Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Circ Res ; 131(1): 42-58, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35611698

ABSTRACT

BACKGROUND: A significant burden of atherosclerotic disease is driven by inflammation. Recently, microRNAs (miRNAs) have emerged as important factors driving and protecting from atherosclerosis. miR-223 regulates cholesterol metabolism and inflammation via targeting both cholesterol biosynthesis pathway and NFkB signaling pathways; however, its role in atherosclerosis has not been investigated. We hypothesize that miR-223 globally regulates core inflammatory pathways in macrophages in response to inflammatory and atherogenic stimuli thus limiting the progression of atherosclerosis. METHODS AND RESULTS: Loss of miR-223 in macrophages decreases Abca1 gene and protein expression as well as cholesterol efflux to apoA1 (Apolipoprotein A1) and enhances proinflammatory gene expression. In contrast, overexpression of miR-223 promotes the efflux of cholesterol and macrophage polarization toward an anti-inflammatory phenotype. These beneficial effects of miR-223 are dependent on its target gene, the transcription factor Sp3. Consistent with the antiatherogenic effects of miR-223 in vitro, mice receiving miR223-/- bone marrow exhibit increased plaque size, lipid content, and circulating inflammatory cytokines (ie, IL-1ß). Deficiency of miR-223 in bone marrow-derived cells also results in an increase in circulating pro-atherogenic cells (total monocytes and neutrophils) compared with control mice. Furthermore, the expression of miR-223 target gene (Sp3) and pro-inflammatory marker (Il-6) are enhanced whereas the expression of Abca1 and anti-inflammatory marker (Retnla) are reduced in aortic arches from mice lacking miR-223 in bone marrow-derived cells. In mice fed a high-cholesterol diet and in humans with unstable carotid atherosclerosis, the expression of miR-223 is increased. To further understand the molecular mechanisms underlying the effect of miR-223 on atherosclerosis in vivo, we characterized global RNA translation profile of macrophages isolated from mice receiving wild-type or miR223-/- bone marrow. Using ribosome profiling, we reveal a notable upregulation of inflammatory signaling and lipid metabolism at the translation level but less significant at the transcription level. Analysis of upregulated genes at the translation level reveal an enrichment of miR-223-binding sites, confirming that miR-223 exerts significant changes in target genes in atherogenic macrophages via altering their translation. CONCLUSIONS: Our study demonstrates that miR-223 can protect against atherosclerosis by acting as a global regulator of RNA translation of cholesterol efflux and inflammation pathways.


Subject(s)
Atherosclerosis , Macrophages , MicroRNAs , ATP Binding Cassette Transporter 1/metabolism , Animals , Atherosclerosis/genetics , Atherosclerosis/metabolism , Cholesterol/metabolism , Inflammation/genetics , Inflammation/metabolism , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/metabolism
2.
J Immunother Cancer ; 9(10)2021 10.
Article in English | MEDLINE | ID: mdl-34670827

ABSTRACT

Despite unique genetic alterations within brain metastases (BrMs) and an immunologically distinct surrounding microenvironment, the composition and functional properties of tumor-infiltrating lymphocytes within BrM remain largely unexplored. In particular, the expression of coinhibitory receptors, such as programmed cell death 1 (PD-1), T cell immunoglobulin mucin receptor 3 (TIM-3), and lymphocyte activation gene 3 (LAG-3), within BrMs is unknown. Using multiplexed quantitative immunofluorescence (QIF), this study evaluates the localized expression of PD-L1, level and functional profile of major T cell subsets, and coinhibitory receptors within lung cancer-associated BrMs and primary lung tumors. Clinicopathologically annotated samples from 95 patients with lung cancer between 2002 and 2015 were represented in a tissue microarray format. Spatially resolved and multiplexed QIF was used to evaluate PD-L1 protein, phenotype markers for major T cell subsets (CD3, CD4, CD8, and FOXP3), cell-localized activation and proliferation markers (granzyme B and Ki67), and coinhibitory receptors (PD-1, LAG-3, and TIM-3). The signal for each marker was measured in marker-selected tissue compartments, and associations between marker levels, tumor location, and major clinicopathological variables were studied. In total, 41 primary lung tumors and 65 BrMs were analyzed, including paired samples from 11 patients. Levels of tumor PD-L1 expression were comparable between BrMs and primary lung tumors. BrMs had significantly lower levels of all T cell subsets relative to primary lung tumors, and T cells in BrMs displayed lower levels of granzyme B than primary lesions. PD-1, TIM-3, and LAG-3 levels in CD3+ T-cells were also significantly lower in BrMs. Marker expression in patients with paired samples from BrMs and primary lung tumors showed comparable results. High CD3+ T-cells, as well as high levels of TIM-3 and LAG-3 in CD3+ T-cells, were associated with longer overall survival in BrMs but not primary lung tumors. Lung cancer-associated BrMs display lower T cell infiltration, markers of cytolytic function, and immune regulatory signals than primary lung tumors. Despite these differences, high TIM-3 and high LAG-3 expressions in CD3+ T-cells were associated with longer survival. These features are accompanied by comparable levels of PD-L1 protein expression compared with primary lung tumors. These results highlight unique aspects of the tumor immune microenvironment within the brain and provide further support for intracranially focused therapies.


Subject(s)
Biomarkers, Tumor/metabolism , Brain Neoplasms/etiology , Lung Neoplasms/complications , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocytes/immunology , Brain Neoplasms/pathology , Female , Humans , Male , Retrospective Studies , Tumor Microenvironment
3.
Biochem Pharmacol ; 184: 114359, 2021 02.
Article in English | MEDLINE | ID: mdl-33285109

ABSTRACT

Poly-ADP-ribose polymerase (PARP) inhibitors are active against cells and tumors with defects in homology-directed repair as a result of synthetic lethality. PARP inhibitors (PARPi) have been suggested to act by either catalytic inhibition or by PARP localization in chromatin. In this study, we treat BRCA1 mutant cells derived from a patient with triple negative breast cancer and control cells for three weeks with veliparib, a PARPi, to determine if treatment with this drug induces increased levels of mutations and/or an inflammatory response. We show that long-term treatment with PARPi induces an inflammatory response in HCC1937 BRCA1 mutant cells. The levels of chromatin-bound PARP1 in the BRCA1 mutant cells correlate with significant upregulation of inflammatory genes and activation of the cyclic GMP-AMP synthase (cGAS)/signaling effector stimulator of interferon genes (STING pathway). In contrast, an increased mutational load is induced in BRCA1-complemented cells treated with a PARPi. Our results suggest that long-term PARP inhibitor treatment may prime both BRCA1 mutant and wild-type tumors for positive responses to immune checkpoint blockade, but by different underlying mechanisms.


Subject(s)
BRCA1 Protein/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , B7-H1 Antigen/metabolism , BRCA1 Protein/immunology , Benzimidazoles/pharmacology , Breast Neoplasms/genetics , Cell Line, Tumor , Cytokines/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/immunology , Humans , Immunologic Factors/pharmacology , Inflammation/drug therapy , Inflammation/genetics , Membrane Proteins/metabolism , Mutation
4.
Circulation ; 143(2): 163-177, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33222501

ABSTRACT

BACKGROUND: Chronic activation of the innate immune system drives inflammation and contributes directly to atherosclerosis. We previously showed that macrophages in the atherogenic plaque undergo RIPK3 (receptor-interacting serine/threonine-protein kinase 3)-MLKL (mixed lineage kinase domain-like protein)-dependent programmed necroptosis in response to sterile ligands such as oxidized low-density lipoprotein and damage-associated molecular patterns and that necroptosis is active in advanced atherosclerotic plaques. Upstream of the RIPK3-MLKL necroptotic machinery lies RIPK1 (receptor-interacting serine/threonine-protein kinase 1), which acts as a master switch that controls whether the cell undergoes NF-κB (nuclear factor κ-light-chain-enhancer of activated B cells)-dependent inflammation, caspase-dependent apoptosis, or necroptosis in response to extracellular stimuli. We therefore set out to investigate the role of RIPK1 in the development of atherosclerosis, which is driven largely by NF-κB-dependent inflammation at early stages. We hypothesize that, unlike RIPK3 and MLKL, RIPK1 primarily drives NF-κB-dependent inflammation in early atherogenic lesions, and knocking down RIPK1 will reduce inflammatory cell activation and protect against the progression of atherosclerosis. METHODS: We examined expression of RIPK1 protein and mRNA in both human and mouse atherosclerotic lesions, and used loss-of-function approaches in vitro in macrophages and endothelial cells to measure inflammatory responses. We administered weekly injections of RIPK1 antisense oligonucleotides to Apoe-/- mice fed a cholesterol-rich (Western) diet for 8 weeks. RESULTS: We find that RIPK1 expression is abundant in early-stage atherosclerotic lesions in both humans and mice. Treatment with RIPK1 antisense oligonucleotides led to a reduction in aortic sinus and en face lesion areas (47.2% or 58.8% decrease relative to control, P<0.01) and plasma inflammatory cytokines (IL-1α [interleukin 1α], IL-17A [interleukin 17A], P<0.05) in comparison with controls. RIPK1 knockdown in macrophages decreased inflammatory genes (NF-κB, TNFα [tumor necrosis factor α], IL-1α) and in vivo lipopolysaccharide- and atherogenic diet-induced NF-κB activation. In endothelial cells, knockdown of RIPK1 prevented NF-κB translocation to the nucleus in response to TNFα, where accordingly there was a reduction in gene expression of IL1B, E-selectin, and monocyte attachment. CONCLUSIONS: We identify RIPK1 as a central driver of inflammation in atherosclerosis by its ability to activate the NF-κB pathway and promote inflammatory cytokine release. Given the high levels of RIPK1 expression in human atherosclerotic lesions, our study suggests RIPK1 as a future therapeutic target to reduce residual inflammation in patients at high risk of coronary artery disease.


Subject(s)
Atherosclerosis/metabolism , Gene Silencing/physiology , Inflammation Mediators/metabolism , NF-kappa B/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/biosynthesis , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Cells, Cultured , Cholesterol, Dietary/administration & dosage , Cholesterol, Dietary/adverse effects , Female , Gene Expression , Human Umbilical Vein Endothelial Cells , Humans , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Inflammation Mediators/antagonists & inhibitors , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/antagonists & inhibitors , NF-kappa B/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/genetics
6.
Nat Metab ; 2(10): 1113-1125, 2020 10.
Article in English | MEDLINE | ID: mdl-32989316

ABSTRACT

Obesity is a major public health burden worldwide and is characterized by chronic low-grade inflammation driven by the cooperation of the innate immune system and dysregulated metabolism in adipose tissue and other metabolic organs. Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is a central regulator of inflammatory cell function that coordinates inflammation, apoptosis and necroptosis in response to inflammatory stimuli. Here we show that genetic polymorphisms near the human RIPK1 locus associate with increased RIPK1 gene expression and obesity. We show that one of these single nucleotide polymorphisms is within a binding site for E4BP4 and increases RIPK1 promoter activity and RIPK1 gene expression in adipose tissue. Therapeutic silencing of RIPK1 in vivo in a mouse model of diet-induced obesity dramatically reduces fat mass, total body weight and improves insulin sensitivity, while simultaneously reducing macrophage and promoting invariant natural killer T cell accumulation in adipose tissue. These findings demonstrate that RIPK1 is genetically associated with obesity, and reducing RIPK1 expression is a potential therapeutic approach to target obesity and related diseases.


Subject(s)
Gene Silencing , Obesity/genetics , Obesity/therapy , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Adipocytes/metabolism , Adipose Tissue , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Energy Metabolism , Glucose Tolerance Test , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Polymorphism, Genetic , Subcutaneous Fat/metabolism
7.
Lancet Oncol ; 21(5): 655-663, 2020 05.
Article in English | MEDLINE | ID: mdl-32251621

ABSTRACT

BACKGROUND: We did a phase 2 trial of pembrolizumab in patients with non-small-cell lung cancer (NSCLC) or melanoma with untreated brain metastases to determine the activity of PD-1 blockade in the CNS. Interim results were previously published, and we now report an updated analysis of the full NSCLC cohort. METHODS: This was an open-label, phase 2 study of patients from the Yale Cancer Center (CT, USA). Eligible patients were at least 18 years of age with stage IV NSCLC with at least one brain metastasis 5-20 mm in size, not previously treated or progressing after previous radiotherapy, no neurological symptoms or corticosteroid requirement, and Eastern Cooperative Oncology Group performance status less than two. Modified Response Evaluation Criteria in Solid Tumors (mRECIST) criteria was used to evaluate CNS disease; systemic disease was not required for participation. Patients were treated with pembrolizumab 10 mg/kg intravenously every 2 weeks. Patients were in two cohorts: cohort 1 was for those with PD-L1 expression of at least 1% and cohort 2 was patients with PD-L1 less than 1% or unevaluable. The primary endpoint was the proportion of patients achieving a brain metastasis response (partial response or complete response, according to mRECIST). All treated patients were analysed for response and safety endpoints. This study is closed to accrual and is registered with ClinicalTrials.gov, NCT02085070. FINDINGS: Between March 31, 2014, and May 21, 2018, 42 patients were treated. Median follow-up was 8·3 months (IQR 4·5-26·2). 11 (29·7% [95% CI 15·9-47·0]) of 37 patients in cohort 1 had a brain metastasis response. There were no responses in cohort 2. Grade 3-4 adverse events related to treatment included two patients with pneumonitis, and one each with constitutional symptoms, colitis, adrenal insufficiency, hyperglycaemia, and hypokalaemia. Treatment-related serious adverse events occurred in six (14%) of 42 patients and were pneumonitis (n=2), acute kidney injury, colitis, hypokalaemia, and adrenal insufficiency (n=1 each). There were no treatment-related deaths. INTERPRETATION: Pembrolizumab has activity in brain metastases from NSCLC with PD-L1 expression at least 1% and is safe in selected patients with untreated brain metastases. Further investigation of immunotherapy in patients with CNS disease from NSCLC is warranted. FUNDING: Merck and the Yale Cancer Center.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , B7-H1 Antigen/genetics , Brain Neoplasms/drug therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Aged , Antibodies, Monoclonal, Humanized/adverse effects , B7-H1 Antigen/antagonists & inhibitors , Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/secondary , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Middle Aged , Neoplasm Metastasis
8.
Arterioscler Thromb Vasc Biol ; 40(5): 1155-1167, 2020 05.
Article in English | MEDLINE | ID: mdl-32212851

ABSTRACT

OBJECTIVES: During the advancement of atherosclerosis, plaque cellularity is governed by the influx of monocyte-derived macrophages and their turnover via apoptotic and nonapoptotic forms of cell death. Previous reports have demonstrated that programmed necrosis, or necroptosis, of plaque macrophages contribute to necrotic core formation. Knockdown or inhibition of the necrosome components RIPK1 (receptor-interacting protein kinase 1) and RIPK3 (receptor-interacting protein kinase 3) slow atherogenesis, and activation of the terminal step of necroptosis, MLKL (mixed lineage kinase domain-like protein), has been demonstrated in advanced human atherosclerotic plaques. However, whether MLKL directly contributes to lesion development and necrotic core formation has not been investigated. Approaches and Results: MLKL expression was knocked down in atherogenic Apoe-knockout mice via the administration of antisense oligonucleotides. During atherogenesis, Mlkl knockdown decreased both programmed cell death and the necrotic core in the plaque. However, total lesion area remained unchanged. Furthermore, treatment with the MLKL antisense oligonucleotide unexpectedly reduced circulating cholesterol levels compared with control antisense oligonucleotide but increased the accumulation of lipids within the plaque and in vitro in macrophage foam cells. MLKL colocalized with the late endosome and multivesicular bodies in peritoneal macrophages incubated with atherogenic lipoproteins. Transfection with MLKL antisense oligonucleotide increased lipid localization with the multivesicular bodies, suggesting that upon Mlkl knockdown, lipid trafficking becomes defective leading to enhanced lipid accumulation in macrophages. CONCLUSIONS: These studies confirm the requirement for MLKL as the executioner of necroptosis, and as such a significant contributor to the necrotic core during atherogenesis. We also identified a previously unknown role for MLKL in regulating endosomal trafficking to facilitate lipid handling in macrophages during atherogenesis.


Subject(s)
Aortic Diseases/enzymology , Atherosclerosis/enzymology , Cholesterol/metabolism , Foam Cells/enzymology , Macrophages, Peritoneal/enzymology , Plaque, Atherosclerotic , Protein Kinases/deficiency , Animals , Aortic Diseases/genetics , Aortic Diseases/pathology , Atherosclerosis/genetics , Atherosclerosis/pathology , Disease Models, Animal , Endosomes/metabolism , Female , Foam Cells/pathology , Macrophages, Peritoneal/pathology , Male , Mice, Knockout, ApoE , Necroptosis , Necrosis , Oligonucleotides, Antisense/administration & dosage , Protein Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Signal Transduction
9.
ACS Nano ; 13(6): 6491-6505, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31125197

ABSTRACT

The prevention and treatment of cardiovascular diseases (CVD) has largely focused on lowering circulating LDL cholesterol, yet a significant burden of atherosclerotic disease remains even when LDL is low. Recently, microRNAs (miRNAs) have emerged as exciting therapeutic targets for cardiovascular disease. miRNAs are small noncoding RNAs that post-transcriptionally regulate gene expression by degradation or translational inhibition of target mRNAs. A number of miRNAs have been found to modulate all stages of atherosclerosis, particularly those that promote the efflux of excess cholesterol from lipid-laden macrophages in the vessel wall to the liver. However, one of the major challenges of miRNA-based therapy is to achieve tissue-specific, efficient, and safe delivery of miRNAs in vivo. We sought to develop chitosan nanoparticles (chNPs) that can deliver functional miRNA mimics to macrophages and to determine if these nanoparticles can alter cholesterol efflux and reverse cholesterol transport in vivo. We developed chNPs with a size range of 150-200 nm via the ionic gelation method using tripolyphosphate (TPP) as a cross-linker. In this method, negatively charged miRNAs were encapsulated in the nanoparticles by ionic interactions with polymeric components. We then optimized the efficiency of intracellular delivery of different formulations of chitosan/TPP/miRNA to mouse macrophages. Using a well-defined miRNA with roles in macrophage cholesterol metabolism, we tested whether chNPs could deliver functional miRNAs to macrophages. We find chNPs can transfer exogenous miR-33 to naïve macrophages and reduce the expression of ABCA1, a potent miR-33 target gene, both in vitro and in vivo, confirming that miRNAs delivered via nanoparticles can escape the endosomal system and function in the RISC complex. Because miR-33 and ABCA1 play a key role in regulating the efflux of cholesterol from macrophages, we also confirmed that macrophages treated with miR-33-loaded chNPs exhibited reduced cholesterol efflux to apolipoprotein A1, further confirming functional delivery of the miRNA. In vivo, mice treated with miR33-chNPs showed decreased reverse cholesterol transport (RCT) to the plasma, liver, and feces. In contrast, when efflux-promoting miRNAs were delivered via chNPs, ABCA1 expression and cholesterol efflux into the RCT pathway were improved. Over all, miRNAs can be efficiently delivered to macrophages via nanoparticles, where they can function to regulate ABCA1 expression and cholesterol efflux, suggesting that these miRNA nanoparticles can be used in vivo to target atherosclerotic lesions.


Subject(s)
Chitosan/analogs & derivatives , Cholesterol/metabolism , Macrophages, Peritoneal/metabolism , MicroRNAs/genetics , Nanoparticles/chemistry , RNAi Therapeutics/methods , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , Animals , Cells, Cultured , Cholesterol/blood , Gene Transfer Techniques , Liver/metabolism , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL