Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 919: 170784, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38340834

ABSTRACT

Reclaimed water with nitrogen, phosphorus, and other contaminants may trigger algal blooms during its ecological utilization in replenishing rivers or lakes. However, the effect of reclaimed water on algal growth rates is not well understood. In this study, the growth potentials of algae in terms of Cyanophyta, Chlorophyta, and Bacillariophyta, as well as mixed algae in both regular culture medium and reclaimed water produced from treatment plants in Beijing with similar N and P concentrations, were compared to evaluate whether reclaimed water could facilitate algal growth. In addition, reclaimed water was also sterilized to verify the impact of bacteria's presence on algal growth. The results indicated that most algae grew faster in reclaimed water, among which the growth rate of Microcystis aeruginosa even increased by 5.5 fold. The growth of mixed algae in reclaimed water was not enhanced due to the strong adaptive ability of the community structure. Residual bacteria in the reclaimed water were found to be important contributors to algal growth. This work provided theoretical support for the safe and efficient utilization of reclaimed water.


Subject(s)
Cyanobacteria , Microcystis , Beijing , Water , Eutrophication , Phosphorus/analysis , China
2.
Sci Total Environ ; 915: 169822, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38185154

ABSTRACT

Considering the different fouling characteristics between model foulants and organic components in real reclaimed water, it is of great importance to identify the critical foulants responsible for membrane fouling. This study identified and isolated the fraction with molecular weight (MW) > 100 kDa as the critical foulant in secondary effluent by MW cut-off membrane of 100 kDa with high efficiency. This fraction accounted for 92.2% membrane fouling of raw water, including 28.7%, 29.7% and 33.8% fouling contribution by subfractions with MW between 100-300, 300-500 and > 500 kDa. Specifically, the critical fraction with MW > 100 kDa were mainly distributed in two parts: < 0.22 µm and > 0.45 µm, corresponding to 41.9% and 56.9% fouling contribution of this fraction. Furthermore, both total organic carbon (TOC) and fouling potential of fraction with MW > 100 kDa were monitored, presenting about threefold increase from September to January in next year. Membrane fouling contribution of this critical fraction in raw secondary effluent were mainly distributed in 85∼95% throughout the 5 months, demonstrating its predominant fouling propensity. Moreover, the TOC concentration of fraction with MW > 100 kDa presented distinct positive correlation with the fouling potential of raw secondary effluent (R2 = 0.947), which was promising to be a surrogate for predicting membrane fouling in practical application.

3.
Environ Pollut ; 341: 122937, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37977362

ABSTRACT

Ferrate (Fe(VI)) is an emerging green oxidant which has great potential and prospect in water disinfection. However, the effects of water quality on Fe(VI) disinfection remain unclear. This study systematically investigated the effects of pH, organic matters and inorganic ions on Fe(VI) inactivation of Escherichia coli (E. coli). Results showed that pH was the dominant influencing factor and the inactivation efficiency as well as inactivation rate constant was negatively correlated with pH (6.8-8.4). HFeO4- was found to be the critical Fe(VI) species contributing to the inactivation. As for organic matters (0-5 mg C/L), protein and humic acid significantly accelerated the decay of Fe(VI) and had negative effects on the inactivation efficiency, while polysaccharide slightly inhibited the inactivation due to the low reactivity with Fe(VI). As for inorganic ions, bicarbonate (0-2 mM) could stabilize Fe(VI) and decreased the inactivation rate constant, while ammonium (0-1 mM) had little effect on the inactivation of E. coli. In addition, the comprehensive effects of water quality on Fe(VI) disinfection in actual reclaimed water were also evaluated. The inactivation of E. coli in secondary effluent and denitrifying effluent was found to be inhibited compared to that in phosphate buffer. Overall, this study is believed to provide valuable information on Fe(VI) disinfection for water and wastewater treatment practices.


Subject(s)
Water Pollutants, Chemical , Water Purification , Escherichia coli , Water Quality , Iron/chemistry , Oxidants/chemistry , Water Purification/methods , Oxidation-Reduction , Water Pollutants, Chemical/analysis
4.
Water Res ; 249: 120890, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38016222

ABSTRACT

Emerging electrochemical disinfection techniques provide a promising pathway to the biofouling control of reverse osmosis (RO) process. However, the comparative effectiveness and mechanism of it under flow-through conditions with low voltage remains unclear. This study investigated the effect of a flow-through electrode system (FES) with both direct current (DC) and alternating pulse current (AC) on RO biofouling control compared with chlorine disinfection. At the initial stage of biofouling development, the normalized flux of AC-FES (67% on Day 5) was saliently higher than the control group (56% on Day 5). Subsequently, the normalized fluxes of each group tended similarity in their differences until the 20th day. After mild chemical cleaning, the RO membrane in the AC-FES group reached the highest chemical cleaning efficiency of 58%, implying its foulant was more readily removable and the biofouling was more reversible. The biofouling layer in the DC-FES group was also found to be easily cleanable. Morphological analysis suggested that the thickness and compactness of the fouling layers were the major reasons for the fouling behavior difference. The abundance of 4 fouling-related abundant genera (>1%), which were Pseudomonas, Thiobacillus, Sphingopyxis, and Mycobacterium exhibited a salient correlation with the biofouling degree. The operating cost of FES was also lower than that of chlorine disinfection. In summary, AC-FES is a promising alternative to chlorine disinfection in RO biofouling control, as it caused less and easy-cleaning biofouling layer mainly due to two advantages: a) reducing the regrowth potential after disinfection of the bacteria, leading to alleviated initial fouling, (b) reshaping the microbial community to those with weaker biofilm formation capacity.


Subject(s)
Biofouling , Water Purification , Wastewater , Biofouling/prevention & control , Chlorine , Membranes, Artificial , Osmosis , Water Purification/methods
5.
Water Res ; 244: 120531, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37659185

ABSTRACT

With the widespread use of chlorine disinfection, chlorine-resistant bacteria (CRB) in water treatment systems have gained public attention. Bacterial chlorine resistance has been found positively correlated with extracellular polymeric substance (EPS) secretion. In this study, we selected the most suitable CRB controlling method against eight bacterial strains with different chlorine resistance among chloramine, ozone, and ultraviolet (UV) disinfection, analyzed the resistance mechanisms, clarified the contribution of EPS to disinfection resistance, and explored the role of carbon source metabolism capacity. Among all the disinfectants, UV disinfection showed the highest disinfection capacity by achieving the highest average and median log inactivation rates for the tested strains. For Bacillus cereus CR19, the strain with the highest chlorine resistance, 40 mJ/cm2 UV showed a 1.90 log inactivation, which was much higher than that of 2 mg-Cl2/L chlorine (0.67 log), 2 mg-Cl2/L chloramine (1.68 log), and 2 mg/L ozone (0.19 log). Meanwhile, the UV resistance of the bacteria did not correlate with EPS secretion. These characteristics render UV irradiation the best CRB controlling disinfection method. Chloramine was found to have a generally high inactivation efficiency for bacteria with high chlorine-resistance, but a low inactivation efficiency for low chlorine-resistant ones. Although EPS consumed up to 56.7% of chloramine which an intact bacterial cell consumed, EPS secretion could not explain chloramine resistance. Thus, chloramine is an acceptable CRB control method. Similar to chlorine, ozone generally selected high EPS-secreting bacteria, with EPS consuming up to 100% ozone. Therefore, ozone is not an appropriate method for controlling CRB with high EPS secretion. EPS played an important role in all types of disinfection resistance, and can be considered the main mechanism for bacterial chlorine and ozone disinfection resistance. However, as EPS was not the main resistance mechanism in UV and chloramine disinfection, CRB with high EPS secretion were inactivated more effectively. Furthermore, carbon source metabolism was found related to the multiple resistance of bacteria. Those with low carbon source metabolism capacity tended to have higher multiple resistance, especially to chlorine, ozone, and UV light. Distinctively, among the tested gram-negative bacteria, in contrast to other disinfectants, chloramine resistance was negatively correlated with EPS secretion and positively correlated with carbon source metabolism capacity, suggesting a special disinfection mechanism.


Subject(s)
Disinfectants , Ozone , Chlorine/pharmacology , Chloramines/pharmacology , Disinfection , Extracellular Polymeric Substance Matrix , Halogens , Bacteria , Disinfectants/pharmacology , Carbon , Chlorides
6.
Sci Total Environ ; 904: 166297, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37595918

ABSTRACT

With the increasingly serious shortage of water resources globally, it has been paid more attention on how to secure the biosafety of reclaimed water and other non-traditional water sources. However, the 3 most applied disinfection technics, which are chlorine, ultraviolet (UV), and ozone disinfection, all have their disadvantages of selecting undesired bacteria and low energy utilization efficiency. Electrode disinfection is a promising solution, but the current electrode disinfection process still needs to be optimized in terms of the use conditions of the configuration reactivation. In this paper, we built a flow electrode system (FES). To evaluate the disinfection techniques more precisely, we isolated ultraviolet-resistant bacteria (URB) bacteria from the water of the full-scale water plant and tested the disinfection performance of FES and UV. The inactivation rate, reactivation potential, and energy consumption were analyzed. FES could inactivate 99.99 % of the URB and cause irreversible damage to the residual bacteria. FES could make all bacteria strains apoptosis in the subsequent 24 h of storage after alternating pulse current (APC) treatment, 3 V, within 27.7 s. Besides, the energy consumption of FES is about 2 orders lower than that of UV disinfection under the same inactivation rate. In summary, APC-FES is an efficient and low-carbon alternative for future water disinfection, which could achieve the ideal disinfection effect of a high inactivation rate, no reactivation, and low energy consumption.


Subject(s)
Water Purification , Water , Carbon , Bacteria , Disinfection/methods , Water Purification/methods , Chlorine/pharmacology , Electrodes , Ultraviolet Rays
7.
Water Res ; 243: 120373, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37494748

ABSTRACT

The ozone-ultraviolet (UV)-chlorine process is a highly effective method of disinfection in water reuse system, but currently still lacks precise quantification and accurate control. It is difficult to determine the dosage of each disinfectant because of the complex interactions that occur between disinfection units and the complicated mathematical calculation required. In this study, we proposed a dosage optimization model for ozone-UV-chlorine synergistic disinfection process. The model was able to identify the cost-effective doses of the disinfectants under the constraints of microbial inactivation, decolorization, and residual chlorine retention requirements. Specifically, the simulation of microbial inactivation rates during synergistic disinfection process was accomplished through quantification of the synergistic effects between disinfection units and the introduction of enhancement coefficients. In order to solve this optimization model rapidly and automatically, a MATLAB-based software program with graphical user interface was developed. This software consisted of calibration unit, prediction unit, assessment unit, and optimization unit, and was able to simulate synergistic ozone-UV-chlorine process and identify the optimal dose of ozone, UV, and chlorine. Validation experiments revealed good agreements between the experimental data and the results calculated by the developed software. The developed software is believed to help the water reclamation plants improve disinfection efficiency and reduce the operational costs of synergistic disinfection processes.


Subject(s)
Disinfectants , Ozone , Water Purification , Disinfection/methods , Chlorine , Water , Water Purification/methods , Software , Ultraviolet Rays
8.
Environ Int ; 173: 107818, 2023 03.
Article in English | MEDLINE | ID: mdl-36812804

ABSTRACT

In regard to membrane-based technologies of wastewater reclamation, the reported key foulants were faced with dilemma that they could not be effectively separated and extracted from reclaimed water for thorough investigation. In this study, the crucial foulants were proposed as "critical minority fraction (FCM)", representing the fraction with molecular weight (MW) > 100 kDa which could be easily separated by physical filtration using MW cut-off membrane of 100 kDa with fairly high recovery ratio. FCM with low dissolved organic carbon (DOC) concentration (∼1 mg/L) accounted for less than 20% of the total DOC in reclaimed water, while contributed to more than 90% of the membrane fouling, and thus FCM could be considered as a "perfect criminal" causing membrane fouling. Furthermore, pivotal fouling mechanism was attributed to the significant attractive force between FCM and membranes, which led to severe fouling development due to the aggregation of FCM on membrane surface. Fluorescent chromophores of FCM were concentrated in regions of proteins and soluble microbial products, with proteins and polysaccharides accounted for 45.2% and 25.1% of the total DOC, specifically. FCM was further fractionated into six fractions, among which hydrophobic acids and hydrophobic neutrals were the dominant components in terms of DOC content (∼80%) as well as fouling contribution. Regarding to these pronounced properties of FCM, targeted fouling control strategies including ozonation and coagulation were applied and proved to achieve remarkable fouling control effect. High-performance size-exclusion chromatography results suggested that ozonation achieved distinct transformation of FCM into low MW fractions, while coagulation removed FCM directly, thus leading to effective fouling alleviation. Therefore, the investigation of the critical foulants was expected to help glean valuable insight into the fouling mechanism and develop targeted fouling control technologies in practical applications.


Subject(s)
Ozone , Water Purification , Ultrafiltration , Water , Membranes, Artificial , Water Purification/methods , Dissolved Organic Matter , Ozone/chemistry
9.
Sci Total Environ ; 844: 157079, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-35779720

ABSTRACT

Membrane fouling is the Achilles' heel of the reverse osmosis (RO) system for high-quality reclaimed water production. Previous studies have found that after the significant selection effect of traditional disinfection, the remaining disinfection-residual bacteria (DRB) may possess more severe biofouling potentials. To provide more constructive advice for the prevention of biofouling, we compared the RO membrane fouling characteristics of DRB after using five commonly used disinfection methods (NaClO, NH2Cl, ClO2, UV, and O3) and two novel disinfection methods (K2FeO4 and the flow-through electrode system (FES)). Compared with the control group (undisinfected, 21.1 % flux drop), the UV-DRB biofilm aggravated biofouling of the RO membrane (23.4 % flux drop), while the FES, K2FeO4, and NH2Cl treatments showed less severe biofouling, with final flux drops of 6.9 %, 8.1 %, and 8.1 %, respectively. Adenosine triphosphate (ATP) was found to be a capable indicator for predicting the biofouling potential of DRB. Systematic analysis showed that the thickness and density of the DRB biofilms were most closely related to the different fouling degree of RO membranes. Moreover, the relative abundance of bacteria with higher extracellular polymeric substance (EPS) secretion levels, such as Pseudomonas and Sphingomonas, was found closely related with the biofouling degree of RO membranes.


Subject(s)
Biofouling , Water Purification , Bacteria , Biofilms , Biofouling/prevention & control , Disinfection , Extracellular Polymeric Substance Matrix , Membranes, Artificial , Osmosis , Water Purification/methods
10.
Environ Sci Technol ; 56(15): 10925-10934, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35820052

ABSTRACT

Conventional water disinfection methods such as chlorination typically involve the generation of harmful disinfection byproducts and intensive chemical consumption. Emerging electroporation disinfection techniques using nanowire-enhanced local electric fields inactivate microbes by damaging their outer structures without byproduct formation or chemical dosing. However, this physical-based method suffers from a limited inactivation efficiency under high water flux due to an insufficient contact time. Herein, we integrate electrochlorination with nanowire-enhanced electroporation to achieve a synergistic flow-through process for efficient water disinfection targeting bacteria and viruses. Electroporation at the cathode induces sub-lethal damages on the microbial outer structures. Subsequently, electrogenerated active chlorine at the anode aggravates these electroporation-induced injuries to the level of lethal damage. This sequential flow-through disinfection system achieves complete disinfection (>6.0-log) under a very high water flux of 2.4 × 104 L/(m2 h) with an applied voltage of 2.0 V. This disinfection efficiency is 8 times faster than that of electroporation alone. Further, the specific energy consumption for the disinfection by this novel process is extremely low (8 × 10-4 kW h/m3). Our results demonstrate a promising method for rapid and energy-efficient water disinfection by coupling electroporation with electrochlorination to meet vital needs for pathogen elimination.


Subject(s)
Nanowires , Water Purification , Chlorine/chemistry , Disinfection , Electroporation , Nanowires/chemistry , Water , Water Purification/methods
11.
Sci Total Environ ; 848: 157712, 2022 Nov 20.
Article in English | MEDLINE | ID: mdl-35908691

ABSTRACT

Disinfection is essential for the microbial safety of reclaimed water. Traditional chlorine disinfection leads to secondary problems such as disinfection by-products and chlorine-resistant bacteria. Ferrate (Fe(VI)) is a novel green disinfectant. However, research on the disinfection characteristics of Fe(VI) remains insufficient. This study compared the disinfection efficacy between Fe(VI) and chlorine in secondary effluent, including the inactivation efficiency of coliforms and heterotrophic bacteria and the control effect on typical chlorine-resistant bacteria. The results showed that Fe(VI) was more effective than chlorine in inactivating Escherichia coli and total coliforms at low doses, whereas chlorine was more effective than Fe(VI) in inactivating heterotrophic bacteria. A severe trailing phenomenon was observed in Fe(VI) disinfection. Based on bacterial community structure analysis, Fe(VI) was also found to be capable of controlling the relative abundance of some chlorine-resistant bacteria such as Sphingomonas, Bacillus, Mycobacterium and Legionella except for Pseudomonas. The results of this study could have implications in evaluating Fe(VI) disinfection ability and optimizing Fe(VI) dosing for disinfection.


Subject(s)
Disinfectants , Water Purification , Bacteria , Chlorine/pharmacology , Disinfectants/chemistry , Disinfection/methods , Iron , Water , Water Purification/methods
12.
Water Res ; 220: 118672, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35635920

ABSTRACT

Ultrafiltration (UF) was often used as pretreatment in front of reverse osmosis (RO) unit because of its high rejection efficiency of microbes and particles. However, in some cases UF pretreatment might show adverse effects on the RO membrane flux. In this study, the effects of UF pretreatment on secondary effluent water quality and its RO membrane fouling characteristics were explored. There was almost no change of water quality after UF with different molecular weight cut-off (MWCO) membranes (100, 30 and 10 kDa), including total dissolved solid (TDS), alkalinity, conductivity, ion concentrations, etc., while pH increased a little and dissolved organic carbon (DOC) declined by about 1 mg/L. On the contrary, the RO membrane flux of UF permeates presented clear decline in comparison to the secondary effluent. The membrane fouling velocity and steady-state flux of secondary effluent was 0.052 and 0.656, while fouling velocity increased (0.077, 0.071, 0.067) and steady-state flux decreased significantly (0.397, 0.416, 0.448) after 100, 30, 10 kDa UF membrane pretreatment. Scanning electron microscope (SEM) images showed many crystals on the fouled membrane surfaces, which turned out to be CaCO3 by Energy dispersive spectrometer (EDS) analysis and precipitation calculation. After the addition of UF retentates to UF permeates, scaling was prevented and crystals on the RO membrane almost disappeared, which implied the anti-scaling effect of the UF retentates with low concentration. According to anti-scaling performance experiments, the anti-scaling performance of 100 k, 30 k, 10 k retentates was 2.7%, 4.0% and 7.3%, respectively. Excitation emission matrix (EEM) and fourier transform infra-red (FTIR) results showed that these retentates retained by different MWCO membranes were similar and composed of protein-like substances and soluble microbial products. The effect of key minority components in RO system deserved further exploration.


Subject(s)
Ultrafiltration , Water Purification , Filtration , Membranes, Artificial , Osmosis , Ultrafiltration/methods , Water Purification/methods
13.
Water Res ; 215: 118271, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35298995

ABSTRACT

Chloride ions (Cl-), which are omnipresent in reclaimed water, can cause various problems in water reuse systems, especially during water transmission and at end use sites. Although reverse osmosis (RO) is considered as an effective technology to reduce chloride, its high investment and complex maintenance requirements hinder its application in many water reclamation plants (WRPs). Recently, several technologies bringing new options to better deal with chloride have gained increased attention. This review provides detailed information on the harmful effects, concentration levels, and sources of chloride in reclaimed water and summarizes and discusses various chloride removal technologies, including non-selective methods (e.g., membrane filtration, adsorption and ion exchange, oxidation, and electrochemical methods) and selective methods (e.g. precipitation and specially designed electrochemical methods). Among these, Friedel's salt precipitation and capacitive deionization showed attractive development potential. This review also proposes a holistic framework for chloride control from aspects of "Fit-for-Purpose" planning, technical system development, and whole process optimization, which could facilitate the planning and operation of long-term sustainable water reuse practices.


Subject(s)
Water Purification , Attention , Chlorides , Filtration , Water
14.
Sci Total Environ ; 815: 152860, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35016950

ABSTRACT

The reverse osmosis (RO) process has been applied extensively in wastewater reclamation for industrial and potable reuse. To prevent biofouling, chlorine disinfection was usually used in pretreatment. However, this study found that chlorine disinfection could significantly increase risks of antibiotic resistant genes (ARGs) in the RO system. With the increase of chlorine concentration from 0 to 5 mg/L, the accumulative relative abundance of 14 common ARGs in the membrane foulants increased by 49.6%. Among these ARGs, tolC, acrA and acrB (resistance to multiple drugs) showed the highest increament after chlorine disinfection. Especially, the relative abundance of tolC in the group with 5 mg/L chlorine increased by 113.3% compared with the control group. These ARGs tended to be enriched in a few bacterial genus, including Candidatus, Thiomonas, Silanimonas, Xanthomonas and Pseudomonas. These results indicated that the foulants on RO membranes might become a potential sink of ARGs. Considering the possibility of membrane breach, the ARGs may contaminate the permeate and bring great biological risks.


Subject(s)
Chlorine , Water Purification , Anti-Bacterial Agents , Disinfection , Genes, Bacterial , Osmosis , Wastewater , Water
15.
Chemosphere ; 292: 133471, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34974050

ABSTRACT

Adsorption and coagulation were commonly used to alleviate reverse osmosis (RO) membrane fouling caused by dissolved organic matters (DOM), but the effects of changed composition and structure of DOM in dyeing wastewater after adsorption and coagulation on RO membrane fouling have seldom been studied. This study aimed at resolving the mechanism how the RO membrane fouling during dyeing wastewater treatment was alleviated by using adsorption and coagulation. The dyeing wastewater caused serious RO membrane fouling. Pretreatment with granular activated carbon (GAC), polyferric sulfate (PFS) and polyaluminum chloride (PACl) were conducted. It was shown that GAC could remove most of the DOM (95%) and preferred to adsorb protein, hydrophobic neutrals and fluorescent compounds. Both coagulants of PFS and PACl preferred to remove polysaccharides (the removal rate was 9-19% higher than that of DOM), high-MW compounds and these compounds with high fouling potential. Afterwards, the RO membrane fouling potential of the dyeing wastewater was tested. The GAC and PFS performed well to alleviate fouling. After GAC treatment, the decline rate of RO flux was similar to that of raw wastewater after 6-fold dilution. With pretreatment by PFS or PACl, the fouling potential of dyeing wastewater was much lower than that of raw wastewater after diluted to the same DOM content. Changes in polysaccharides content in the DOM had more effects on RO membrane fouling than that of proteins after these pretreatment. Although the DOM changed significantly after pretreatment, the fouling type was still intermediate blocking.


Subject(s)
Wastewater , Water Purification , Coloring Agents , Filtration , Membranes, Artificial , Osmosis
16.
Chemosphere ; 286(Pt 3): 131828, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34416584

ABSTRACT

Recently, ultraviolet light-emitting diodes (UV-LEDs) and chlorine combined system has been employed as an emerging advanced oxidation process. However, UV-LEDs were commonly considered as monochromatic UV sources. In this study, the obvious quantum yields of chlorine photolysis under 265 nm and 280 nm LEDs irradiations were investigated with treating LEDs as polychromatic UV sources. Particularly, Φobs-poly of HOCl and OCl⁻ for 265 nm LED were found to be 1.50 and 0.70 mol E-1, respectively, whereas Φobs-poly of HOCl and OCl⁻ for 280 nm LED were 1.28 and 0.64 mol E-1, respectively. It was identified that Φobs-poly were 5.66-14.63 % lower than Φobs-mono. This suggests that obvious quantum yield using peak emission wavelength would overestimate the true quantum yield. The production of radical species in LED UV/chlorine systems were determined by the degradation of BA, and illustrated by a mathematical model. Different trends were observed for 265 nm and 280 nm LED UV/chlorine systems as pH increased from 5.0 to 10.0. As pH increased, the formation of OH continuously decreased in both 265 nm and 280 nm LED systems. The formation of Cl increased at neutral pH and more Cl and OH were formed due to the higher molar absorbance coefficient at 280 nm. The chlorine dose-dependent effects on radical productions at pH of 5.0, 7.5 and 10.0 were also assessed. At pH of 5.0, OH was the main radical product and had linear correlation with chlorine dose. At pH of 7.5, the productions of OH and Cl showed similar profiles that increased rapidly at low chlorine dosage and then slowed down.


Subject(s)
Water Pollutants, Chemical , Water Purification , Chlorine , Oxidation-Reduction , Photolysis , Ultraviolet Rays
17.
Chemosphere ; 289: 133217, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34896174

ABSTRACT

Fouling of RO membranes has long been a complex but inevitable problem in wastewater reclamation. In this study, a modified intermediate blocking model with two parameters was applied to describe the flux change of RO membranes treating various water samples, including municipal secondary effluent, treated industrial wastewater, surface water, and groundwater. The model was validated by 55 sets of data reported by 13 articles, and the results were promising, with 90% of the determination coefficient (R2) exceeding 0.90. Relatively large flux and high operational pressure were found likely to aggravate membrane fouling. Treated industrial wastewater had the highest fouling potential (fouling constant k: 0.061-2.433) compared to municipal wastewater secondary effluent, surface water, and groundwater, even with similar dissolved organic carbon concentration. With industrial wastewater excluded, water samples exhibited lower fouling potential than organic matter solutions, with the majority (25%∼75%) of k distributing in 0.03-0.12, much lower compared to the major k range of the latter (0.05-0.28). This suggested a deviation in fouling behaviors between model organic matters and real water samples. Xanthan gum and guar gum were proposed to be model polysaccharides based on their model parameters, which were relatively close to real water samples.


Subject(s)
Water Purification , Dissolved Organic Matter , Membranes, Artificial , Osmosis , Wastewater , Water
18.
Water Res ; 209: 117966, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34952485

ABSTRACT

Chlorine disinfection is often used as a pretreatment technology to control biofouling of reverse osmosis (RO) membranes. However, previous studies showed that biofouling of the RO system was aggravated after chlorine disinfection. Chlorine-resistant bacteria (CRB) were presumed to be closely related to the aggravation of fouling caused by chlorine disinfection. In order to analyze the membrane fouling mechanisms of CRB, 5 CRB strains were isolated from the surface of fouled RO membranes for wastewater reclamation, and 3 reference bacterial strains, Sphingopyxis soli BM1-1, Pseudomonas aeruginosa PAO1 and Escherichia coli CGMCC1.3373, were selected for comparative study. The chlorine resistance, membrane fouling potential, secretion and adhesion characteristics of these strains were evaluated. Among these isolated strains, 3 strains showed much higher chlorine resistance than PAO1 under the condition of 0.5, 2, 5 mg/L-Cl2, especially Bacillus CR19 and Bacillus CR2. Furthermore, a significant positive correlation was found between membrane fouling potential and chlorine resistance of all the strains in this study. The membrane fouling potential of the above 8 strains increased monotonically with the increase of chlorine resistance (under the condition of 0.5 mg/L-Cl2). Serious fouling caused by extracellular substances was observed in biofouling layers of the strains with high chlorine resistance, which lead to more severe flux decline. Extracellular polymeric substances (EPS) amount per cell was found to be the main factor related to the chlorine resistance as well as the fouling potential. Computational fluid dynamics (CFD) simulation was used to demonstrate the filtration resistance induced by the secretion of EPS. However, CRB with higher EPS amount may not show higher membrane adhesion potential, and thus may not be the dominant strain on the RO membranes before chlorine disinfection. These CRB with high fouling potential but low membrane adhesion potential, such as Bacillus CR19 and Bacillus CR2, may become the dominant bacteria on the membrane surface after chlorine disinfection and thus aggravate membrane fouling significantly.

19.
Water Res ; 204: 117606, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34500181

ABSTRACT

The epidemic of COVID-19 has aroused people's particular attention to biosafety. A growing number of disinfection products have been consumed during this period. However, the flaw of disinfection has not received enough attention, especially in water treatment processes. While cutting down the quantity of microorganisms, disinfection processes exert a considerable selection effect on bacteria and thus reshape the microbial community structure to a great extent, causing the problem of disinfection-residual-bacteria (DRB). These systematic and profound changes could lead to the shift in regrowth potential, bio fouling potential, as well as antibiotic resistance level and might cause a series of potential risks. In this review, we collected and summarized the data from the literature in recent 10 years about the microbial community structure shifting of natural water or wastewater in full-scale treatment plants caused by disinfection. Based on these data, typical DRB with the most reporting frequency after disinfection by chlorine-containing disinfectants, ozone disinfection, and ultraviolet disinfection were identified and summarized, which were the bacteria with a relative abundance of over 5% in the residual bacteria community and the bacteria with an increasing rate of relative abundance over 100% after disinfection. Furthermore, the phylogenic relationship and potential risks of these typical DRB were also analyzed. Twelve out of fifteen typical DRB genera contain pathogenic strains, and many were reported of great secretion ability. Pseudomonas and Acinetobacter possess multiple disinfection resistance and could be considered as model bacteria in future studies of disinfection. We also discussed the growth, secretion, and antibiotic resistance characteristics of DRB, as well as possible control strategies. The DRB phenomenon is not limited to water treatment but also exists in the air and solid disinfection processes, which need more attention and more profound research, especially in the period of COVID-19.


Subject(s)
COVID-19 , Microbiota , Bacteria , Disinfection , Humans , SARS-CoV-2
20.
Sci Total Environ ; 793: 148563, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34175603

ABSTRACT

Water reclamation plants (WRPs) are facing the challenges of ensuring microbial safety and require efficient disinfection systems. Sequential ozone­chlorine disinfection is supposed to be a favorable alternative for reclaimed water disinfection. This study compared the inactivation efficiency of E.coli by single ozone, single chlorine, and sequential ozone­chlorine disinfection approaches. Notably, a single ozone or chlorine process could only achieve a log removal rate of up to 5 log, whereas the sequential ozone­chlorine disinfection could completely inactivate microorganisms (7.3 log). For sequential ozone­chlorine disinfection, the efficiency of chlorination was improved by 2.4%-18.5%. The synergistic effect mainly attributed to the elimination of chlorine consuming substances by ozone. Through the chlorine decay model (CRS) fitting and calculating the integral CT value, the enhancement ability of ozone to chlorine disinfection was quantified. By introducing an enhancement coefficient (ß), a succinct and accurate model was established to estimate the inactivation rate of sequential ozone­chlorine disinfection (mean absolute percentage error: 0.035). The results and methodology of this study are informative to optimize the disinfection units of WRPs.


Subject(s)
Disinfectants , Ozone , Water Purification , Chlorine , Disinfection , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...