Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Postgrad Med J ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767468

ABSTRACT

For metastatic prostate cancer, androgen deprivation therapy (ADT) is the key strategy to control the disease. However, after 18-24 months of treatment, most patients will progress from metastatic hormone-sensitive prostate cancer (mHSPC) to metastatic castration-resistant prostate cancer (mCRPC) even with ADT. Once patients enter into mCRPC, they face with significant declines in quality of life and a dramatically reduced survival period. Thus, doublet therapy, which combines ADT with new hormone therapy (NHT) or ADT with docetaxel chemotherapy, substitutes ADT alone and has become the "gold standard" for the treatment of mHSPC. In recent years, triplet therapy, which combines ADT with NHT and docetaxel chemotherapy, has also achieved impressive effects in mHSPC. This article provides a comprehensive review of the recent applications of the triplet therapy in the field of mHSPC.

2.
Nutrients ; 16(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38674824

ABSTRACT

Interaction between gut microbiota, host immunity and metabolism has been suggested to crucially affect the development of insulin resistance (IR). This study aims to investigate how gut microbiota, inflammatory responses and metabolism in individuals with IR are affected by the supplementation of conjugated linoleic acid (CLA) and how this subsequently affects the pathophysiology of IR by using a high-fat diet-induced IR mouse model. Serum biochemical indices showed that 400 mg/kg body weight of CLA effectively attenuated hyperglycemia, hyperlipidemia, glucose intolerance and IR, while also promoting antioxidant capacities. Histomorphology, gene and protein expression analysis revealed that CLA reduced fat deposition and inflammation, and enhanced fatty acid oxidation, insulin signaling and glucose transport in adipose tissue or liver. Hepatic transcriptome analysis confirmed that CLA inhibited inflammatory signaling pathways and promoted insulin, PI3K-Akt and AMPK signaling pathways, as well as linoleic acid, arachidonic acid, arginine and proline metabolism. Gut microbiome analysis further revealed that these effects were highly associated with the enriched bacteria that showed positive correlation with the production of short-chain fatty acids (SCFAs), as well as the improved SCFAs production simultaneously. This study highlights the therapeutic actions of CLA on ameliorating IR via regulating microbiota-host metabolic and immunomodulatory interactions, which have important implications for IR control.


Subject(s)
Gastrointestinal Microbiome , Insulin Resistance , Linoleic Acids, Conjugated , Mice, Inbred C57BL , Animals , Male , Mice , Adipose Tissue/metabolism , Adipose Tissue/drug effects , Diet, High-Fat , Disease Models, Animal , Gastrointestinal Microbiome/drug effects , Linoleic Acids, Conjugated/pharmacology , Liver/metabolism , Liver/drug effects , Signal Transduction/drug effects
3.
Food Nutr Res ; 672023.
Article in English | MEDLINE | ID: mdl-37050924

ABSTRACT

Background: 1,2,3,4,6-Penta-O-galloyl-ß-D-glucose (ß-PGG) is a polyphenol ellagic compound with a variety of pharmacological effects and has an inhibitory effect on lots of cancers. Objective: To explore the antitumor effects and mechanism of 1,2,3,4,6-Penta-O-galloyl-ß-D-glucose on human hepatocellular carcinoma HepG2 cells. Design: A network pharmacology method was first used to predict the possible inhibition of hepatocellular carcinoma growth by 1,2,3,4,6-Penta-O-galloyl-ß-D-glucose (ß-PGG) through the p53 signaling pathway. Next, the Cell Counting Kit (CCK-8) assay was performed to evaluate changes in the survival rate of human hepatocellular carcinoma HepG2 cells treated with different concentrations of the drug; flow cytometry was used to detect changes in cell cycle, apoptosis, mitochondrial membrane potential (MMP) and intracellular Ca2+ concentration; real-time fluorescence quantification and immunoblotting showed that the expression of P53 genes and proteins associated with the p53 signaling pathway was significantly increased by ß-PGG treatment. Reasult: It was found that ß-PGG significantly inhibited survival of HepG2 cells, promoted apoptosis, decreased MMP and intracellular Ca2+ concentration, upregulated P53 gene and protein expression, increased CASP3 expression, and induced apoptosis in HepG2 cells. Conclusion: This study has shown that network pharmacology can accurately predict the target of ß-PGG's anti-hepatocellular carcinoma action. Moreover, it was evident that ß-PGG can induce apoptosis in HepG2 cells by activating the p53 signaling pathway to achieve its anti-hepatocellular carcinoma effect in vitro.

4.
Molecules ; 27(23)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36500465

ABSTRACT

Trapa bispinosa Roxb. is an economical crop for medicine and food. Its roots, stems, leaves, and pulp have medicinal applications, and its shell is rich in active ingredients and is considered to have a high medicinal value. One of the main functional components of the Trapa bispinosa Roxb. shell is 1-galloyl-beta-D-glucose (ßG), which can be used in medical treatment and is also an essential substrate for synthesizing the anticancer drug beta-penta-o-Galloyl-glucosen (PGG). Furthermore, gallate 1-beta-glucosyltransferase (EC 2.4.1.136) has been found to catalyze gallic acid (GA) and uridine diphosphate glucose (UDPG) to synthesize ßG. In our previous study, significant differences in ßG content were observed in different tissues of Trapa bispinosa Roxb. In this study, Trapa bispinosa Roxb. was used to clone 1500 bp of the UGGT gene, which was named TbUGGT, to encode 499 amino acids. According to the specificity of the endogenous expression of foreign genes in Escherichia coli, the adaptation codon of the cloned original genes was optimized for improved expression. Bioinformatic and phylogenetic tree analyses revealed the high homology of TbUGGT with squalene synthases from other plants. The TbUGGT gene was constructed into a PET-28a expression vector and then transferred into Escherichia coli Transsetta (DE3) for expression. The recombinant protein had a molecular weight of 55 kDa and was detected using SDS-PAGE. The proteins were purified using multiple fermentation cultures to simulate the intracellular environment, and a substrate was added for in vitro reaction. After the enzymatic reaction, the levels of ßG in the product were analyzed using HPLC and LC-MS, indicating the catalytic activity of TbUGGT. The cloning and functional analysis of TbUGGT may lay the foundation for further study on the complete synthesis of ßG in E. coli.


Subject(s)
Escherichia coli , Glycosyltransferases , Glycosyltransferases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Phylogeny , Cloning, Molecular
5.
Front Oncol ; 12: 934958, 2022.
Article in English | MEDLINE | ID: mdl-35992839

ABSTRACT

Background: Gastric cancer (GC) is ranked as the third leading cause of cancer-related mortality worldwide. 1,2,3,4,6-Pentagalloyl-ß-D-glucose (ß-PGG) has various pharmacological activities and has been shown to suppress cancer development. However, the mechanism by which ß-PGG inhibits gastric cancer has not been elucidated. Objective: This study explored the potential targets and mechanism of ß-PGG in GC using the network pharmacology approach combined with in-vitro experiments. Methods: The PharmMapper software was used to predict the potential targets of ß-PGG, and GC-related genes were identified on the GeneCards database. PPI analysis of common genes was performed using the STRING database. The potential regulatory mechanism of ß-PGG in GC was explored through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The binding ability of key genes and target proteins was verified by molecular docking. The effects of ß-PGG on genes and proteins were evaluated using the CCK-8 assay, cell cycle analysis, apoptosis assay, real-time fluorescence quantification polymerase chain reaction (qRT-PCR), and Western blotting. Results: Eight hub genes involved in cell cycle progression and apoptosis were identified. Cancer-related signaling pathways were identified using the Cytoscape tool. Some of those genes were significantly enriched in the p53 signaling pathway. The CCK-8 assay showed that ß-PGG inhibited the proliferation of GC cells. Cell cycle and apoptosis experiments revealed that ß-PGG induced cell cycle arrest and apoptosis of gastric cancer cells. qRT-PCR and Western blot analysis showed that ß-PGG inhibited ß-PGG cells by modulating the p53 signaling pathway. Conclusion: In the present study, the targets and mechanism of ß-PGG in gastric cancer were explored. The results indicate that ß-PGG can be used to develop treatments for GC.

6.
Front Plant Sci ; 13: 913265, 2022.
Article in English | MEDLINE | ID: mdl-35873984

ABSTRACT

Background: Trapa bispinosa Roxb. is grown worldwide as an important aquatic cash crop. Current research on Trapa bispinosa primarily focuses on the separation and identification of active ingredients, as well as the inhibitory effect on tumors; however, research on the molecular mechanism of secondary metabolite accumulation is rather limited. Consequently, an integrative analysis of transcriptome and metabolome is required to identify the key metabolic pathways, and key genes, and to explain the molecular mechanism of Trapa bispinosa. Results: The biosynthesis pathways of phenolics in Trapa bispinosa were examined through transcriptome and metabolome analyses. Transcriptome analysis yielded 42.76 million clean reads representing 81,417 unigenes with an average length of 1,752 bp. KEGG pathway analysis revealed that 1,623 unigenes, including 88 candidate unigenes related to phenolics biosynthesis, were up-regulated in Trapa bispinosa shell (FR) when compared to leaves (LF), root (RT), and stem (ST). The FR vs. LF group had the highest number of specific genes involved in phenylpropanoid, flavonoid, flavone, and flavonol biosynthesis pathways compared to all other comparison groups. In addition, RNA sequencing revealed 18,709 SSRs spanning 14,820 unigenes and 4,387 unigenes encoding transcription factors. Metabolome analysis identified 793 metabolites, including 136 flavonoids and 31 phenylpropane compounds. In the FR group compared to the LF group, there were 202 differentially accumulated metabolites (DAMs). The combined transcriptome and metabolome analyses indicated a significant correlation between 1,050 differentially expressed genes (DEGs) and 62 DAMs. This view proposes a schematic of flavonoid biosynthesis in the FR vs. LF group, providing evidence for the differences in genes and metabolites between FR and LF. Conclusion: In this study, through de novo transcriptome assembly and metabolome analysis, several DEGs and DAMs were identified, which were subsequently used to build flavonoid biosynthesis pathways and a correlation network. The findings pave the way for future research into the molecular mechanisms and functional characterization of Trapa bispinosa candidate genes for phenolics biosynthesis.

7.
Cell Biol Int ; 46(7): 997-1008, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35476364

ABSTRACT

Ferroptosis is an iron-dependent nonapoptotic regulated cell death, which is mainly caused by an abnormal increase in lipid oxygen free radicals and an imbalance in redox homeostasis. Recently, ferroptosis has been shown to have implications in various gastrointestinal cancers, such as gastric carcinoma, hepatocellular carcinoma, and pancreatic cancer. This review summarises the latest research on ferroptosis, its mechanism of action, and its role in the progression of different gastrointestinal tumors to provide more information regarding the prevention and treatment of these tumors.


Subject(s)
Carcinoma, Hepatocellular , Ferroptosis , Gastrointestinal Neoplasms , Liver Neoplasms , Carcinoma, Hepatocellular/metabolism , Gastrointestinal Neoplasms/therapy , Humans , Iron/metabolism , Liver Neoplasms/metabolism , Reactive Oxygen Species/metabolism
8.
Biomed Res Int ; 2021: 1516855, 2021.
Article in English | MEDLINE | ID: mdl-34712726

ABSTRACT

Acute pancreatitis (AP) is an inflammatory disease of the pancreas. The severity is classified as mild (MAP), moderately severe (MSAP), or severe (SAP). In patients with SAP, organ dysfunction can occur in the early stage of the disease course, accompanied by secondary infection, with a mortality rate of 36%-50%. In the late stage SAP, infection-related complications caused by pancreatic necrotic tissue and peripancreatic effusion are the main causes of death in patients. Dysbacteriosis of intestinal microflora, barrier dysfunction of intestinal mucosa, and translocation of enteric bacteria are considered to be the main causes of infection of pancreatic necrotic tissue and peripancreatic effusion. During the past few years, increasing attention has been paid to the metabolic activities of intestinal microflora in SAP, which plays an important role in the metabolic activities of the human body. This review is aimed at bringing together the most recent findings and advances regarding the gut microbial community and associated gut microbial community metabolites and illustrating the role of these metabolites in disease progression in severe acute pancreatitis. We hope that this review will provide new ideas and schemes for the treatment of SAP in the clinical settings.


Subject(s)
Gastrointestinal Microbiome , Metabolome , Pancreatitis/metabolism , Pancreatitis/microbiology , Severity of Illness Index , Animals , Bacterial Translocation , Biodiversity , Humans , Pancreatitis/etiology , Pancreatitis/physiopathology
9.
Animals (Basel) ; 11(4)2021 Apr 19.
Article in English | MEDLINE | ID: mdl-33921651

ABSTRACT

In this study, we used transcriptomics and qPCR to investigate the potential immunoprotective effects of different conjugated linoleic acid (CLA) isomers, the natural rumen microbial metabolites, on lipopolysaccharide (LPS)-induced inflammation of ruminal epithelial cells (RECs) in vitro. The results showed that 100 µM trans-10,cis-12-CLA exerted higher anti-inflammatory effects than cis-9,trans-11-CLA by significantly downregulating the expression of genes related to inflammation, cell proliferation and migration in RECs upon LPS stimulation. Transcriptomic analyses further indicated that pretreatment with trans-10,cis-12-CLA, but not cis-9,trans-11-CLA, significantly suppressed the biological signals of GO terms' response to LPS, the regulation of signal transduction and cytokine production and KEGG pathways NF-κB, chemokine, NOD-like receptor, Hippo, PI3K-Akt, TGF-ß and Rap1 signaling in RECs upon LPS stimulation. Furthermore, pretreatment with trans-10,cis-12-CLA significantly reduced the expression of lipogenic genes and the biosynthesis of the unsaturated fatty acid pathway in RECs compared with the LPS group, however, cis-9,trans-11-CLA exhibited the opposite results. These results suggest the distinct isomer differences of CLA in the regulation of inflammatory responses and adipocytokine signaling in RECs and will provide important references for determining their target use in the future.

10.
Front Physiol ; 11: 588082, 2020.
Article in English | MEDLINE | ID: mdl-33192603

ABSTRACT

The ruminal epithelium is continuously challenged by antigens released by the lysis of dead microbial cells within the rumen. However, the innate immune system of the ruminal epithelium can almost always actively respond to these challenges. The cross talk between the ruminal microbiota and innate immune cells in the ruminal epithelium has been suggested to play an important role in sustaining the balance of immune tolerance and inflammatory response in the rumen. We hypothesized that conjugated linoleic acid (CLA), a functional microbial metabolite in the rumen, may contribute to the immune regulation in rumen epithelial cells (RECs); therefore, we first established an immortal REC line and then investigated the regulatory effects of CLA on the immune responses in these RECs. The results showed that long-term REC cultures were successfully established via SV40T-induced immortalization. Transcriptome analysis showed that a 100 µM CLA mixture consisting of 50:50 cis-9, trans-11:trans-10, cis-12 CLA significantly downregulated the expression of the inflammatory response-related genes TNF-α, IL-6, CX3CL1, IRF1, ICAM1 and EDN1, and upregulated the expression of the cell proliferation-related genes FGF7, FGF21, EREG, AREG and HBEGF and the lipid metabolism-related genes PLIN2, CPT1A, ANGPTL4, ABHD5 and SREBF1 in the RECs upon LPS stimulation. Correspondingly, the GO terms regulation of cell adhesion, response to stimulus and cytokine production and KEGG pathways TNF and HIF-1 signaling, ECM-receptor interaction and cell adhesion molecules were identified for the significantly downregulated genes, while the GO terms epithelial cell proliferation and regulation of epithelial cell migration and the KEGG pathways PPAR, ErbB and adipocytokine signaling were identified for the RECs with significantly upregulated CLA-pretreated genes upon LPS stimulation. These findings revealed that CLA conferred protective immunity onto the RECs by inhibiting proinflammatory processes, promoting cell proliferation and regulating lipid metabolism related to the immune response.

11.
Oncol Lett ; 18(3): 2718-2723, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31452750

ABSTRACT

Nasopharyngeal carcinoma (NPC) is a common tumor in south China. Kinesin family member 2A (KIF2A) belongs to the kinesin-13 family and is associated with the growth and invasion of a number of different types of human cancer, including ovarian, breast and prostate cancer. The aim of the present study was to evaluate the expression of KIF2A in NPC and explore the relationship between KIF2A and the basic characteristics of 5-8F cells. Immunohistochemistry was performed on tissues from 97 patients with NPC to assess KIF2A protein expression. KIF2A was knocked down by a specific short interfering (si)RNA in 5-8F cell lines. Cell proliferation, apoptosis and cycle were analyzed by MTT assay and flow cytometry. The invasive ability and angiogenesis were evaluated by Matrigel assay and reverse transcription-quantitative PCR. The level of KIF2A was associated with the growth and migration of primary tumor, nodal status and tumor stage. The viability of KIF2A-knockdown cells was decreased compared with that of the control cells. The number of apoptotic cells, as well as the percentage of cells in the G0/G1 phase, was higher in the KIF2A siRNA group compared with the control group. The invasive and angiogenetic ability of 5-8F cells in the KIF2A siRNA group was decreased compared with the control group. In conclusion, the expression of KIF2A correlated with the poor clinicopathological features in NPC. Therefore, KIF2A may serve an important role in the progression of NPC and proliferation of 5-8F cells, which might present a potential therapeutic target for patients with NPC.

12.
Chem Sci ; 6(9): 5246-5254, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-29449928

ABSTRACT

Introducing fluorine into molecules has a wide range of effects on their physicochemical properties, often desirable but in most cases unpredictable. The fluorine atom imparts the C-F bond with low polarizability and high polarity, and significantly affects the behavior of neighboring functional groups, in a covalent or noncovalent manner. Here, we report that fluorine, present in the form of a single fluoroalkyl amino acid side chain in the P1 position of the well-characterized serine-protease inhibitor BPTI, can fully restore inhibitor activity to a mutant that contains the corresponding hydrocarbon side chain at the same site. High resolution crystal structures were obtained for four BPTI variants in complex with bovine ß-trypsin, revealing changes in the stoichiometry and dynamics of water molecules in the S1 subsite. These results demonstrate that the introduction of fluorine into a protein environment can result in "chemical complementation" that has a significantly favorable impact on protein-protein interactions.

13.
Chem Soc Rev ; 41(6): 2135-71, 2012 Mar 21.
Article in English | MEDLINE | ID: mdl-22130572

ABSTRACT

Fluorinated analogues of the canonical α-L-amino acids have gained widespread attention as building blocks that may endow peptides and proteins with advantageous biophysical, chemical and biological properties. This critical review covers the literature dealing with investigations of peptides and proteins containing fluorinated analogues of the canonical amino acids published over the course of the past decade including the late nineties. It focuses on side-chain fluorinated amino acids, the carbon backbone of which is identical to their natural analogues. Each class of amino acids--aliphatic, aromatic, charged and polar as well as proline--is presented in a separate section. General effects of fluorine on essential properties such as hydrophobicity, acidity/basicity and conformation of the specific side chains and the impact of these altered properties on stability, folding kinetics and activity of peptides and proteins are discussed (245 references).


Subject(s)
Amino Acids/chemistry , Proteins/chemistry , Models, Molecular , Protein Binding , Protein Conformation
14.
Beilstein J Org Chem ; 6: 40, 2010 Apr 20.
Article in English | MEDLINE | ID: mdl-20502658

ABSTRACT

This article describes the chemical aminoacylation of the yeast phenylalanine suppressor tRNA with a series of amino acids bearing fluorinated side chains via the hybrid dinucleotide pdCpA and ligation to the corresponding truncated tRNA species. Aminoacyl-tRNAs can be used to synthesize biologically relevant proteins which contain fluorinated amino acids at specific sites by means of a cell-free translation system. Such engineered proteins are expected to contribute to our understanding of discrete fluorines' interaction with canonical amino acids in a native protein environment and to enable the design of fluorinated proteins with arbitrary desired properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...