Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Sci Rep ; 14(1): 11064, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38744924

ABSTRACT

The European Leukemia Net recommendations provide valuable guidance in treatment decisions of patients with acute myeloid leukemia (AML). However, the genetic complexity and heterogeneity of AML are not fully covered, notwithstanding that gene expression analysis is crucial in the risk stratification of AML. The Stellae-123 score, an AI-based model that captures gene expression patterns, has demonstrated robust survival predictions in AML patients across four western-population cohorts. This study aims to evaluate the applicability of Stellae-123 in a Taiwanese cohort. The Stellae-123 model was applied to 304 de novo AML patients diagnosed and treated at the National Taiwan University Hospital. We find that the pretrained (BeatAML-based) model achieved c-indexes of 0.631 and 0.632 for the prediction of overall survival (OS) and relapse-free survival (RFS), respectively. Model retraining within our cohort further improve the cross-validated c-indexes to 0.667 and 0.667 for OS and RFS prediction, respectively. Multivariable analysis identify both pretrained and retrained models as independent prognostic biomarkers. We further show that incorporating age, Stellae-123, and ELN classification remarkably improves risk stratification, revealing c-indices of 0.73 and 0.728 for OS and RFS, respectively. In summary, the Stellae-123 gene expression signature is a valuable prognostic tool for AML patients and model retraining can improve the accuracy and applicability of the model in different populations.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , Taiwan/epidemiology , Male , Female , Middle Aged , Aged , Adult , Prognosis , Risk Assessment/methods , Transcriptome , Gene Expression Profiling/methods , Biomarkers, Tumor/genetics , Young Adult , Aged, 80 and over , Gene Expression Regulation, Leukemic
2.
Blood Adv ; 8(10): 2442-2454, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38527292

ABSTRACT

ABSTRACT: The human kinome, which comprises >500 kinases, plays a critical role in regulating numerous essential cellular functions. Although the dysregulation of kinases has been observed in various human cancers, the characterization and clinical implications of kinase expressions in myelodysplastic syndromes (MDS) have not been systematically investigated. In this study, we evaluated the kinome expression profiles of 341 adult patients with primary MDS and identified 7 kinases (PTK7, KIT, MAST4, NTRK1, PAK6, CAMK1D, and PRKCZ) whose expression levels were highly predictive of compromised patient survival. We then constructed the kinase stratification score (KISS) by combining the weighted expressions of the 7 kinases and validated its prognostic significance in 2 external MDS cohorts. A higher KISS was associated with older age, higher peripheral blood and marrow blast percentages, higher Revised International Prognostic Scoring System (IPSS-R) risks, complex karyotype, and mutations in several adverse-risk genes in MDS, such as ASXL1, EZH2, NPM1, RUNX1, STAG2, and TP53. Multivariate analysis confirmed that a higher KISS was an independent unfavorable risk factor in MDS. Mechanistically, the KISS-high patients were enriched for gene sets associated with hematopoietic and leukemic stem cell signatures. By investigating the Genomics of Drug Sensitivity in Cancer database, we identified axitinib and taselisib as candidate compounds that could potentially target the KISS-high myeloblasts. Altogether, our findings suggest that KISS holds the potential to improve the current prognostic scheme of MDS and inform novel therapeutic opportunities.


Subject(s)
Myelodysplastic Syndromes , Nucleophosmin , Humans , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Male , Female , Prognosis , Gene Expression Profiling , Aged , Middle Aged , Adult , Risk Assessment , Molecular Targeted Therapy , Aged, 80 and over
3.
Blood Cancer J ; 14(1): 15, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38253683

ABSTRACT

Acute myeloid leukemia (AML) with CEBPA bZIP in-frame mutations (CEBPAbZIP-inf) is classified within the favorable-risk group by the 2022 European LeukemiaNet (ELN-2022). However, heterogeneous clinical outcomes are still observed in these patients. In this study, we aimed to investigate the mutation profiles and transcriptomic patterns associated with poor outcomes in patients with CEBPAbZIP-inf. One hundred and thirteen CEBPAbZIP-inf patients were identified in a cohort of 887 AML patients homogeneously treated with intensive chemotherapy. Concurrent WT1 or DNMT3A mutations significantly predicted worse survival in AML patients with CEBPAbZIP-inf. RNA-sequencing analysis revealed an enrichment of interferon (IFN) signaling and metabolic pathways in those with a shorter event-free survival (EFS). CEBPAbZIP-inf patients with a shorter EFS had higher expression of IFN-stimulated genes (IRF2, IRF5, OAS2, and IFI35). Genes in mitochondrial complexes I (NDUFA12 and NDUFB6) and V (ATP5PB and ATP5IF1) were overexpressed and were associated with poorer survival, and the results were independently validated in the TARGET AML cohort. In conclusion, concurrent WT1 or DNMT3A mutations and a dysregulated immune and metabolic state were correlated with poor survival in patients with CEBPAbZIP-inf, and upfront allogeneic transplantation may be indicated for better long-term disease control.


Subject(s)
Leukemia, Myeloid, Acute , Adult , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Gene Expression Profiling , Mutation , Progression-Free Survival , Metabolic Networks and Pathways , CCAAT-Enhancer-Binding Proteins/genetics , NADPH Dehydrogenase
5.
BMC Cancer ; 23(1): 446, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37193978

ABSTRACT

BACKGROUND: Upfront high-dose therapy (HDT) followed by autologous stem cell transplantation (ASCT) remains a profitable strategy for newly diagnosed multiple myeloma (MM) patients in the context of novel agents. However, current knowledge demonstrates a discrepancy between progression-free survival (PFS) and overall survival (OS) benefit with HDT/ASCT. METHODS: We conducted a systematic review and meta-analysis that included both randomized controlled trials (RCTs) and observational studies evaluating the benefit of upfront HDT/ASCT published during 2012 to 2023. Further sensitivity analysis and meta-regression were also performed. RESULTS: Among the 22 enrolled studies, 7 RCTs and 9 observational studies had a low or moderate risk of bias, while the remaining 6 observational studies had a serious risk of bias. HDT/ASCT revealed advantages in complete response (CR) with an odds ratio (OR) of 1.24 and 95% confidence interval (CI) 1.02 ~ 1.51, PFS with a hazard ratio (HR) of 0.53 (95% CI 0.46 ~ 0.62), and OS with an HR of 0.58 (95% CI 0.50 ~ 0.69). Sensitivity analysis excluding the studies with serious risk of bias and trim-and-fill imputation fundamentally confirmed these findings. Older age, increased percentage of patients with International Staging System (ISS) stage III or high-risk genetic features, decreased proteasome inhibitor (PI) or combined PI/ immunomodulatory drugs (IMiD) utilization, and decreased follow-up duration or percentage of males were significantly related to a greater survival advantage with HDT/ASCT. CONCLUSIONS: Upfront ASCT remains a beneficial treatment for newly diagnosed MM patients in the period of novel agents. Its advantage is especially acute in high-risk MM populations, such as elderly individuals, males, those with ISS stage III or high-risk genetic features, but is attenuated with PI or combined PI/IMiD utilization, contributing to divergent survival outcomes.


Subject(s)
Hematopoietic Stem Cell Transplantation , Multiple Myeloma , Male , Humans , Aged , Multiple Myeloma/therapy , Multiple Myeloma/drug therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Transplantation, Autologous , Disease-Free Survival , Stem Cell Transplantation
6.
Clin Case Rep ; 11(4): e7146, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37006841

ABSTRACT

We present the case of a 70-year-old man diagnosed with acute myelomonocytic leukemia, albeit that his leukemic blasts at initial presentation had scant cytoplasm, inconspicuous cytoplasmic granules, and morphologically mimicked lymphoblasts. We would like to raise the recognition that acute myelomonocytic leukemia can actually present with atypical blast morphology.

7.
Am J Hematol ; 98(5): 784-793, 2023 05.
Article in English | MEDLINE | ID: mdl-36855936

ABSTRACT

Aberrant alternative splicing (AS) is involved in leukemogenesis. This study explored the clinical impact of alterations in global AS patterns in 341 patients with acute myeloid leukemia (AML) newly diagnosed at the National Taiwan University Hospital and validated it using The Cancer Genome Atlas (TCGA) cohort. While studying normal cord blood CD34+ /CD38- cells, we found that AML cells exhibited significantly different global splicing patterns. AML with mutated TP53 had a particularly high degree of genome-wide aberrations in the splicing patterns. Aberrance in the global splicing pattern was an independent unfavorable prognostic factor affecting the overall survival of patients with AML receiving standard intensive chemotherapy. The integration of global splicing patterns into the 2022 European LeukemiaNet risk classification could stratify AML patients into four groups with distinct prognoses in both our experimental and TCGA cohorts. We further identified four genes with AS alterations that harbored prognostic significance in both of these cohorts. Moreover, these survival-associated AS events are involved in several important cellular processes that might be associated with poor response to intensive chemotherapy. In summary, our study demonstrated the clinical and biological implications of differential global splicing patterns in AML patients. Further studies with larger prospective cohorts are required to confirm these findings.


Subject(s)
Alternative Splicing , Leukemia, Myeloid, Acute , Humans , RNA, Messenger/genetics , Clinical Relevance , Prospective Studies , Prognosis , Leukemia, Myeloid, Acute/drug therapy
8.
Br J Haematol ; 201(2): 302-307, 2023 04.
Article in English | MEDLINE | ID: mdl-36746431

ABSTRACT

Leukaemic stem cell (LSC) gene expression has recently been linked to prognosis in patients with acute myeloid leukaemia (17-gene LSC score, LSC-17) and myelodysplastic syndromes. Although chronic myelomonocytic leukaemia (CMML) is regarded as a stem cell disorder, the clinical and biological impact of LSCs on CMML patients remains elusive. Making use of multiple independent validation cohorts, we here describe a concise three-gene expression signature (LSC-3, derived from the LSC-17 score) as an independent and robust prognostic factor for leukaemia-free and overall survival in CMML. We propose that LSC-3 could be used to supplement existing risk stratification systems, to improve prognostic performance and guide management decisions.


Subject(s)
Leukemia, Myeloid, Acute , Leukemia, Myelomonocytic, Chronic , Myelodysplastic Syndromes , Humans , Leukemia, Myelomonocytic, Chronic/diagnosis , Leukemia, Myelomonocytic, Chronic/genetics , Prognosis , Stem Cells
10.
Br J Haematol ; 201(1): 75-85, 2023 04.
Article in English | MEDLINE | ID: mdl-36480431

ABSTRACT

The increased expression of programmed death-ligands 1 and 2 (PD-L1 and PD-L2, respectively) on tumour cells contributes to immune evasion, suggesting that these proteins are attractive therapeutic targets. This study aimed to evaluate the validity of cerebrospinal fluid (CSF) soluble PD-L1 (sPD-L1) and soluble PD-L2 (sPD-L2) as biomarkers for primary central nervous system lymphoma (PCNSL). We determined the CSF concentrations of sPD-L1 and sPD-L2 in 46 patients with PCNSL using enzyme-linked immunosorbent assays (ELISAs). A control group comprised 153 patients with other brain tumours, inflammatory/infectious status, or neurodegenerative diseases. Only CSF sPD-L1 levels were significantly higher in patients with PCNSL relative to the controls. CSF sPD-L1 also exhibited superior overall discrimination performance compared to CSF sPD-L2 in diagnosing PCNSL. Compared with patients with PCNSL with low CSF sPD-L1 levels, more patients with high levels had high serum lactate dehydrogenase levels, leptomeningeal involvement, and deep-brain involvement. Furthermore, CSF sPD-L1 could predict poor survival in PCNSL but CSF sPD-L2 could not. Intriguingly, CSF sPD-L1 levels were correlated with disease status and their dynamic changes post treatment could predict time to relapse. In conclusion, this study identified CSF sPD-L1 as a promising prognostic biomarker, indicating a therapeutic potential of PD-L1 blockade in PCNSL.


Subject(s)
B7-H1 Antigen , Lymphoma , Humans , B7-H1 Antigen/metabolism , Prognosis , Central Nervous System , Lymphoma/diagnosis
11.
Hematol Oncol ; 41(3): 463-473, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36420747

ABSTRACT

Myelodysplastic syndromes (MDS) are a group of clinically and genetically diverse diseases that impose patients with an increased risk of leukemic transformation. While MDS is a disease of the elderly, the interplay between aging and molecular profiles is not fully understood, especially in the Asian population. Thus, we compared the genetic landscape between younger and older patients in a cohort of 698 patients with primary MDS to advance our understanding of the distinct pathogenesis and different survival impacts of gene mutations in MDS according to age. We found that the average mutation number was higher in the older patients than younger ones. The younger patients had more WT1 and CBL mutations, but less mutated ASXL1, DNMT3A, TET2, SF3B1, SRSF2, STAG2, and TP53 than the older patients. In multivariable survival analysis, RUNX1 mutations with higher variant allele frequency (VAF) and U2AF1 and TP53 mutations were independent poor prognostic indicators in the younger patients, whereas DNMT3A and IDH2 mutations with higher VAF and TP53 mutations conferred inferior outcomes in the older patients. In conclusion, we demonstrated the distinct genetic landscape between younger and older patients with MDS and suggested that mutations impact survival in an age-depended manner.


Subject(s)
Myelodysplastic Syndromes , Humans , Aged , Mutation , Prognosis , Survival Analysis , Myelodysplastic Syndromes/pathology
12.
J Formos Med Assoc ; 122(7): 636-647, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36428148

ABSTRACT

BACKGROUND/PURPOSE: The S100 family proteins are involved in a variety of important biological processes, most notably immune and inflammatory responses. Their dysregulation also plays a role in the pathogenesis of human cancers. S100A4, also known as metastasin, has long been regarded as a biological marker in tumor progression and metastasis in multiple solid cancers, but its clinical significance in acute myeloid leukemia (AML) has not been extensively studied. METHODS: We retrospectively studied the association between S100A4 gene expression and the clinical characteristics, mutational and transcriptomic profiles of 227 AML patients treated with standard intensive chemotherapy. Genetic mutations of myeloid disease associated genes were analyzed by Sanger sequencing. Microarray-based transcriptomic gene expression profiling was performed on archived bone marrow mononuclear cells. Bioinformatic analyses, including differential gene expression and gene set enrichment analysis, were conducted to delineate the underlying pathogenic mechanisms. RESULTS: Higher S100A4 expression was associated with older age, monocytic differentiation of leukemic cells, and adverse clinical outcome. S100A4 high-expressors had inferior overall survival and disease-free survival; this finding could be validated in the TCGA AML cohort (both the microarray and RNA-seq platforms). Multivariate Cox regression analysis supported S100A4 as an independent prognostic factor. Bioinformatic analysis showed that AML with higher S100A4 expression was enriched for the interferon, NLRP3 inflammasome, and epithelial-mesenchymal transition pathways. CONCLUSION: This study provides evidence that S100A4 overexpression serves as a poor prognostic biomarker in AML, holds potential to guide treatment planning in the clinic, and indicates novel therapeutic directions.


Subject(s)
Biomarkers, Tumor , Leukemia, Myeloid, Acute , Humans , Prognosis , Retrospective Studies , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Gene Expression Profiling , S100 Proteins/genetics , S100 Proteins/metabolism , S100 Calcium-Binding Protein A4/genetics
13.
Haematologica ; 108(5): 1284-1299, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36005562

ABSTRACT

A hallmark of mixed lineage leukemia gene-rearranged (MLL-r) acute myeloid leukemia that offers an opportunity for targeted therapy is addiction to protein tyrosine kinase signaling. One such signal is the receptor tyrosine kinase Fms-like receptor tyrosine kinase 3 (FLT3) upregulated by cooperation of the transcription factors homeobox A9 (HOXA9) and Meis homeobox 1 (MEIS1). Signal peptide-CUB-EGF-like repeat-containing protein (SCUBE) family proteins have previously been shown to act as a co-receptor for augmenting signaling activity of a receptor tyrosine kinase (e.g., vascular endothelial growth factor receptor). However, whether SCUBE1 is involved in the pathological activation of FLT3 during MLL-r leukemogenesis remains unknown. Here we first show that SCUBE1 is a direct target of HOXA9/MEIS1 that is highly expressed on the MLL-r cell surface and predicts poor prognosis in de novo acute myeloid leukemia. We further demonstrate, by using a conditional knockout mouse model, that Scube1 is required for both the initiation and maintenance of MLL-AF9-induced leukemogenesis in vivo. Further proteomic, molecular and biochemical analyses revealed that the membrane-tethered SCUBE1 binds to the FLT3 ligand and the extracellular ligand-binding domains of FLT3, thus facilitating activation of the signal axis FLT3-LYN (a non-receptor tyrosine kinase) to initiate leukemic growth and survival signals. Importantly, targeting surface SCUBE1 by an anti-SCUBE1 monomethyl auristatin E antibody-drug conjugate led to significantly decreased cell viability specifically in MLL-r leukemia. Our study indicates a novel function of SCUBE1 in leukemia and unravels the molecular mechanism of SCUBE1 in MLL-r acute myeloid leukemia. Thus, SCUBE1 is a potential therapeutic target for treating leukemia caused by MLL rearrangements.


Subject(s)
Epidermal Growth Factor , Leukemia, Myeloid, Acute , Animals , Mice , fms-Like Tyrosine Kinase 3 , Leukemia, Myeloid, Acute/pathology , Mice, Knockout , Myeloid Ecotropic Viral Integration Site 1 Protein , Myeloid-Lymphoid Leukemia Protein/metabolism , Proteomics , Receptor Protein-Tyrosine Kinases , Vascular Endothelial Growth Factor A
14.
J Hematop ; 16(2): 103-109, 2023 Jun.
Article in English | MEDLINE | ID: mdl-38175441

ABSTRACT

Adult B-lineage acute lymphoblastic leukemia (B-ALL) with t(4;11)(q21;q23) is very rare. It is characterized by mixed-lineage leukemia and has the potential for lineage switching during the treatment course. We report the disease course of a patient with B-ALL with t(4;11)(q21;q23) to demonstrate that close monitoring of cell morphology and immunophenotyping is necessary to capture the lineage switch at an early stage. Cell morphology, immunophenotyping, and cytogenetics were used to evaluate the patient's disease status. A 36-year-old woman was diagnosed with B-ALL with t(4;11)(q21;q23), which encodes the KMT2A::AFF1 fusion. After the initial induction chemotherapy, her disease remained refractory, and the patient received salvage immunotherapy with blinatumomab and inotuzumab ozogamicin. However, the ALL did not respond. Repeated bone marrow examinations unexpectedly revealed the emergence of a major population of monoblasts, in addition to a minor population of the original B lymphoblasts. The patient was diagnosed with disease evolution from B-ALL to mixed-phenotype acute leukemia (MPAL, B/myeloid). We present this case to highlight the potential of KMT2A-rearranged B-ALL to undergo lineage switch following B-cell targeted therapy. Patients with this kind of B-ALL should therefore be closely monitored to capture potential changes in the nature of the disease and prompt appropriate treatment.


Subject(s)
Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Adult , Female , T-Lymphocytes , Immunotherapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Inotuzumab Ozogamicin
15.
PLoS One ; 17(12): e0279849, 2022.
Article in English | MEDLINE | ID: mdl-36584179

ABSTRACT

Due to maternal inheritance and minimal rearrangement, the chloroplast genome is an important genetic resource for evolutionary studies. However, the evolutionary dynamics and phylogenetic performance of chloroplast genomes in closely related species are poorly characterized, particularly in taxonomically complex and species-rich groups. The taxonomically unresolved Ficus sarmentosa species complex (Moraceae) comprises approximately 20 taxa with unclear genetic background. In this study, we explored the evolutionary dynamics, hotspot loci, and phylogenetic performance of thirteen chloroplast genomes (including eleven newly obtained and two downloaded from NCBI) representing the F. sarmentosa complex. Their sequence lengths, IR boundaries, repeat sequences, and codon usage were compared. Both sequence length and IR boundaries were found to be highly conserved. All four categories of long repeat sequences were found across all 13 chloroplast genomes, with palindromic and forward sequences being the most common. The number of simple sequence repeat (SSR) loci varied from 175 (F. dinganensis and F. howii) to 190 (F. polynervis), with the dinucleotide motif appearing the most frequently. Relative synonymous codon usage (RSCU) analysis indicated that codons ending with A/T were prior to those ending with C/T. The majority of coding sequence regions were found to have undergone negative selection with the exception of ten genes (accD, clpP, ndhK, rbcL, rpl20, rpl22, rpl23, rpoC1, rps15, and rps4) which exhibited potential positive selective signatures. Five hypervariable genic regions (rps15, ycf1, rpoA, ndhF, and rpl22) and five hypervariable intergenic regions (trnH-GUG-psbA, rpl32-trnL-UAG, psbZ-trnG-GCC, trnK-UUU-rps16 and ndhF-rpl32) were identified. Overall, phylogenomic analysis based on 123 Ficus chloroplast genomes showed promise for studying the evolutionary relationships in Ficus, despite cyto-nuclear discordance. Furthermore, based on the phylogenetic performance of the F. sarmentosa complex and F. auriculata complex, the chloroplast genome also exhibited a promising phylogenetic resolution in closely related species.


Subject(s)
Ficus , Genome, Chloroplast , Phylogeny , Ficus/genetics , Repetitive Sequences, Nucleic Acid , Codon/genetics
16.
EJHaem ; 3(4): 1209-1219, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36467848

ABSTRACT

RUNX1 mutations are frequently detected in various myeloid neoplasms and implicate unfavourable clinical outcomes in patients with myelodysplastic syndrome (MDS) and acute myeloid leukaemia (AML). On the other hand, high expression of RUNX1 is also correlated with poor prognosis in AML patients. However, the clinical relevancy of RUNX1 expression in MDS patients remains elusive. This study aimed to investigate the prognostic and biologic impacts of RUNX1 expression in MDS patients. We recruited 341 MDS patients who had sufficient bone marrow samples for next-generation sequencing. Higher RUNX1 expression occurred more frequently in the patients with Revised International Prognostic Scoring System (IPSS-R) higher-risk MDS than the lower-risk group. It was closely associated with poor-risk cytogenetics and mutations in ASXL1, NPM1, RUNX1, SRSF2, STAG2, TET2 and TP53. Furthermore, patients with higher RUNX1 expression had significantly shorter leukaemia-free survival (LFS) and overall survival (OS) than those with lower expression. Subgroups analysis revealed that higher-RUNX1 group consistently had shorter LFS and OS than the lower-RUNX1 group, no matter RUNX1 was mutated or not. The same findings were observed in IPSS-R subgroups. In multivariable analysis, higher RUNX1 expression appeared as an independent adverse risk factor for survival. The prognostic significance of RUNX1 expression was validated in two external public cohorts, GSE 114922 and GSE15061. In summary, we present the characteristics and prognosis of MDS patients with various RUNX1 expressions and propose that RUNX1 expression complement RUNX1 mutation in MDS prognostication, wherein patients with wild RUNX1 but high expression may need more proactive treatment.

17.
Hemasphere ; 6(12): e803, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36452029

ABSTRACT

Asian patientswith chronic lymphocytic leukemia (CLL) exhibit immunoglobulin heavy variable (IGHV) gene repertoires that are distinct from those observed in Western populations, and a higher proportion of Asian CLL patients carry heavy loads of somatic hypermutations (SHM) within the B-cell receptor immunoglobulins (BcR IG). Due to the low regional incidence of CLL in Asia, only a limited number of studies had attempted to probe the phenomenon of BcR IG stereotypy in Asian populations. In this study, we analyzed the IGHV-IGHD-IGHJ gene rearrangements from a series of 255 CLL patients recruited in a nationwide, multicenter study in Taiwan. Our analysis revealed that the IGHV gene repertoire was characterized by evident biases, with IGHV3-7, IGHV4-34, and IGHV3-23 being the most frequent rearranged IGHV genes, and a higher proportion of cases carrying mutated IGHV. In terms of BcR stereotypy, the incidence of major subsets was less frequent in this cohort, with subsets #77 and #28A being the most common, while the incidence of minor subsets was approximately equivalent to that reported in the Western cohorts. With this study, we provide evidence that CLL in Asia is indeed associated with distinct immunogenetic characteristics regarding IGHV gene usage, SHM status, and BcR IG stereotypy.

18.
Ann Hematol ; 101(10): 2209-2218, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36040481

ABSTRACT

The coincident downregulation of NR4A1 and NR4A3 has been implicated in myeloid leukemogenesis, but it remains unknown how these two genes function in myeloid cells and how their combined downregulation promotes myeloid leukemogenesis. Since NR4A1 abrogation is thought to confer a survival and proliferation advantage to myeloid cells, we hypothesized that downregulation of NR4A3 may have a complementary effect on myeloid cell differentiation. First, we tested the association between differentiation status of leukemic cells and NR4A3 expression using two large clinical datasets from patients with different acute myeloid leukemia (AML) subtypes. The analysis revealed a close association between differentiation status and different subtypes of AML Then, we probed the effects of differentiation-inducing treatments on NR4A3 expression and NR4A3 knockdown on cell differentiation using two myeloid leukemia cell lines. Differentiation-inducing treatments caused upregulation of NR4A3, while NR4A3 knockdown prevented differentiation in both cell lines. The cell culture findings were validated using samples from chronic myeloid leukemia (CML) patients at chronic, accelerated and blastic phases, and in acute promyelocytic leukemia (APL) patients before and after all trans-retinoic acid (ATRA)-based differentiation therapy. Progressive NR4A3 downregulation was coincident with impairments in differentiation in patients during progression to blastic phase of CML, and NR4A3 expression was increased in APL patients treated with ATRA-based differentiating therapy. Together, our findings demonstrate a tight association between impaired differentiation status and NR4A3 downregulation in myeloid leukemias, providing a plausible mechanistic explanation of how myeloid leukemogenesis might occur upon concurrent downregulation of NR4A1 and NR4A3.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Leukemia, Myeloid, Acute , Leukemia, Promyelocytic, Acute , Receptors, Steroid , Cell Differentiation/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Down-Regulation , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Promyelocytic, Acute/drug therapy , Receptors, Steroid/genetics , Receptors, Steroid/metabolism , Receptors, Steroid/therapeutic use , Receptors, Thyroid Hormone/genetics , Receptors, Thyroid Hormone/metabolism , Receptors, Thyroid Hormone/therapeutic use , Tretinoin/pharmacology
19.
Mol Cancer Res ; 20(8): 1222-1232, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35533307

ABSTRACT

Application of B-cell receptor (BCR) pathway inhibitor ibrutinib for chronic lymphocytic leukemia (CLL) is a major breakthrough, yet the downstream effects following inhibition of BCR signaling and during relapse await further clarification. By comparative phosphoproteomic profiling of B cells from patients with CLL and healthy donors, as well as CLL B cells collected at multiple time points during the course of ibrutinib treatment, we provided the landscape of dysregulated phosphoproteome in CLL and its dynamic alterations associated with ibrutinib treatment. Particularly, differential phosphorylation events associated with several signaling pathways, including BCR pathway, were enriched in patient CLL cells. A constitutively elevated phosphorylation level of KAP1 at serine 473 (S473) was found in the majority of CLL samples prior to treatment. Further verification showed that BCR activation promoted KAP1 S473 phosphorylation, whereas ibrutinib treatment abolished it. Depletion of KAP1 in primary CLL cells decelerated cell-cycle progression and ectopic expression of a KAP1 S473 phospho-mimicking mutant accelerated G2-M cell-cycle transition of CLL cells. Moreover, temporal phosphoproteomic profiles using a series of CLL cells isolated from one patient during the ibrutinib treatment revealed the dynamic changes of several molecules associated with BCR signaling in the ibrutinib responsive and recurrent stages. IMPLICATIONS: This phosphoproteomic analysis and functional validation illuminated the phosphorylation of KAP1 at S473 as an important downstream BCR signaling event and a potential indicator for the success of ibrutinib treatment in CLL.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Receptors, Antigen, B-Cell
20.
Oncogene ; 41(11): 1576-1588, 2022 03.
Article in English | MEDLINE | ID: mdl-35091680

ABSTRACT

The pathogenesis of acute leukemia involves interaction among genetic alterations. Mutations of IDH1/2 and PHF6 are common and co-exist in some patients of hematopoietic malignancies, but their cooperative effects remain unexplored. In this study, we addressed the question by characterizing the hematopoietic phenotypes of mice harboring neither, Phf6 knockout, Idh2 R172K, or combined mutations. We found that the combined Phf6KOIdh2R172K mice showed biased hematopoietic differentiation toward myeloid lineages and reduced long-term hematopoietic stem cells. They rapidly developed neoplasms of myeloid and lymphoid lineages, with much shorter survival compared with single mutated and wild-type mice. The marrow and spleen cells of the combined mutated mice produced a drastically increased amount of 2-hydroxyglutarate compared with mice harboring Idh2 R172K. Single-cell RNA sequencing revealed distinct patterns of transcriptome of the hematopoietic stem/progenitor cells from the combined mutated mice, including aberrant expression of metabolic enzymes, increased expression of several oncogenes, and impairment of DNA repairs, as confirmed by the enhanced γH2AX expression in the marrow and spleen cells. We conclude that Idh2 and Phf6 mutations are synergistic in leukemogenesis, at least through overproduction of 2-hydroxyglutarate and impairment of DNA repairs.


Subject(s)
Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid, Acute , Animals , Carcinogenesis/genetics , Cell Transformation, Neoplastic/genetics , DNA , DNA Repair , Humans , Isocitrate Dehydrogenase/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mice , Mutation , Repressor Proteins/genetics , Repressor Proteins/metabolism , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...