Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
Phys Med Biol ; 69(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38385258

ABSTRACT

Objective. Prompt gamma photon, prompt x-ray, and induced positron imaging are possible methods for observing a proton beam's shape from outside the subject. However, since these three types of images have not been measured simultaneously nor compared using the same subject, their advantages and disadvantages remain unknown for imaging beam shapes in therapy. To clarify these points, we developed a triple-imaging-modality system to simultaneously measure prompt gamma photons, prompt x-rays, and induced positrons during proton beam irradiation to a phantom.Approach. The developed triple-imaging-modality system consists of a gamma camera, an x-ray camera, and a dual-head positron emission tomography (PET) system. During 80 MeV proton beam irradiation to a polymethyl methacrylate (PMMA) phantom, imaging of prompt gamma photons was conducted by the developed gamma camera from one side of the phantom. Imaging of prompt x-rays was conducted by the developed x-ray camera from the other side. Induced positrons were measured by the developed dual-head PET system set on the upper and lower sides of the phantom.Main results. With the proposed triple-imaging-modality system, we could simultaneously image the prompt gamma photons and prompt x-rays during proton beam irradiation. Induced positron distributions could be measured after the irradiation by the PET system and the gamma camera. Among these imaging modalities, image quality was the best for the induced positrons measured by PET. The estimated ranges were actually similar to those imaged with prompt gamma photons, prompt x-rays and induced positrons measured by PET.Significance. The developed triple-imaging-modality system made possible to simultaneously measure the three different beam images. The system will contribute to increasing the data available for imaging in therapy and will contribute to better estimating the shapes or ranges of proton beam.


Subject(s)
Proton Therapy , Protons , X-Rays , Electrons , Proton Therapy/methods , Tomography, X-Ray Computed , Photons/therapeutic use , Gamma Rays , Phantoms, Imaging , Monte Carlo Method
2.
Appl Radiat Isot ; 204: 111084, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38016258

ABSTRACT

High sensitivity and high resolution is desired in such technologies as neutron radiography. However, the contamination of gamma photons in neutron images decreases the accuracy of neutron radiography. To solve this problem, we developed an event-by-event based neutron imaging system that can selectively detect neutrons. The developed neutron imaging system consists of an Li-ZnS(Ag) scintillator plate optically coupled to a flat panel photomultiplier tube (FP-PMT) with a light guide. Scintillation light emitted from the Li-ZnS(Ag) by the interaction with neutron-induced particles is used to calculate the position based on the center of mass calculations. The spatial resolution of the neutron imaging detector is ∼2.3 mm FWHM, and the sensitivity for 252Cf at 2 cm from the source with 2-cm-thick polystyrene is 20 cps/MBq. Background count fraction from 60Co gamma photons was 0.2 %. For various types of neutron absorption phantoms, high-contrast and high-resolution neutron images are obtained with the developed neutron imaging detector using a252Cf neutron source.

3.
Appl Radiat Isot ; 204: 111143, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38101006

ABSTRACT

High-resolution and real-time imaging of particle ion trajectories is essential in nuclear medicine and nuclear engineering. One potential method to achieve high-resolution real-time trajectory imaging of particle ions involves utilizing an imaging system that integrates a scintillator plate with a magnifying unit and a cooled electron multiplying charge-coupled device (EM-CCD) camera. However, acquiring an EM-CCD camera might prove challenging due to the discontinuation of CCD sensor manufacturing by vendors. As an alternative imaging approach, a low-noise, high-sensitivity camera utilizing a cooled complementary metal-oxide-semiconductor (CMOS) sensor offers a promising solution for imaging particle ion trajectories. Yet, it remains uncertain whether CMOS-based cameras can perform as effectively as CCD-based cameras in capturing particle ion trajectories. To address these concerns, we conducted a comparative analysis of the imaging performance between a CMOS-based system and an EM-CCD-based system for capturing alpha particle trajectories. The results revealed that both systems could image the trajectories of alpha particle, but the spatial resolution with the CMOS-based camera exceeded that of the EM-CCD-based camera, primarily due to the smaller pixel size of the sensor. While the signal-to-noise ratio (SNR) of the trajectory image from the CMOS-based camera initially lagged behind that from the EM-CCD-based camera, this disparity was mitigated by implementing binning techniques on the CMOS-based camera images. In conclusion, our findings suggest that a cooled CMOS camera could serve as a viable alternative for imaging particle ion trajectories.

4.
Biomed Phys Eng Express ; 10(1)2023 11 23.
Article in English | MEDLINE | ID: mdl-37948761

ABSTRACT

Objective. Precise monitoring of the position and dwell time of iridium-192 (Ir-192) during high-dose-rate (HDR) brachytherapy is crucial to avoid serious damage to normal tissues. Source imaging using a compact gamma camera is a potential approach for monitoring. However, images from the gamma camera are affected by blurring and statistical noise, which impact the accuracy of source position monitoring. This study aimed to develop a deep-learning approach for estimating ideal source images that reduce the effect of blurring and statistical noise from experimental images captured using a compact gamma camera.Approach. A double pix2pix model was trained using the simulated gamma camera images of an Ir-192 source. The first model was responsible for denoising the Ir-192 images, whereas the second model performed super resolution. Trained models were then applied to the experimental images to estimate the ideal images.Main results. At a distance of 100 mm between the compact gamma camera and the Ir-192 source, the difference in full width at half maximum (FWHM) between the estimated and actual source sizes was approximately 0.5 mm for a measurement time of 1.5 s. This difference has been improved from approximately 2.7 mm without the use of DL. Even with a measurement time of 0.1 s, the ideal images could be estimated as accurately as in the 1.5 s measurements. This method consistently achieved accurate estimations of the source images at any position within the field of view; however, the difference increased with the distance between the Ir-192 source and the compact gamma camera.Significance. The proposed method successfully provided estimated images from the experimental images within errors smaller than 0.5 mm at 100 mm. This method is promising for reducing blurring and statistical noise from the experimental images, enabling precise real-time monitoring of Ir-192 sources during HDR brachytherapy.


Subject(s)
Brachytherapy , Deep Learning , Iridium Radioisotopes , Brachytherapy/methods , Gamma Cameras
5.
Phys Med Biol ; 68(15)2023 07 26.
Article in English | MEDLINE | ID: mdl-37429310

ABSTRACT

Objective.FLASH radiation therapy with ultrahigh dose rates (UHDR) has the potential to reduce damage to normal tissue while maintaining anti-tumor efficacy. However, rapid and precise dose distribution measurements remain difficult for FLASH radiation therapy with proton beams. To solve this problem, we performed luminescence imaging of water following irradiation by a UHDR proton beam captured using a charge-coupled device camera.Approach. We used 60 MeV proton beams with dose rates of 0.03-837 Gy s-1from a cyclotron. Therapeutic 139.3 MeV proton beams with dose rates of 0.45-4320 Gy s-1delivered by a synchrotron-based proton therapy system were also tested. The luminescent light intensity induced by the UHDR beams was compared with that produced by conventional beams to compare the dose rate dependency of the light intensity and its profile.Main results. Luminescence images of water were clearly visualized under UHDR conditions, with significantly shorter exposure times than those with conventional beams. The light intensity was linearly proportional to the delivered dose, which is similar to that of conventional beams. No significant dose-rate dependency was observed for 0.03-837 Gy s-1. The light-intensity profiles of the UHDR beams agreed with those of conventional beams. The results did not differ between accelerators (synchrotron or cyclotron) and beam energies.Significance. Luminescence imaging of water is achievable with UHDR proton beams as well as with conventional beams. The proposed method should be suitable for rapid and easy quality assurance investigations for proton FLASH therapy, because it facilitates real-time, filmless measurements of dose distributions, and is useful for rapid feedback.


Subject(s)
Proton Therapy , Radiation Injuries , Humans , Protons , Luminescence , Water , Proton Therapy/methods , Light , Radiotherapy Dosage
6.
Biomed Phys Eng Express ; 9(4)2023 06 30.
Article in English | MEDLINE | ID: mdl-37387419

ABSTRACT

Prompt x-ray imaging is a promising method for observing the beam shape from outside a subject. However, its distribution is different from dose distribution, and thus a comparison with the dose is required. Meanwhile, luminescence imaging of water is a possible method for imaging the dose distribution. Consequently, we performed simultaneous imaging of luminescence and prompt x-rays during irradiation by proton beams to compare the distributions between these two different imaging methods. Optical imaging of water was conducted with spot-scanning proton beams at clinical dose level during irradiation to a fluorescein (FS) water phantom set in a black box. Prompt x-ray imaging was also conducted simultaneously from outside the black box using a developed x-ray camera during proton beam irradiation to the phantom. We measured images of the luminescence of FS water and prompt x-rays for various types of proton beams, including pencil beams, spread-out Bragg peak (SOBP) beams, and clinically used therapy beams. After the imaging, ranges were estimated from FS water and prompt x-rays and compared with those calculated with a treatment planning system (TPS). We could measure the prompt x-ray and FS water images simultaneously for all types of proton beams. The ranges estimated from the FS water and those calculated with the TPS closely matched, within a difference of several mm. Similar range difference was found between the results estimated from prompt x-ray images and those calculated with the TPS. We confirmed that the simultaneous imaging of luminescence and prompt x-rays were possible during irradiation with spot-scanning proton beams at a clinical dose level. This method can be applied to range estimation as well as comparison with the dose for prompt x-ray imaging or other imaging methods used in therapy with various types of proton beams at a clinical dose level.


Subject(s)
Luminescence , Protons , X-Rays , Radiography , Fluorescein , Water
7.
Phys Med Biol ; 68(11)2023 05 30.
Article in English | MEDLINE | ID: mdl-37252715

ABSTRACT

Objective. Prompt x-ray imaging using a low-energy x-ray camera is a promising method for observing a proton beam's shape from outside the subject. Furthermore, imaging of positrons produced by nuclear reactions with protons is a possible method for observing the beam shape. However, it has not been possible to measure these two types of images with a single imaging system due to the limited imaging capability of existing systems. Imaging of both prompt x-rays and the distribution of positrons may compensate for the shortcomings of each method.Approach. We conducted imaging of the prompt x-ray using a pinhole x-ray camera during irradiation with protons in list mode. Then, after irradiation with protons, imaging of annihilation radiations from the produced positrons was conducted using the same pinhole x-ray camera in list mode. After this imaging, list-mode data were sorted to obtain prompt x-ray images and positron images.Main results. With the proposed procedure, we could measure both prompt x-ray images and induced positron images with a single irradiation by a proton beam. From the prompt x-ray images, ranges and widths of the proton beams could be estimated. The distributions of positrons were slightly wider than those of the prompt x-rays. From the time sequential positron images, we could derive the time activity curves of the produced positrons.Significance. Hybrid imaging of prompt x-rays and induced positrons using a pinhole x-ray camera was achieved. The proposed procedure would be useful for measuring prompt x-ray images during irradiation to estimate the beam structures as well as for measuring the induced positron images after irradiation to estimate the distributions and time activity curves of the induced positrons.


Subject(s)
Proton Therapy , Protons , X-Rays , Electrons , Gamma Cameras , Proton Therapy/methods , Phantoms, Imaging , Gamma Rays , Multimodal Imaging , Monte Carlo Method
8.
Sci Rep ; 13(1): 4955, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37100780

ABSTRACT

High-resolution imaging of alpha particles is required in the detection of alpha radionuclides in cells or small organs for the development of radio-compounds for targeted alpha-particle therapy or other purposes. We developed an ultrahigh resolution, real time alpha-particle imaging system for observing the trajectories of alpha particles in a scintillator. The developed system is based on a magnifying unit and a cooled electron multiplying charge-coupled device (EM-CCD) camera, combined with a 100-µm-thick Ce-doped Gd3Al2Ga3O12 (GAGG) scintillator plate. Alpha particles from an Am-241 source were irradiated to the GAGG scintillator and imaged with the system. Using our system, we measured the trajectories of the alpha particles having different shapes in real time. In some of these measured trajectories, the line shapes of the alpha particles that flew in the GAGG scintillator were clearly observed. The lateral profiles of the alpha-particle trajectories were imaged with widths of ~ 2 µm. We conclude that the developed imaging system is promising for research on targeted alpha-particle therapy or other alpha particle detections that require high spatial resolution.

9.
Phys Med ; 109: 102592, 2023 May.
Article in English | MEDLINE | ID: mdl-37084677

ABSTRACT

Prompt secondary electron bremsstrahlung X-ray (prompt X-ray) imaging using a low-energy X-ray camera is a promising method for observing a beam shape from outside the subject. However, such imaging has so far been conducted only for pencil beams without a multi-leaf collimator (MLC). The use of spread-out Bragg peak (SOBP) with an MLC may increase the scattered prompt gamma photons and decrease the contrast of the images of prompt X-rays. Consequently, we performed prompt X-ray imaging of SOBP beams formed with an MLC. This imaging was carried out in list mode during irradiation of SOBP beams to a water phantom. An X-ray camera with a 1.5-mm diameter as well as 4-mm-diameter pinhole collimators was used for the imaging. List mode data were sorted to obtain the SOBP beam images as well as energy spectra and time count rate curves. Due to the high background counts from the scattered prompt gamma photons penetrating the tungsten shield of the X-ray camera, the SOBP beam shapes were difficult to observe with a 1.5-mm-diameter pinhole collimator. With the 4-mm-diameter pinhole collimators, images of SOBP beam shapes at clinical dose levels could be obtained with the X-ray camera. The use of a 4-mm-diameter pinhole collimator attached to the X-ray camera is effective for prompt X-ray imaging with high sensitivity and low background counts. This approach makes it possible to image SOBP beams with an MLC when the counts are low and the background levels are high.


Subject(s)
Carbon , X-Rays , Radiography , Phantoms, Imaging , Ions
10.
Phys Med ; 103: 66-73, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36244135

ABSTRACT

PURPOSE: Although real-time imaging of the high-activity iridium-192 (Ir-192) source position during high-dose-rate (HDR) brachytherapy using a high-energy gamma camera system is a promising approach, the energy window was not optimized for spatial resolution or scatter fraction. METHODS: By using a list-mode data-acquisition system that can acquire energy information of a cerium-doped yttrium aluminum perovskite (YA1O3: YAP(Ce)) gamma camera, we tried to optimize the energy window's setting to improve the spatial resolution and reduce scatter fraction. RESULTS: The spatial resolution was highest for the central energy of the window at ∼300 keV. The scatter fraction was also smallest for the central energy of the window at ∼300 keV, and the scatter fraction was more than 48 % smaller than that for the full energy window. CONCLUSIONS: We clarified that the spatial resolution can be improved and the scatter fraction can be reduced through optimizing the energy window of the YAP(Ce) gamma camera by setting the central energy of the window to ∼300 keV for HDR brachytherapy.


Subject(s)
Brachytherapy , Gamma Cameras , Iridium Radioisotopes/therapeutic use , Phantoms, Imaging
11.
Med Phys ; 49(12): 7703-7714, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36063027

ABSTRACT

PURPOSE: Measurement of the dwell time and moving speed of a high-activity iridium-192 (Ir-192) source used for high-dose-rate (HDR) brachytherapy is important for estimating the precise dose delivery to a tumor. For this purpose, we used a cerium-doped yttrium aluminum perovskite (YA1O3 :YAP(Ce)) gamma camera system, combined with a list-mode data acquisition system that can acquire short-time sequential images, and measured the dwell times and moving speeds of the Ir-192 source. METHODS: Gamma photon imaging was conducted using the gamma camera in list mode for the Ir-192 source of HDR brachytherapy with fixed dwell times and positions. The acquired list-mode images were sorted to millisecond-order interval time sequential images to evaluate the dwell time at each position. Time count rate curves were derived to calculate the dwell time at each source position and moving speed of the source. RESULTS: We could measure the millisecond-order time sequential images for the Ir-192 source. The measured times for the preset dwell times of 2 s and 10 s were 1.98 to 2.00 s full width at half maximum (FWHM) and 10.0 s FWHM, respectively. The dwell times at the first dwell position were larger than those at other positions. We also measured the moving speeds of the source after the dwells while moving back to the afterloader and found the speed increased with the distance from the edge of the field of view to the last dwell position. CONCLUSION: We conclude that millisecond-order time sequential imaging of the Ir-192 source is possible by using a gamma camera and is useful for evaluating the dwell times and moving speeds of the Ir-192 source.


Subject(s)
Brachytherapy , Radiotherapy Dosage , Brachytherapy/methods , Iridium Radioisotopes/therapeutic use , Diagnostic Imaging
12.
Med Phys ; 49(8): 5409-5416, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35670250

ABSTRACT

OBJECTIVE: Dose distribution measurements of high-energy X-rays from medical linear accelerators (LINAC) in water are important for quality control (QC) of the system. Although Cherenkov-light imaging is a useful method for measuring the high-energy X-ray dose distribution, depth profiles have an underestimated dose at increased depths due to the angular dependency of the Cherenkov light generated in water. In this study, we use a linear polarizer to separate the majority of polarized components from the majority of unpolarized components of Cherenkov-light images in water and then use this information to correct for angular dependencies. METHODS: A water phantom, a cooled charge-coupled device (CCD) camera, and a polarizer were installed in a black box. Then, the water phantom was irradiated from the upper side with 6 or 10 MV X-rays, and the Cherenkov light generated in water was imaged with the polarizer axis at both parallel and perpendicular orientations to the beam. By using these images from the two orientations relative to the beam, we corrected the angular dependency of the Cherenkov light. RESULTS: By subtracting the images measured with the polarizer perpendicular to the beams from the images measured with the polarizer parallel to the beams, we could obtain images with only the polarized components. Using these images, we could calculate the images with non-polarized components that had similar depth profiles to those calculated with a planning system. The average difference between corrected depth profiles and those calculated with the planning system was less than 1%, while that between uncorrected depth profiles and the planning system was more than 8.3% in depths of water from 20 to 100 mm. CONCLUSION: We conclude that the use of the polarizer has the potential to improve the accuracy of dose distribution in Cherenkov-light imaging of water using high-energy X-rays.


Subject(s)
Particle Accelerators , Water , Phantoms, Imaging , Radiometry , Radiotherapy Planning, Computer-Assisted/methods , X-Rays
13.
Phys Med ; 99: 130-139, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35689979

ABSTRACT

PURPOSE: Proton-induced secondary-electron-bremsstrahlung (SEB) imaging is a promising method for estimating the ranges of particle beam. However, SEB images do not directly represent dose distributions of particle beams. In addition, the ranges estimated from measured images were deviated because of limited spatial resolutions of the developed x-ray camera as well as statistical noise in the images. To solve these problems, we proposed a method for predicting high-resolution dose images from SEB images with various count level using a deep learning (DL) approach for range and width verification. METHODS: In this study, we adopted the double U-Net model, which is a previously proposed deep convolutional network model. The first U-Net model in the double U-Net model was used to denoise the SEB images with various count level. The first U-Net model for denoising was trained on 8000 pairs of SEB images with various count level and noise-free images which were created by a sophisticated in-house developed model function. The second U-Net model for dose prediction was trained using 8000 pairs of denoised SEB images from the first U-Net model and high-resolution dose images generated by Monte Carlo simulation. RESULTS: For both simulation and measurement data, the trained DL model could successfully predict high-resolution dose images which showed a clear Bragg peak and no statistical noise. The difference of the range and width was less than 2.1 mm, even from the SEB images measured with a decrease in the number of irradiated protons to less than 11% of 3.2 × 1011 protons. CONCLUSIONS: High-resolution dose images from measured and simulated SEB images were successfully predicted by using the trained DL model for protons. Our proposed DL model was feasible to predict dose images accurately even with smaller number of irradiated protons.


Subject(s)
Deep Learning , Proton Therapy , Electrons , Monte Carlo Method , Protons
14.
Med Phys ; 49(3): 1822-1830, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34958515

ABSTRACT

PURPOSE: Optical imaging of ionizing radiation is a possible method for dose distribution measurements. However, it is not clear whether the imaging method is also applicable to neutrons. To clarify this, we performed the imaging of neutrons in water from boron neutron capture therapy (BNCT) systems. Such systems require efficient distribution measurements of neutrons for quality assessment (QA) of the beams. METHOD: A water-filled phantom was irradiated from the side with an epithermal neutron beam, in which a lithium-containing zinc sulfate (Li-ZnS(Ag)) plate was set in the beam direction, and during this irradiation the scintillation of the plate was imaged using a cooled charge-coupled device (CCD) camera. In the imaging, Li-6 in the Li-ZnS(Ag) plate captures neutrons and converts them to alpha particles (He-4) and tritium (H-3), while ZnS(Ag) in the Li-ZnS(Ag) plate produces scintillation light in the plate. We also conducted Monte Carlo simulation and compared its results with the experimental results. RESULTS: The image of the emitted light from the Li-ZnS(Ag) plate was clearly obtained with an imaging time of 0.5 s. The depth and lateral profiles of the measured image using the Li-ZnS(Ag) plate showed the same shapes as the neutron distributions measured with gold foil, within a difference of 8%. The destructive effect of neutrons on the CCD camera increased approximately three times, but the unit was still working after the measurement. CONCLUSION: The optical imaging of neutrons in water is possible, and it has the potential to be a new method for efficient QA as well as for research on neutrons.


Subject(s)
Boron Neutron Capture Therapy , Boron Neutron Capture Therapy/methods , Lithium , Monte Carlo Method , Neutrons , Optical Imaging , Water , Zinc , Zinc Sulfate
15.
Appl Radiat Isot ; 176: 109861, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34265565

ABSTRACT

Positron emission tomography (PET) is a powerful tool because we can acquire functional information of tissue from the images with high sensitivity and relatively high spatial resolution. However, high-spatial-resolution PET imaging for high-energy positron emitters is difficult because the positrons have a long range and annihilation radiations are emitted at the endpoints of the positrons' trajectories. Along the trajectories, Cerenkov light (CL) is also emitted in advance of the emission of annihilation radiations. Hence, CL can be used for the imaging of high-energy positron emitters. Bremsstrahlung X-rays are also emitted along the trajectories of positrons, and imaging is possible. However, the differences in the spatial distributions of these three types of radiations are not obvious. Because CL and bremsstrahlung X-rays are produced before the endpoint of the positron, high-spatial-resolution imaging may be possible for high-energy positrons. In this study, to clarify this point, we simulated the spatial distribution of CL, bremsstrahlung X-rays, and annihilation radiations using Monte Carlo simulation and compared the distributions. The distributions of the bremsstrahlung X-rays and CL were smaller than those of the annihilation radiations in case of high energy positrons, and we found that the distributions of bremsstrahlung X-rays nearly matched those of CL for high-energy positron emitters. We concluded that CL and bremsstrahlung X-ray imaging have higher spatial resolution than annihilation radiation imaging for MeV ordered positron emitters, and thus they are promising for high-spatial-resolution imaging of high-energy positron emitters such as O-15 for ion therapy and Ga-68 for PET imaging.

16.
J Appl Clin Med Phys ; 22(7): 188-197, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34124832

ABSTRACT

PURPOSE: Although the imaging of luminescence emitted in water during irradiation of protons and carbon ions is a useful method for range and dose estimations, the intensity of the images is relatively low due to the low photon production of the luminescence phenomenon. Therefore, a relatively long time is required for the imaging. Since a fluorescent dye, fluorescein, may increase the intensity of the optical signal, we measured the luminescence images of water with different concentrations of fluorescein during irradiation of protons and carbon ions and compared the results with those by measurements with water. METHODS: A cooled charge-coupled device (CCD) camera was used for imaging a water phantom with different concentrations of fluorescein from 0.0063 to 0.025 mg/cm3 , in addition to a water phantom without fluorescein during irradiation of 150-MeV protons and 241.5-MeV/n carbon ions. RESULTS: For both protons and carbon ions, the intensity of the luminescence images increased as the concentration of fluorescein increased. With a fluorescein concentration of 0.025 mg/cm3 , the intensities increased to more than 10 times those of water for both protons and carbon ions. Although the shape of the depth profiles of luminescence images of water with fluorescein appeared similar to that of water for protons, those for carbon ions were different from those of water due to the increase in the Cherenkov light component at shallow depths by the decrease in the angular dependencies of the Cherenkov light. CONCLUSION: We confirmed the increase in intensity of the luminescence of water by adding fluorescein for particle ions. With a small amount of Cherenkov light contamination in the images, such as protons, the relative distributions of the luminescence images with fluorescein were similar to that of water and will be used for range or dose determination in a short time.


Subject(s)
Heavy Ion Radiotherapy , Protons , Carbon , Fluorescein , Humans , Phantoms, Imaging
17.
J Radiat Res ; 62(5): 825-832, 2021 Sep 13.
Article in English | MEDLINE | ID: mdl-33998657

ABSTRACT

The accurate measurement of the 3D dose distribution of carbon-ion beams is essential for safe carbon-ion therapy. Although ionization chambers scanned in a water tank or air are conventionally used for this purpose, these measurement methods are time-consuming. We thus developed a rapid 3D dose-measurement tool that employs a silver-activated zinc sulfide (ZnS) scintillator with lower linear energy transfer (LET) dependence than gadolinium-based (Gd) scintillators; this tool enables the measurement of carbon-ion beams with small corrections. A ZnS scintillator sheet was placed vertical to the beam axis and installed in a shaded box. Scintillation images produced by incident carbon-ions were reflected with a mirror and captured with a charge-coupled device (CCD) camera. A 290 MeV/nucleon mono-energetic beam and spread-out Bragg peak (SOBP) carbon-ion passive beams were delivered at the Gunma University Heavy Ion Medical Center. A water tank was installed above the scintillator with the water level remotely adjusted to the measurement depth. Images were recorded at various water depths and stacked in the depth direction to create 3D scintillation images. Depth and lateral profiles were analyzed from the images. The ZnS-scintillator-measured depth profile agreed with the depth dose measured using an ionization chamber, outperforming the conventional Gd-based scintillator. Measurements were realized with smaller corrections for a carbon-ion beam with a higher LET than a proton. Lateral profiles at the entrance and the Bragg peak depths could be measured with this tool. The proposed method would make it possible to rapidly perform 3D dose-distribution measurements of carbon-ion beams with smaller quenching corrections.


Subject(s)
Heavy Ion Radiotherapy , Imaging, Three-Dimensional/instrumentation , Radiometry/instrumentation , Sulfides/radiation effects , Zinc Compounds/radiation effects , Dose-Response Relationship, Radiation , Equipment Design , Imaging, Three-Dimensional/methods , Linear Energy Transfer , Radiometry/methods , Water
18.
Phys Med Biol ; 66(12)2021 06 07.
Article in English | MEDLINE | ID: mdl-34010817

ABSTRACT

Proton therapy using mini-beams is a promising method to reduce radiation damage to normal tissue. However, distribution measurements of mini-beams are difficult due to their small structures. Since optical imaging is a possible method to measure high-resolution two-dimensional dose distribution, we conducted optical imaging of an acrylic block during the irradiation of mini-beams of protons. Mini-beams were made from a proton pencil beam irradiated to 1 mm slits made of tungsten plate. During irradiation of the mini-beams to the acrylic block, we measured the luminescence of the acrylic block using a charge-coupled device camera. With the measurements, we could obtain slit beam images that have slit shapes in the shallow area while they were uniform in their Bragg peaks, which was similar to the case of simulated optical images by Monte Carlo simulations. We confirmed that high-resolution optical imaging of mini-beams is possible and provides a promising method for efficient quality assessment of mini-beams as well as research on mini-beam therapy.


Subject(s)
Proton Therapy , Protons , Monte Carlo Method , Optical Imaging , Phantoms, Imaging
20.
Igaku Butsuri ; 41(1): 38-39, 2021.
Article in Japanese | MEDLINE | ID: mdl-33853982

ABSTRACT

This is a review article on luminescence in water published by JSRT and JSMP (https://www.jsmp.org/en).abe.


Subject(s)
Luminescence , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...