurred between PSNPs and Al2O3 particles under acidic and neutral conditions. When the NaCl concentration was increased from 50 to 500 mM, the heteroaggregation ratio gradually increased. However, poly (acrylic acid) (PAA) inhibited the heteroaggregation of PSNPs-Al2O3 due to steric repulsion. The deposition of PSNPs on Al2O3 surfaces was inhibited as the NaCl concentration or pH values increased. Due to charge reversal and steric repulsion, humic acid (HA) and fulvic acid (FA) prevented the deposition of PSNPs onto Al2O3 surfaces, and the former was more effective in reducing the deposition rate. The interaction mechanism between PSNPs and Al2O3 was revealed by using various characterization techniques and density function theory (DFT) calculation. The results demonstrated that in addition to the dominant electrostatic interaction, there were also weak hydrogen bonds and van der Waals interactions. Our research is of great significance for predicting the migration and fate of PSNPs in aquatic environments.


Subject(s)
Microplastics , Sodium Chloride , Humic Substances , Osmolar Concentration , Polystyrenes/chemistry
20.
J Environ Manage ; 306: 114489, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35051820

ABSTRACT

The dynamic interactions among iron (Fe) oxides, dissolved organic matter (DOM) and toxic trace metals play crucial roles in risk assessment and environmental remediation. Although the inhibitory effects of DOM on the iron oxides transformation process have been studied previously, there is still a lack of mechanistic and quantitative understanding on the kinetics of Cr(VI) and ferrihydrite transformation in the present of DOM. In this study, we investigated the fractionation process of DOM on ferrihydrite and its influence on the fate of Cr(VI) and transformation of ferrihydrite. The result of three-dimension excitation emission matrix (3D-EEM), Q-Exactive LC-MS/MS, X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM) indicated that fulvic acid-like compounds of DOM were the mainly fractionated compounds on the surface of ferrihydrite, which further inhibited the transformation of ferrihydrite. Besides, bracewellite (CrO(OH)) generated as an accompanied mineral during the transformation of ferrihydrite in the present of Cr(VI). Based on the DFT theoretical calculation, we concluded that Cr(VI) mainly in the form of HCr O4- was more inclined to be adsorbed on iron-oxide tetrahedron by inner-sphere monodentate mononuclear configurations. The findings on the dynamic coupling among Fe oxide transformation and Cr(VI) sequestration under the effect of DOM provided the basis for accurately predicting the fate of trace elements and iron mineral.


Subject(s)
Dissolved Organic Matter , Tandem Mass Spectrometry , Chromatography, Liquid , Chromium , Ferric Compounds , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL