Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 69(17): 5096-5104, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33826316

ABSTRACT

Natural and modified versions of the 5-enolpyruvylshikimate-3-phosphate synthase (epsps) gene have been used to confer tolerance to the broad-spectrum herbicide glyphosate in a variety of commercial crops. The most widely utilized trait was obtained from the Agrobacterium tumefaciens strain CP4 and has been commercialized in several glyphosate-tolerant crops. The EPSPS gene products are enzymes that have been divided into three classes based on sequence similarity, sensitivity to glyphosate, and steady-state catalytic parameters. Herein, we describe the informatics-guided identification and biochemical and structural characterization of a novel EPSPS from Streptomyces sviceus (DGT-28 EPSPS). The data suggest DGT-28 EPSPS and other closely related homologues exemplify a distinct new class (Class IV) of EPSPS enzymes that display intrinsic tolerance to high concentrations of glyphosate (Ki ≥ 5000 µM). We further demonstrate that dgt-28 epsps, when transformed into stable plants, provides robust (≥4× field rates) vegetative/reproductive herbicide tolerance and has utility in weed-control systems comparable to that of commercialized events.


Subject(s)
Herbicides , Streptomyces , 3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , Glycine/analogs & derivatives , Glycine/pharmacology , Herbicide Resistance/genetics , Herbicides/pharmacology , Streptomyces/genetics , Glyphosate
2.
Bioorg Med Chem ; 24(3): 362-71, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26321602

ABSTRACT

Multiple classes of commercially important auxin herbicides have been discovered since the 1940s including the aryloxyacetates (2,4-D, MCPA, dichlorprop, mecoprop, triclopyr, and fluroxypyr), the benzoates (dicamba), the quinoline-2-carboxylates (quinclorac and quinmerac), the pyrimidine-4-carboxylates (aminocyclopyrachlor), and the pyridine-2-carboxylates (picloram, clopyralid, and aminopyralid). In the last 10 years, two novel pyridine-2-carboxylate (or picolinate) herbicides were discovered at Dow AgroSciences. This paper will describe the structure activity relationship study that led to the discovery of the 6-aryl-picolinate herbicides Arylex™ active (2005) and Rinskor™ active (2010). While Arylex was developed primarily for use in cereal crops and Rinskor is still in development primarily for use in rice crops, both herbicides will also be utilized in additional crops.


Subject(s)
Drug Discovery , Edible Grain/drug effects , Herbicides/pharmacology , Indoleacetic Acids/pharmacology , Oryza/drug effects , Picloram/analogs & derivatives , Herbicides/chemical synthesis , Herbicides/chemistry , Indoleacetic Acids/chemical synthesis , Indoleacetic Acids/chemistry , Picloram/chemical synthesis , Picloram/chemistry , Picloram/pharmacology , Structure-Activity Relationship
3.
Pest Manag Sci ; 64(9): 891-9, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18383485

ABSTRACT

BACKGROUND: The novel natural product cinnacidin was isolated from a fungal fermentation extract of Nectria sp. DA060097. The compound was found to contain a cyclopentalenone ring system with an isoleucine subunit linked through an amide bond. Initial biological characterization of cinnacidin suggested promising herbicidal activity. RESULTS: Two synthetic analogs, (2S,3S)-2-[(3RS,3aSR,6aRS)-3-methoxy-4-oxo-3,3a,4,5,6,6a-hexahydropentalen-1-ylcarbamoyl]-3-methylvaleric acid and benzyl (2S,3S)-2-[(3RS,3aSR,6aRS)-3-methoxy-4-oxo-3,3a,4, 5,6,6a-hexahydropentalen-1-ylcarbamoyl]-3-methylvalerate, were prepared for further characterization, and their herbicidal activities were compared with that of cinnacidin. CONCLUSIONS: The synthetic compounds were highly phytotoxic on a range of weeds. Based on the symptoms in treated plants, the mode of action of these compounds is suggested to be similar to that of coronatine and jasmonic acid. Coronatine was more active against warm-season grasses, while the cinnacidin benzyl ester analog was more effective on cool-season grasses. In a seedling growth bioassay conducted on bentgrass, the cinnacidin analog was equivalent in activity to coronatine.


Subject(s)
Herbicides/chemistry , Herbicides/pharmacology , Hypocreales/chemistry , Isoleucine/analogs & derivatives , Toxins, Biological/chemistry , Toxins, Biological/pharmacology , Agrostis/drug effects , Amino Acids/pharmacology , Arabidopsis/drug effects , Herbicides/chemical synthesis , Herbicides/isolation & purification , Hypocreales/genetics , Hypocreales/isolation & purification , Hypocreales/metabolism , Indenes/pharmacology , Isoleucine/chemical synthesis , Isoleucine/chemistry , Isoleucine/isolation & purification , Isoleucine/pharmacology , Toxins, Biological/chemical synthesis , Toxins, Biological/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...