Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
1.
Int J Mol Sci ; 25(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38791451

ABSTRACT

Fluconazole (FZ) is a potential antifungal compound for treating superficial and systemic candidiasis. However, the use of conventional oral drug products has some limitations. The development of buccal film may be a potential alternative to oral formulations for FZ delivery. The present study involved the development of novel FZ-loaded solid lipid nanoparticles (FZ-SLNs) in pectin solutions and the investigation of their particle characteristics. The particle sizes of the obtained FZ-SLNs were in the nanoscale range. To produce pectin films with FZ-SLNs, four formulations were selected based on the small particle size of FZ-SLNs and their suitable polydispersity index. The mean particle sizes of all chosen FZ-SLNs formulations did not exceed 131.7 nm, and the mean polydispersity index of each formulation was less than 0.5. The properties of films containing FZ-SLNs were then assessed. The preparation of all FZ-SLN-loaded pectin films provided the mucoadhesive matrices. The evaluation of mechanical properties unveiled the influence of particle size variation in FZ-SLNs on the integrity of the film. The Fourier-transform infrared spectra indicated that hydrogen bonds could potentially form between the pectin-based matrix and the constituents of FZ-SLNs. The differential scanning calorimetry thermogram of each pectin film with FZ-SLNs revealed that the formulation was thermally stable and behaved in a solid state at 37 °C. According to a drug release study, a sustained drug release pattern with a burst in the initial stage for all films may be advantageous for reducing the lag period of drug release. All prepared films with FZ-SLNs provided a sustained release of FZ over 6 h. The films containing FZ-SLNs with a small particle size provided good permeability across the porcine mucosa. All film samples demonstrated antifungal properties. These results suggest the potential utility of pectin films incorporating FZ-SLNs for buccal administration.


Subject(s)
Antifungal Agents , Fluconazole , Nanoparticles , Particle Size , Pectins , Pectins/chemistry , Nanoparticles/chemistry , Fluconazole/administration & dosage , Fluconazole/chemistry , Fluconazole/pharmacokinetics , Antifungal Agents/administration & dosage , Antifungal Agents/chemistry , Antifungal Agents/pharmacokinetics , Administration, Buccal , Lipids/chemistry , Drug Carriers/chemistry , Drug Liberation , Spectroscopy, Fourier Transform Infrared , Drug Delivery Systems/methods , Mouth Mucosa/metabolism , Mouth Mucosa/drug effects , Calorimetry, Differential Scanning , Animals , Liposomes
2.
Int J Pharm ; 659: 124228, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38744415

ABSTRACT

Ionic liquids (ILs) exhibit very diverse physicochemical properties, such as non-volatility, stability, and miscibility, which render them excellent candidate excipients for multi-purpose use. Six novel arginine (Arg)-based ILs were obtained using a one-step ultrasound method. Salt formation was confirmed by Fourier-transform infrared (FTIR), Raman, and nuclear magnetic resonance (NMR) spectroscopies. Moreover, the effects of anions and molar ratio on the molecular states and thermal properties of Arg-ILs were investigated. In addition, the solubilization of drugs with different pKa and LogP values was attempted using Arg-ILs consisting of asparagine, proline, octanoic acid, and malic acid, respectively, and a comparative study was performed. Furthermore, the interaction mode between the drugs and ILs was determined by FTIR and Raman spectroscopy. Presumably, partial interaction between the component of ILs and drugs such as ofloxacin and valsartan occurred, whereas flurbiprofen and isosorbide mononitrate were dispersed in the viscous IL. The development of strategies for the application of ILs as solubilizers or carriers of active pharmaceutical ingredients is an extremely promising and wide avenue of research.


Subject(s)
Arginine , Ionic Liquids , Solubility , Arginine/chemistry , Ionic Liquids/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Excipients/chemistry , Spectrum Analysis, Raman , Magnetic Resonance Spectroscopy/methods , Ions/chemistry
3.
Cryst Growth Des ; 24(8): 3205-3217, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38659664

ABSTRACT

The formulation of active pharmaceutical ingredients involves discovering stable crystal packing arrangements or polymorphs, each of which has distinct pharmaceutically relevant properties. Traditional experimental screening techniques utilizing various conditions are commonly supplemented with in silico crystal structure prediction (CSP) to inform the crystallization process and mitigate risk. Predictions are often based on advanced classical force fields or quantum mechanical calculations that model the crystal potential energy landscape but do not fully incorporate temperature, pressure, or solution conditions during the search procedure. This study proposes an innovative alchemical path that utilizes an advanced polarizable atomic multipole force field to predict crystal structures based on direct sampling of the NPT ensemble. The use of alchemical (i.e., nonphysical) intermediates, a novel Monte Carlo barostat, and an orthogonal space tempering bias combine to enhance the sampling efficiency of the deposition/sublimation phase transition. The proposed algorithm was applied to 2-((4-(2-(3,4-dichlorophenyl)ethyl)phenyl)amino)benzoic acid (Cambridge Crystallography Database Centre ID: XAFPAY) as a case study to showcase the algorithm. Each experimentally determined polymorph with one molecule in the asymmetric unit was successfully reproduced via approximately 1000 short 1 ns simulations per space group where each simulation was initiated from random rigid body coordinates and unit cell parameters. Utilizing two threads of a recent Intel CPU (a Xeon Gold 6330 CPU at 2.00 GHz), 1 ns of sampling using the polarizable AMOEBA force field can be acquired in 4 h (equating to more than 300 ns/day using all 112 threads/56 cores of a dual CPU node) within the Force Field X software (https://ffx.biochem.uiowa.edu). These results demonstrate a step forward in the rigorous use of the NPT ensemble during the CSP search process and open the door to future algorithms that incorporate solution conditions using continuum solvation methods.

4.
Pharmaceutics ; 16(3)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38543216

ABSTRACT

In this study, we synthesized a family of novel ionic liquids (ILs) with meglumine (MGM) as cations and tartaric acid (TA), azelaic acid (AA), geranic acid (GA), and capric acid (CPA) as anions, using pharmaceutical additives via simple acid-base neutralization reactions. The successful synthesis was validated by attenuated total reflection-Fourier transform infrared (ATR-FTIR) and powder X-ray diffraction (PXRD). Thermal analysis using differential scanning calorimetry confirmed the glass transition temperature of MGM-ILs to be within the range of -43.4 °C--13.8 °C. We investigated the solubilization of 15 drugs with varying pKa and partition coefficient (log P) values using these ILs and performed a comparative analysis. Furthermore, we present MGM-IL as a new skin permeation enhancer for the drug model flurbiprofen (FRP). We confirmed that AA/MGM-IL improves the skin permeation of FRP through hairless mouse skin. Moreover, AA/MGM-IL enhanced drug skin permeability by affecting keratin rather than stratum corneum lipids, as confirmed by ATR-FTIR. To conclude, MGM-ILs exhibited potential as drug solubilizer and skin permeation enhancers of drugs.

5.
J Phys Chem B ; 128(10): 2249-2265, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38437183

ABSTRACT

A novel in silico drug design procedure is described targeting the Main protease (Mpro) of the SARS-CoV-2 virus. The procedure combines molecular docking, molecular dynamics (MD), and fragment molecular orbital (FMO) calculations. The binding structure and properties of Mpro were predicted for Nelfinavir (NFV), which had been identified as a candidate compound through drug repositioning, targeting Mpro. Several poses of the Mpro and NFV complexes were generated by docking, from which four docking poses were selected by scoring with FMO energy. Then, each pose was subjected to MD simulation, 100 snapshot structures were sampled from each of the generated MD trajectories, and the structures were evaluated by FMO calculations to rank the pose based on binding energy. Several residues were found to be important in ligand recognition, including Glu47, Asp48, Glu166, Asp187, and Gln189, all of which interacted strongly with NFV. Asn142 is presumably regarded to form hydrogen bonds or CH/π interaction with NFV; however, in the present calculation, their interactions were transient. Moreover, the tert-butyl group of NFV had no interaction with Mpro. Identifying such strong and weak interactions provides candidates for maintaining and substituting ligand functional groups and important suggestions for drug discovery using drug repositioning. Besides the interaction between NFV and the amino acid residues of Mpro, the desolvation effect of the binding pocket also affected the ranking order. A similar procedure of drug design was applied to Lopinavir, and the calculated interaction energy and experimental inhibitory activity value trends were consistent. Our approach provides a new guideline for structure-based drug design starting from a candidate compound whose complex crystal structure has not been obtained.


Subject(s)
COVID-19 , Coronavirus 3C Proteases , Humans , Ligands , Molecular Docking Simulation , Nelfinavir/pharmacology , SARS-CoV-2 , Molecular Dynamics Simulation
6.
Pharmaceutics ; 16(2)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38399242

ABSTRACT

RNA vaccines are applicable to the treatment of various infectious diseases via the inducement of robust immune responses against target antigens by expressing antigen proteins in the human body. The delivery of messenger RNA by lipid nanoparticles (LNPs) has become a versatile drug delivery system used in the administration of RNA vaccines. LNPs are widely considered to possess adjuvant activity that induces a strong immune response. However, the properties of LNPs that contribute to their adjuvant activity continue to require clarification. To characterize the relationships between the lipid composition, particle morphology, and adjuvant activity of LNPs, the nanostructures of LNPs and their antibody production were evaluated. To simply compare the adjuvant activity of LNPs, empty LNPs were subcutaneously injected with recombinant proteins. Consistent with previous research, the presence of ionizable lipids was one of the determinant factors. Adjuvant activity was induced when a tiny cholesterol assembly (cholesterol-induced phase, ChiP) was formed according to the amount of cholesterol present. Moreover, adjuvant activity was diminished when the content of cholesterol was excessive. Thus, it is plausible that an intermediate structure of cholesterol (not in a crystalline-like state) in an intra-particle space could be closely related to the immunogenicity of LNPs.

7.
Chem Pharm Bull (Tokyo) ; 72(1): 48-55, 2024.
Article in English | MEDLINE | ID: mdl-38171904

ABSTRACT

In order to create and offer superior pharmaceuticals for consumers who wish to be relieved of headache and fever as soon as possible, we established HYDROFLASH manufacturing method that enables us to offer fast disintegration tablets containing loxoprofen sodium (LX), which are difficult to disintegrate. As a result of screening excipients, tablets using mannitol showed the fastest disintegration time, about 2 min. From the result of viscosity measurement, we found that LX produced higher viscosity when dissolved in water. This suggests that tablets containing LX disintegrate slower by inhibiting the penetration of water into the tablet due to the viscosity caused of LX. Therefore, we created a manufacturing method to make it easy for water to penetrate the tablet. It is possible to achieve fastest disintegration in about 30 s for tablets containing LX by granulating in a fluidized-bed with spraying of the dispersion of light anhydrous silicic acid (LASA). LX-containing tablets manufactured by the HYDROFLASH method disintegrated immediately after contact with water. Furthermore, it was observed that LASA was uniformly dotted on the surface of tablets by HYDROFLASH method, compared with other manufacturing methods. We considered that by fluidized-bed granulation with LASA dispersion (HYDROFLASH manufacturing method), water permeates through LASA on the tablet surface regardless of viscosity of LX. Futhermore, LX-containing tablets by the HYDROFLASH method showed that the dissolution rate of LX was nearly 100% at 5 min after starting the test. We considered that the initial dissolution became faster because of the fast disintegration.


Subject(s)
Excipients , Silicon Dioxide , Solubility , Water
8.
Chem Pharm Bull (Tokyo) ; 72(1): 86-92, 2024.
Article in English | MEDLINE | ID: mdl-38233136

ABSTRACT

For powder compaction, the Kawakita equation has been used to estimate the powder behavior inside the die. The compression pressure exerted on powders is not homogeneous because of the friction on the die wall. However, the yield pressure and porosity estimated using the Kawakita equation are defined based on the assumption that homogeneous voids and compression pressure are distributed throughout the powder bed. In this study, an extended Kawakita equation was derived by considering the variation in the compression pressure as it corresponds to the distance from the loading punch surface. The yield time section estimated from the extended Kawakita equation was wider than that which was estimated via the classical equation. This result is consistent with the assumptions used to derive the extended Kawakita equation. Furthermore, a comparison of the porosity changes before and after the yield pressure was applied indicate that the direct cause of the yield is the spatial constraints of the powder particles. Equivalent stresses were defined to clarify the critical factor that constitutes the extended Kawakita equation. As a result, "taking into account the die wall friction" was considered to be the critical factor in the extended Kawakita equation. As these findings were theoretically determined by the extended Kawakita equation, a useful model was derived for a better understanding of powder compaction in die.


Subject(s)
Powders , Pressure , Porosity , Tablets , Drug Compounding
9.
Chem Pharm Bull (Tokyo) ; 71(6): 416-423, 2023.
Article in English | MEDLINE | ID: mdl-37258194

ABSTRACT

Molded tablets are manufactured by molding wet powder at low pressure and drying. Typically, water-soluble polymers are used as a binder; however, the ratio to achieve both tablet strength and rapid disintegration is limited, and designing an optimal formulation according to the active ingredients can be challenging. In addition, production may be temporarily interrupted owing to the adherence of wet powder to the inside of the mortar, which can hamper stable production. Therefore, optimization was performed by design of experiments to utilize the disaccharide trehalose as a binder for molded tablets. We formulated placebo tablets with high tablet strength and rapid disintegration. On examining the tablet interior, we confirmed the formation of solid bridges between particles and high porosity, suggesting that trehalose can be used as a binder for molded tablets. The viscosity of the trehalose saturated solution was lower than that of the polyvinyl alcohol (PVA) solution (3.8 wt%). Moreover, the trehalose formulation exhibited a significantly lower wet powder adhesion rate to the upper punch than the PVA formulation. This study provided valuable results for the future formulation design of molded tablets.


Subject(s)
Polymers , Trehalose , Powders , Porosity , Polyvinyl Alcohol , Tablets , Solubility
10.
Pharm Dev Technol ; 28(3-4): 309-317, 2023.
Article in English | MEDLINE | ID: mdl-36946594

ABSTRACT

The aim of this study was to enhance the solubility and stability of the water-insoluble drug carvedilol (CAR) with maleic acid (MLE) to create a co-amorphous system by a solvent evaporation method. Phase diagrams of co-amorphous CAR-MLE, constructed from peak height in the Fourier-transform infrared (FTIR) spectra and the glass transition temperature (Tg) from differential scanning calorimetry (DSC) measurements, revealed that the optimal molar ratio of CAR to MLE was 2:1. The FTIR spectra indicated that the secondary amine-derived peak of CAR and the carboxy group-derived peak of MLE disappeared in the CAR:MLE (2:1) co-amorphous system. DSC measurements showed that the endothermic peaks associated with the melting of CAR and MLE disappeared and a Tg at 43 °C was apparent. Furthermore, the solubility of CAR tested using the shaking flask method for 24 h at 37 °C was 1.2 µg/mL, whereas that of the co-amorphous system was approximately three times higher, at 3.5 µg/mL. Finally, the stability was evaluated by powder- X-ray diffraction at 40 °C; no clear diffraction peaks originating from crystals were observed in the amorphous state until after approximately three months of storage. These results indicate that co-amorphization of CAR with MLE improved the solubility of CAR while maintaining its stability in an amorphous form.


Subject(s)
Carvedilol , Solvents/chemistry , Drug Stability , Transition Temperature , X-Ray Diffraction , Solubility , Calorimetry, Differential Scanning , Spectroscopy, Fourier Transform Infrared/methods
11.
Pharmaceutics ; 15(2)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36839643

ABSTRACT

Amorphous drug formulations exploiting drug-drug interactions have been extensively studied. This study aims to develop a transdermal system containing an amorphous complex of the nonsteroidal anti-inflammatory drug (NSAID) flurbiprofen (FLU) and lidocaine (LDC) for alleviating chronic pain. The high-viscosity complex between FLU and LDC (Complex) was obtained by heating in ethanol. For the complex, attenuated total reflection-Fourier transform infrared spectroscopy showed a shift in the carboxy-group-derived peak of FLU, and differential scanning calorimetry indicated the endothermic peaks associated with the melting of FLU and LDC disappeared. 13C dipolar decoupling and 15N cross-polarization magic-angle spinning nuclear magnetic resonance measurement suggested the interaction between the carboxyl group of FLU and the secondary amine of LDC. The interaction between the aromatic rings of FLU and LDC contributed to the molecular complex formation. The solubility of FLU from the complex was about 100 times greater than FLU alone. The skin permeation flux of FLU from the complex through the hairless mouse skin was 3.8 times higher than FLU alone in hypromellose gel. Thus, adding LDC to the formulation can be an effective method for enhancing the skin permeation of NSAIDs, which can prove useful for treating chronic pain and inflammatory diseases.

12.
Chem Pharm Bull (Tokyo) ; 71(2): 111-119, 2023.
Article in English | MEDLINE | ID: mdl-36724975

ABSTRACT

Famotidine (FMT) is a competitive histamine-2 (H2) receptor antagonist that inhibits gastric acid secretion for the treatment of Gastroesophageal reflux disease. To study the promoting effect and mechanism of terpenes, including l-menthol, borneol, and geraniol, as chemical enhancers, FMT was used as a model drug. Attenuated total reflectance-Fourier transform IR spectroscopy (ATR-FTIR) and differential scanning calorimetry (DSC) were used to explore the effects of terpenes on the skin. Hairless mouse skin was mounted on Franz-type diffusion cell, and skin permeation experiment of FMT hydrogel was carried out. The results suggested that the thermodynamic activity influenced the permeability of the drug, and the main mechanism of terpenes to enhance skin permeation of the drug was based on increasing the fluidity of the intercellular lipids. Moreover, it was revealed that l-menthol simultaneously relaxed the packing structure and lamellar structure, whereas geraniol had a great influence on the lamellar structure only. Collectively, all terpenes had a promoting effect on skin permeation of FMT, indicating their potential as chemical enhancers to change the microstructure of stratum corneum and improve the permeation of FMT through the skin, and it has great potential to be used in transdermal formulations of FMT.


Subject(s)
Famotidine , Terpenes , Mice , Animals , Terpenes/pharmacology , Terpenes/metabolism , Famotidine/pharmacology , Famotidine/metabolism , Skin Absorption , Menthol/pharmacology , Menthol/chemistry , Menthol/metabolism , Skin , Administration, Cutaneous , Permeability
13.
ACS Nano ; 17(3): 2588-2601, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36719091

ABSTRACT

Based on the clinical success of an in vitro transcribed mRNA (IVT-mRNA) that is encapsulated in lipid nanoparticles (mRNA-LNPs), there is a growing demand by researchers to test whether their own biological findings might be applicable for use in mRNA-based therapeutics. However, the equipment and/or know-how required for manufacturing such nanoparticles is often inaccessible. To encourage more innovation in mRNA therapeutics, a simple method for preparing mRNA-LNPs is prerequisite. In this study, we report on a method for encapsulating IVT-mRNA into LNPs by rehydrating a Ready-to-Use empty freeze-dried LNP (LNPs(RtoU)) formulation with IVT-mRNA solution followed by heating. The resulting mRNA-LNPs(RtoU) had a similar intraparticle structure compared to the mRNA-LNPs prepared by conventional microfluidic mixing. In vivo genome editing, a promising application of these types of mRNA-LNPs, was accomplished using the LNPs(RtoU) containing co-encapsulated Cas9-mRNA and a small guide RNA.


Subject(s)
Liposomes , Nanoparticles , RNA, Messenger/genetics , RNA, Messenger/chemistry , Nanoparticles/chemistry , Microfluidics , RNA, Small Interfering/genetics
14.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36015152

ABSTRACT

Moisture-activated dry granulation (MADG) is an eco-friendly granulation method that uses a small amount of water and insoluble excipients to absorb moisture. MADG is expected to improve productivity and reduce costs. Erythritol, an excipient used for preparing orally disintegrating tablets (ODTs), has poor tabletability and is difficult to form into tablets by conventional methods, such as high-shear granulation (HSG) and direct compression. In this study, we optimized the manufacturing conditions for ODTs to improve the tabletability of erythritol using MADG. The disintegration time of tablets made using the MADG method was approximately one-tenth that of those made using the HSG method, and the hardness was approximately 1.4 times higher. Moreover, MADG could delay disintegration and improve tabletability. We further attempted to optimize the manufacturing conditions using MADG, particularly in terms of the amount of water used. The disintegration time increased as the amount of added water increased. Moreover, water absorption tests revealed that capillary wetting decreased as the amount of water added increased, but the initial wetting did not change. These results suggested that the disintegration time was prolonged because of the increase in granule density and decrease in capillary wetting with the increase in the amount of added water. The hardness of the tablets increased because of the easy deformation of the granules after the addition of up to 3% water; however, when more than 3% water was added, the hardness decreased because of the aggregation of the granules with the excess water. Finally, two-dimensional maps of the effect of the amount of added water and water activity indicated that tablets with a hardness of ≥80 N and a disintegration time of ≤15 s could be produced by adjusting the amount of added water to within the range of 2.2-3.3% and water activity to 0.3-0.53. These results indicate that MADG can improve the tabletability of erythritol and be used for the granulation of ODTs. Tablets with appropriate hardness and disintegration properties can be produced by adjusting the water content to approximately 2.7% and the water activity to approximately 0.4 when producing ODTs with MADG.

15.
J Steroid Biochem Mol Biol ; 222: 106152, 2022 09.
Article in English | MEDLINE | ID: mdl-35810932

ABSTRACT

Estrogen receptors (ERs) are ligand-activated transcription factors, with two subtypes ERα and ERß. The endogenous ligand of ERs is the common 17ß-estradiol, and the ligand-binding pocket of ERα and ERß is very similar. Nevertheless, some ERß-selective agonist ligands have been reported. DPN (diarylpropionitrile) is a widely used ERß-selective agonist; however, the structure of the ERß-DPN complex has not been solved. Therefore, the bound-state conformation of DPN and its enantioselectivity remain unresolved. In this report, we present the structures of the complexes of ERß with DPN or its derivatives that include a chlorine atom by the X-ray crystallography. Additionally, we measured the binding affinity between ERß and DPN or derivatives by isothermal titration calorimetry (ITC) and estimated the binding affinity by fragment molecular orbital (FMO) calculations. We also examined the correlation between the ITC data and results from the FMO calculations. FMO calculations showed that S-DPN interacts strongly with three amino acids (Glu305, Phe356, and His475) of ERß, and ITC measurements confirmed that the chlorine atom of the DPN derivatives enhances binding affinity. The enthalpy change by ITC correlated strongly with the interaction energy (total IFIEs; inter-fragment interaction energies) calculated by FMO (R = 0.870). We propose that FMO calculations are a valuable approach for enhancing enthalpy contributions in drug design, and its scope of applications includes halogen atoms such as chlorine. This study is the first quantitative comparison of thermodynamic parameters obtained from ITC measurements and FMO calculations, providing new insights for future precise drug design.


Subject(s)
Estrogen Receptor alpha , Estrogen Receptor beta , Calorimetry , Chlorine , Estradiol , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Ligands , Nitriles , Propionates
16.
Pharmaceutics ; 14(4)2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35456650

ABSTRACT

We evaluated the in vitro permeability of nanoparticle formulations of high and low lipophilic compounds under non-sink conditions, wherein compounds are not completely dissolved. The permeability of the highly lipophilic compound, griseofulvin, was improved by about 30% due to nanonization under non-sink conditions. Moreover, this permeability was about 50% higher than that under sink conditions. On the other hand, for the low lipophilic compound, hydrocortisone, there was no difference in permeability between micro-and nano-sized compounds under non-sink conditions. The nanonization of highly lipophilic compounds improves the permeability of the unstirred water layer (UWL), which in turn improves overall permeability. On the other hand, because the rate-limiting step in permeation for the low lipophilic compounds is the diffusion of the compounds in the membrane, the improvement of UWL permeability by nanonization does not improve the overall permeability. Based on this mechanism, nanoparticle formulations are not effective for low lipophilic compounds. To accurately predict the absorption of nanoparticle formulations, it is necessary to consider their permeability under non-sink conditions which reflect in vivo conditions.

17.
Chem Pharm Bull (Tokyo) ; 70(4): 245-253, 2022.
Article in English | MEDLINE | ID: mdl-35370200

ABSTRACT

It is mandatory to detect the powder cohesiveness of biopharmaceutical dry powder inhaler (Bio-DPI) formulations and their effect on their performance. Normally, Bio-DPI formulations consist of highly cohesive components with higher drug amounts than small molecules. Herein, a formulation study of a high-drug-ratio Bio-DPI was performed, detecting the risk of powder caking in DPI formulations. The Bio-DPI formulation was manufactured via the spray-dry method followed by mixing with excipients. Powder caking was detected through the void forming index (VFI), which was calculated using pressure drop measured by inverse gas chromatography (iGC). Since VFI can be used to evaluate the structural changes induced by powder caking over time with less than 1 g of sample, VFI is considered suitalbe to apply for DPI formulation screening. The risk of powder caking was detected in spray dryed particles at more than 45% relative humidity (RH) humidity condition, mannitol (as a carrier particle) and magnesium stearate (as a lubricant) were added to the formulations. With formulation screening, addition of more than 40% of mannitol was suggested to reduce the risk of powder caking. Selected DPI formulation remained higher emitted ratio (95.6%), than spray dried particle (52.5%) at 25 °C 65% RH condition for 1-month storage. In conclusion, VFI measurement is useful for selecting the DPI formulation by mitigating powder caking risk with limited samples.


Subject(s)
Biological Products , Dry Powder Inhalers , Administration, Inhalation , Particle Size , Powders/chemistry
18.
Carbohydr Polym ; 283: 119178, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35153023

ABSTRACT

The aim of this study was to combine fluconazole (FZ)-loaded solid lipid nanoparticles (FZ-SLNs) and chitosan films (C-films) for the potential administration of FZ across the buccal mucosa using a Box-Behnken design. The chitosan films containing FZ-SLNs (C-FS-films) and C-films were prepared using a film casting method. The ATR-FTIR analysis confirmed the presence of hydrogen bonds between the NH3+ groups of chitosan and the OH or COO- groups of glyceryl monostearate in the films. Additionally, FESEM analysis of the morphology of C-FS-films revealed the presence of FZ-SLNs in the films. Permeation studies using porcine buccal mucosa demonstrated that FZ from the C-FS-films was more permeable than in C-films. The antifungal activity of the C-FS-films was evaluated against Candida albicans, and inhibition zones were observed. Thus, C-FS-films represent an exciting drug carrier for the treatment of candidiasis via the buccal mucosa.


Subject(s)
Antifungal Agents/pharmacology , Candidiasis/drug therapy , Chitosan/chemistry , Fluconazole/pharmacology , Liposomes/chemistry , Nanoparticles/chemistry , Adhesiveness , Administration, Buccal , Animals , Candida albicans/drug effects , Candidiasis/metabolism , Drug Carriers/chemistry , Drug Delivery Systems/methods , Glycerides/chemistry , Mouth Mucosa/metabolism , Particle Size , Spectroscopy, Fourier Transform Infrared/methods , Swine
19.
Article in English | MEDLINE | ID: mdl-35183952

ABSTRACT

The International Conference on Harmonization guidelines for quality on pharmaceutical development recommends a systematic development approach including robustness studies which assure performance of manufacturing and analytical method development of drug product. It was demonstrated that the retention prediction model for nucleoside triphosphates (NTPs) on ion-pair reversed-phase HPLC was developed by a highly accurate Kawabe's model which supports the development of robust HPLC methods. As NTPs and its derivatives are typically used for Messenger ribonucleic acid (mRNA) vaccine production, adenosine-5'-triphosphate (ATP), guanosine-5'-triphosphate (GTP), cytidine-5'-triphosphate (CTP), 5-methylcytidine-5'-triphosphate (m5-CTP), uridine-5'-triphosphate (UTP), 5-methyluridine-5'-triphosphate (m5-UTP), pseudouridine-5'-triphosphate (Ψ-UTP) and N1-methylpseudouridine-5'-triphosphate (m1Ψ-UTP) were applied for prediction model development. By a comparison of the predicted retention factor in eight studied samples with the retention factor measured under six isocratic conditions, the absolute prediction error was 0.075 and also the prediction error (%) was 2.70%. In practical examples, analytical method for residual ATP, GTP, CTP, and m1Ψ-UTP in the commercial mRNA-based drugs and purity method for UTP derivatives were optimized by QbD approach. The design space for the minimum resolution between adjacent peaks was simulated with the models developed to evaluate the robustness of peak separation, and the optimal mobile phase condition was also simulated. As a conclusion, the desired peak was successfully separated under the optimized condition, and we thought that these retention models could optimize the mobile phase condition of the NTP analysis method for applying to various quality tests, such as quantity, purity and identity test for NTPs and its derivates in the mRNA-based drugs.

20.
Int J Pharm ; 615: 121477, 2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35051536

ABSTRACT

α-Glycosyl rutin (Rutin-G) consists of a flavonol skeleton and sugar groups and is a promising additive for amorphous formulations. In our previous study, experimental approaches suggested an interaction between the model drug carbamazepine (CBZ) and flavonol skeleton of Rutin-G that stabilizes amorphous formulations. In the present study, the formation and stabilization mechanisms of CBZ/Rutin-G amorphous formulation were investigated using a computational approach. The CBZ/Rutin-G amorphous formulation was obtained via molecular dynamics (MD) simulation, which mimicked the melt-quenching method. Root mean square deviation analysis revealed that the translational motion of CBZ during the cooling process was suppressed by adding Rutin-G. Monitoring the atomic distance during the cooling process revealed that hydrogen bonds via carboxamide oxygen of CBZ with hydroxyl hydrogen of Rutin-G were preferentially formed with flavonol skeletons than sugar groups. The simulated amorphous formulation was then calculated using fragment molecular orbital (FMO) method. The quantitative evaluation of multiple interactions revealed that the hydrogen bond energy was higher in CBZ-sugar groups than in CBZ-flavonol skeleton, while the π-type of interaction energy was higher in CBZ-flavonol skeleton than in CBZ-sugar groups. The computational approach combining MD simulation and FMO calculation provides information on various interactions that are difficult to detect using experimental approaches, which helps understand the formation and stabilization mechanism of amorphous formulations.


Subject(s)
Carbamazepine , Molecular Dynamics Simulation , Hydrogen Bonding , Phase Transition
SELECTION OF CITATIONS
SEARCH DETAIL