Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Org Biomol Chem ; 22(11): 2218-2225, 2024 03 13.
Article in English | MEDLINE | ID: mdl-38358380

ABSTRACT

Chronic infection with hepatitis B virus (HBV) is a major cause of cirrhosis and liver cancer. Capsid assembly modulators can induce error-prone assembly of HBV core proteins to prevent the formation of infectious virions, representing promising candidates for treating chronic HBV infections. To explore novel capsid assembly modulators from unexplored mirror-image libraries of natural products, we have investigated the synthetic process of the HBV core protein for preparing the mirror-image target protein. In this report, the chemical synthesis of full-length HBV core protein (Cp183) containing an arginine-rich nucleic acid-binding domain at the C-terminus is presented. Sequential ligations using four peptide segments enabled the synthesis of Cp183 via convergent and C-to-N direction approaches. After refolding under appropriate conditions, followed by the addition of nucleic acid, the synthetic Cp183 assembled into capsid-like particles.


Subject(s)
Hepatitis B , Nucleic Acids , Humans , Capsid/chemistry , Capsid Proteins/metabolism , Hepatitis B virus , Hepatitis B/metabolism , Viral Core Proteins/analysis , Viral Core Proteins/chemistry , Viral Core Proteins/metabolism , Virus Replication , Antiviral Agents/metabolism
2.
Org Biomol Chem ; 21(29): 5977-5984, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37434538

ABSTRACT

While γ-glutamylcyclotransferase (GGCT) has been implicated in cancer-cell proliferation, the role of GGCT enzymatic activity in the regulation of cancer-cell growth remains unclear. Toward further understanding of GGCT in vivo, here we report a novel cell-permeable chemiluminogenic probe "MAM-LISA-103" that detects intracellular GGCT activity and apply it to in vivo imaging. We first developed a chemiluminogenic probe LISA-103, which simply and sensitively detects the enzymatic activity of recombinant GGCT through chemiluminescence. We then designed the cell-permeable GGCT probe MAM-LISA-103 and applied it to several biological experiments. MAM-LISA-103 successfully detected the intracellular GGCT activity in GGCT-overexpressing NIH-3T3 cells. Moreover, MAM-LISA-103 demonstrated tumor-imaging ability when administered to a xenograft model using immunocompromised mice inoculated with MCF7 cells.


Subject(s)
gamma-Glutamylcyclotransferase , Animals , Humans , Mice , gamma-Glutamylcyclotransferase/chemistry , MCF-7 Cells , Fluorescent Dyes/chemistry
3.
Int J Mol Sci ; 24(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37240044

ABSTRACT

Fibroblast activation proteins (FAP) are overexpressed in the tumor stroma and have received attention as target molecules for radionuclide therapy. The FAP inhibitor (FAPI) is used as a probe to deliver nuclides to cancer tissues. In this study, we designed and synthesized four novel 211At-FAPI(s) possessing polyethylene glycol (PEG) linkers between the FAP-targeting and 211At-attaching moieties. 211At-FAPI(s) and piperazine (PIP) linker FAPI exhibited distinct FAP selectivity and uptake in FAPII-overexpressing HEK293 cells and the lung cancer cell line A549. The complexity of the PEG linker did not significantly affect selectivity. The efficiencies of both linkers were almost the same. Comparing the two nuclides, 211At was superior to 131I in tumor accumulation. In the mouse model, the antitumor effects of the PEG and PIP linkers were almost the same. Most of the currently synthesized FAPI(s) contain PIP linkers; however, in our study, we found that PEG linkers exhibit equivalent performance. If the PIP linker is inconvenient, a PEG linker is expected to be an alternative.


Subject(s)
Fibroblasts , Polyethylene Glycols , Humans , Animals , Mice , HEK293 Cells , Piperazine/pharmacology , Polyethylene Glycols/pharmacology , Positron Emission Tomography Computed Tomography , Gallium Radioisotopes
4.
Clin Exp Nephrol ; 27(3): 279-287, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36344716

ABSTRACT

BACKGROUND: A certain number of patients with coronavirus disease 2019 (COVID-19), particularly those who test positive for SARS-CoV-2 in the serum, are hospitalized. Further, some even die. We examined the effect of blood adsorption therapy using columns that can eliminate SARS-CoV-2 on the improvement of the prognosis of severe COVID-19 patients. METHODS: This study enrolled seven patients receiving mechanical ventilation. The patients received viral adsorption therapy using SARS-catch column for 3 days. The SARS-catch column was developed by immobilizing a specific peptide, designed based on the sequence of human angiotensin-converting enzyme 2 (hACE2), to an endotoxin adsorption column (PMX). In total, eight types of SARS-CoV-2-catch (SCC) candidate peptides were developed. Then, a clinical study on the effects of blood adsorption therapy using the SARS-catch column in patients with severe COVID-19 was performed, and the data in the present study were compared with historical data of severe COVID-19 patients. RESULTS: Among all SCC candidate peptides, SCC-4N had the best adsorption activity against SARS-CoV-2. The SARS-catch column using SCC-4N removed 65% more SARS-CoV-2 than PMX. Compared with historical data, the weaning time from mechanical ventilation was faster in the present study. In addition, the rate of negative blood viral load in the present study was higher than that in the historical data. CONCLUSION: The timely treatment with virus adsorption therapy may eliminate serum SARS-CoV-2 and improve the prognosis of patients with severe COVID-19. However, large-scale studies must be performed in the future to further assess the finding of this study (jRCTs052200134).


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Peptides
5.
Toxins (Basel) ; 14(11)2022 10 31.
Article in English | MEDLINE | ID: mdl-36355997

ABSTRACT

Nivalenol (NIV) is a trichothecene mycotoxin that is more toxic than deoxynivalenol. It accumulates in grains due to infection with Fusarium species, which are the causative agents of scab or Fusarium head blight. An immunoassay, which is a rapid and easy analytical method, is necessary for monitoring NIV in grains. However, a specific antibody against NIV has not been prepared previously. To establish an immunoassay, we prepared NIV, introduced a linker, and generated antibodies against it. NIV was prepared from a culture of Fusarium kyushuense obtained from pressed barley through chromatographic procedures with synthetic adsorbents and silica gel. NIV was reacted with glutaric anhydride, and the reaction was stopped before mono-hemiglutaryl-NIV was changed to di-hemiglutaryl-NIV. 15-O-Hemiglutaryl-NIV was isolated via preparative HPLC and bound to keyhole limpet hemocyanin (KLH) using the active ester method. Two different monoclonal antibodies were prepared by immunizing mice with the NIV-KLH conjugate. The 50% inhibitory concentration values were 36 and 37 ng/mL. These antibodies also showed high reactivity in a direct competitive enzyme-linked immunosorbent assay and specifically reacted with NIV and 15-acetyl-NIV but not with deoxynivalenol and 4-acetyl-NIV.


Subject(s)
Fusarium , Mycotoxins , Trichothecenes , Mice , Animals , Mycotoxins/analysis , Antibodies, Monoclonal , Trichothecenes/analysis , Fusarium/metabolism
6.
Chembiochem ; 23(24): e202200556, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36285893

ABSTRACT

Some types of dioxetanes are called chemiluminophores because they produce luminescence light without the use of enzymes. Here, we designed and synthesized a novel carboxy group-containing chemiluminophore derivative, which enabled the simple introduction of such a chemiluminophore to the molecule of interest. Furthermore, we demonstrate that the in vivo imaging system (IVIS imaging system) can recognize tagged chemicals, indicating that such a chemiluminophore could be employed as a tracer molecule for biological studies.


Subject(s)
Heterocyclic Compounds, 1-Ring , Heterocyclic Compounds , Heterocyclic Compounds/chemistry , Luminescent Measurements , Indicators and Reagents , Luminescence
7.
Anticancer Res ; 42(9): 4311-4317, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36039439

ABSTRACT

BACKGROUND/AIM: γ-Glutamylcyclotransferase (GGCT) is up-regulated in a broad range of cancers, including breast cancer, and GGCT inhibition has been shown to be a promising strategy for therapy. Herein, we evaluated the efficacy and mechanism of action of pro-GA, a GGCT enzymatic inhibitor, in MCF7 breast cancer cells. MATERIALS AND METHODS: Proliferation was evaluated by WST-8 and trypan blue dye exclusion assays. Western blot analysis was conducted to examine the expression of cyclin-dependent kinase inhibitors (CDKI), including p21, p27, and p16. Induction of senescence was assessed by senescence-associated ß-galactosidase staining. Generation of mitochondrial superoxide reactive oxygen species (ROS) was assessed using flow cytometry. The effect of N-acetylcysteine (NAC) on pro-GA dependent inhibition of proliferation, ROS generation, and senescence was also studied. The efficacy of systemic administration of pro-GA was evaluated in a MCF7 xenograft mouse model. RESULTS: Treatment with pro-GA inhibited proliferation of MCF7 cells, increased CDKI expression and mitochondrial ROS, and induced cellular senescence. We found that cotreatment with NAC restored proliferation in pro-GA treated cells. NAC similarly suppressed CDKI expression, mitochondrial ROS generation, and senescence induced by pro-GA. Furthermore, the systemic administration of pro-GA in an MCF7 xenograft model had significant antitumor effects without toxicity. CONCLUSION: Pro-GA may be a promising therapeutic agent for the treatment of breast cancer.


Subject(s)
Breast Neoplasms , gamma-Glutamylcyclotransferase , Acetylcysteine/pharmacology , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Enzyme Inhibitors/pharmacology , Female , Humans , MCF-7 Cells , Mice , Mitochondria/metabolism , Reactive Oxygen Species/metabolism
8.
Sci Rep ; 12(1): 12231, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35851412

ABSTRACT

Non-proteinaceous components in membranes regulate membrane protein insertion cooperatively with proteinaceous translocons. An endogenous glycolipid in the Escherichia coli membrane called membrane protein integrase (MPIase) is one such component. Here, we focused on the Sec translocon-independent pathway and examined the mechanisms of MPIase-facilitated protein insertion using physicochemical techniques. We determined the membrane insertion efficiency of a small hydrophobic protein using solid-state nuclear magnetic resonance, which showed good agreement with that determined by the insertion assay using an in vitro translation system. The observed insertion efficiency was strongly correlated with membrane physicochemical properties measured using fluorescence techniques. Diacylglycerol, a trace component of E. coli membrane, reduced the acyl chain mobility in the core region and inhibited the insertion, whereas MPIase restored them. We observed the electrostatic intermolecular interactions between MPIase and the side chain of basic amino acids in the protein, suggesting that the negatively charged pyrophosphate of MPIase attracts the positively charged residues of a protein near the membrane surface, which triggers the insertion. Thus, this study demonstrated the ingenious approach of MPIase to support membrane insertion of proteins by using its unique molecular structure in various ways.


Subject(s)
Escherichia coli Proteins , Membrane Proteins , Cell Membrane/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Glycolipids/metabolism , Membrane Proteins/metabolism , Membrane Transport Proteins/metabolism , SEC Translocation Channels/metabolism
9.
ACS Chem Biol ; 17(3): 609-618, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35239308

ABSTRACT

Inducing newly synthesized proteins to appropriate locations is an indispensable biological function in every organism. Integration of proteins into biomembranes in Escherichia coli is mediated by proteinaceous factors, such as Sec translocons and an insertase YidC. Additionally, a glycolipid named MPIase (membrane protein integrase), composed of a long sugar chain and pyrophospholipid, was proven essential for membrane protein integration. We reported that a synthesized minimal unit of MPIase possessing only one trisaccharide, mini-MPIase-3, involves an essential structure for the integration activity. Here, to elucidate integration mechanisms using MPIase, we analyzed intermolecular interactions of MPIase or its synthetic analogs with a model substrate, the Pf3 coat protein, using physicochemical methods. Surface plasmon resonance (SPR) analyses revealed the importance of a pyrophosphate for affinity to the Pf3 coat protein. Compared with mini-MPIase-3, natural MPIase showed faster association and dissociation due to its long sugar chain despite the slight difference in affinity. To focus on more detailed MPIase substructures, we performed docking simulations and saturation transfer difference-nuclear magnetic resonance. These experiments yielded that the 6-O-acetyl group on glucosamine and the phosphate of MPIase play important roles leading to interactions with the Pf3 coat protein. The high affinity of MPIase to the hydrophobic region and the basic amino acid residues of the protein was suggested by docking simulations and proven experimentally by SPR using protein mutants devoid of target regions. These results demonstrated the direct interactions of MPIase with a substrate protein and revealed detailed mechanisms of membrane protein integration.


Subject(s)
Escherichia coli Proteins , Cell Membrane/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Glycolipids/chemistry , Membrane Proteins/metabolism , Membrane Transport Proteins/metabolism , Sugars
10.
Biochem Biophys Res Commun ; 549: 128-134, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33676180

ABSTRACT

γ-Glutamylcyclotransferase (GGCT) is involved in glutathione homeostasis, in which it catalyzes the reaction that generates 5-oxoproline and free amino acids from γ-glutamyl peptides. Increasing evidence shows that GGCT has oncogenic functions and is overexpressed in various cancer tissues, and that inhibition of GGCT activity exerts anticancer effects in vitro and in vivo. Here, we demonstrate that U83836E ((2R)-2-[[4-(2,6-dipyrrolidin-1-ylpyrimidin-4-yl)piperazin-1-yl]methyl]-3,4-dihydro-2,5,7,8,-tetramethyl-2H-1-benzopyran-6-ol, dihydrochloride), a lazaroid that inhibits lipid peroxidation, inhibits GGCT enzymatic activity. U83836E was identified from a high-throughput screen of low molecular weight compounds using a fluorochrome-conjugated GGCT probe. We directly quantified that U83836E specifically inhibited GGCT by measuring the product of a fluorochrome-conjugated GGCT substrate assay, and showed that U83836E inhibited GGCT activity in extracts of NIH3T3 cells overexpressing GGCT. Moreover, U83836E significantly inhibited tumor growth in a xenograft model that used immunodeficient mice orthotopically inoculated with MCF7 human breast cancer cells. These results indicate that U83836E may be a useful GGCT inhibitor for the development of potential cancer therapeutics.


Subject(s)
Breast Neoplasms/pathology , Chromans/pharmacology , Enzyme Inhibitors/pharmacology , Piperazines/pharmacology , gamma-Glutamylcyclotransferase/antagonists & inhibitors , Animals , Cell Proliferation/drug effects , Cell Survival/drug effects , Female , Humans , MCF-7 Cells , Mice , Mice, SCID , NIH 3T3 Cells , Xenograft Model Antitumor Assays , gamma-Glutamylcyclotransferase/metabolism
11.
Org Lett ; 23(5): 1653-1658, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33570416

ABSTRACT

A novel late-stage solubilization of peptides using hydrazides is described. A solubilizing tag was attached through a selective N-alkylation at a hydrazide moiety with the aid of a 2-picoline-borane complex in 50% acetic acid-hexafluoro-2-propanol. The tag, which tolerates ligation and desulfurization conditions, can be detached by a Cu-mediated selective oxidative hydrolysis of the N-alkyl hydrazide. This new method was validated through the synthesis of HIV-1 protease.

12.
BMC Cancer ; 21(1): 72, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33446132

ABSTRACT

BACKGROUND: p-Boronophenylalanine (10BPA) is a powerful 10B drug used in current clinical trials of BNCT. For BNCT to be successful, a high (500 mg/kg) dose of 10BPA must be administered over a few hours. Here, we report BNCT efficacy after rapid, ultralow-dose administration of either tumor vasculature-specific annexin A1-targeting IFLLWQR (IF7)-conjugated 10BPA or borocaptate sodium (10BSH). METHODS: (1) IF7 conjugates of either 10B drugs intravenously injected into MBT2 bladder tumor-bearing mice and biodistribution of 10B in tumors and normal organs analyzed by prompt gamma-ray analysis. (2) Therapeutic effect of IF7-10B drug-mediated BNCT was assessed by either MBT2 bladder tumor bearing C3H/He mice and YTS-1 tumor bearing nude mice. RESULTS: Intravenous injection of IF7C conjugates of either 10B drugs into MBT2 bladder tumor-bearing mice promoted rapid 10B accumulation in tumor and suppressed tumor growth. Moreover, multiple treatments at ultralow (10-20 mg/kg) doses of IF7-10B drug-mediated BNCT significantly suppressed tumor growth in a mouse model of human YTS-1 bladder cancer, with increased Anxa1 expression in tumors and infiltration by CD8-positive lymphocytes. CONCLUSIONS: We conclude that IF7 serves as an efficient 10B delivery vehicle by targeting tumor tissues via the tumor vasculature and could serve as a relevant vehicle for BNCT drugs.


Subject(s)
Annexin A1/metabolism , Boron Compounds/administration & dosage , Boron Neutron Capture Therapy/methods , Neovascularization, Pathologic/radiotherapy , Peptide Fragments/metabolism , Phenylalanine/analogs & derivatives , Urinary Bladder Neoplasms/radiotherapy , Animals , Apoptosis , Boron Compounds/chemistry , Boron Compounds/metabolism , Cell Proliferation , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Nude , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Phenylalanine/administration & dosage , Phenylalanine/chemistry , Phenylalanine/metabolism , Tumor Cells, Cultured , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology , Xenograft Model Antitumor Assays
14.
Molecules ; 26(2)2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33467522

ABSTRACT

Peptides are fragments of proteins that carry out biological functions. They act as signaling entities via all domains of life and interfere with protein-protein interactions, which are indispensable in bio-processes. Short peptides include fundamental molecular information for a prelude to the symphony of life. They have aroused considerable interest due to their unique features and great promise in innovative bio-therapies. This work focusing on the current state-of-the-art short peptide-based therapeutical developments is the first global review written by researchers from all continents, as a celebration of 100 years of peptide therapeutics since the commencement of insulin therapy in the 1920s. Peptide "drugs" initially played only the role of hormone analogs to balance disorders. Nowadays, they achieve numerous biomedical tasks, can cross membranes, or reach intracellular targets. The role of peptides in bio-processes can hardly be mimicked by other chemical substances. The article is divided into independent sections, which are related to either the progress in short peptide-based theranostics or the problems posing challenge to bio-medicine. In particular, the SWOT analysis of short peptides, their relevance in therapies of diverse diseases, improvements in (bio)synthesis platforms, advanced nano-supramolecular technologies, aptamers, altered peptide ligands and in silico methodologies to overcome peptide limitations, modern smart bio-functional materials, vaccines, and drug/gene-targeted delivery systems are discussed.


Subject(s)
Anti-Infective Agents/pharmacology , Antiviral Agents/pharmacology , Peptides/chemistry , Peptides/pharmacology , Peptides/therapeutic use , Amino Acids/chemistry , Anti-Infective Agents/chemistry , Antiviral Agents/chemistry , Computer Simulation , Cosmeceuticals/chemistry , Cosmeceuticals/therapeutic use , Dietary Supplements , Gene Transfer Techniques , Humans , Lactoferrin/chemistry , Lipid Bilayers , Nanostructures/administration & dosage , Nanostructures/chemistry , Peptides/administration & dosage , Stem Cells , Vaccines, Subunit/chemistry , Vaccines, Subunit/pharmacology , COVID-19 Drug Treatment
15.
Nat Commun ; 11(1): 1058, 2020 02 26.
Article in English | MEDLINE | ID: mdl-32103002

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is critically involved in cardiovascular physiology and pathology, and is currently clinically evaluated to treat acute lung failure. Here we show that the B38-CAP, a carboxypeptidase derived from Paenibacillus sp. B38, is an ACE2-like enzyme to decrease angiotensin II levels in mice. In protein 3D structure analysis, B38-CAP homolog shares structural similarity to mammalian ACE2 with low sequence identity. In vitro, recombinant B38-CAP protein catalyzed the conversion of angiotensin II to angiotensin 1-7, as well as other known ACE2 target peptides. Treatment with B38-CAP suppressed angiotensin II-induced hypertension, cardiac hypertrophy, and fibrosis in mice. Moreover, B38-CAP inhibited pressure overload-induced pathological hypertrophy, myocardial fibrosis, and cardiac dysfunction in mice. Our data identify the bacterial B38-CAP as an ACE2-like carboxypeptidase, indicating that evolution has shaped a bacterial carboxypeptidase to a human ACE2-like enzyme. Bacterial engineering could be utilized to design improved protein drugs for hypertension and heart failure.


Subject(s)
Carboxypeptidases/pharmacology , Cardiomegaly/drug therapy , Fibrosis/drug therapy , Hypertension/drug therapy , Paenibacillus/enzymology , Peptidyl-Dipeptidase A/genetics , Angiotensin II/metabolism , Angiotensin-Converting Enzyme 2 , Animals , Cardiomegaly/pathology , Disease Models, Animal , Fibrosis/pathology , Heart Failure/drug therapy , Heart Failure/prevention & control , Hypertension/pathology , Male , Mice , Mice, Inbred C57BL , Peptidyl-Dipeptidase A/metabolism , Recombinant Proteins/pharmacology
16.
Methods Mol Biol ; 2072: 217-240, 2020.
Article in English | MEDLINE | ID: mdl-31541450

ABSTRACT

Phosphoenolpyruvate carboxylases (PEPCs), mostly known as the enzymes responsible for the initial CO2 fixation during C4 photosynthesis, are regulated by reversible phosphorylation in vascular plants. The phosphorylation site on a PEPC molecule is conserved not only among isoforms but also across plant species. An anti-phosphopeptide antibody is a common and powerful tool for detecting phosphorylated target proteins with high specificity. We generated two antibodies, one against a peptide containing a phosphoserine (phosphopeptide) and the other against a peptide containing a phosphoserine mimetic, (S)-2-amino-4-phosphonobutyric acid (phosphonopeptide). The amino acid sequence of the peptide was taken from the site around the phosphorylation site near the N-terminal region of the maize C4-isoform of PEPC. The former antibodies detected almost specifically the phosphorylated C4-isoform of PEPC, whereas the latter antibodies had a broader specificity for the phosphorylated PEPC in various plant species. The following procedures are described herein: (1) preparation of the phosphopeptide and phosphonopeptide; (2) preparation and purification of rabbit antibodies; (3) preparation of cell extracts from leaves for analyses of PEPC phosphorylation with antibodies; and (4) characterization of the obtained antibodies. Finally, (5) two cases involving the application of these antibodies are presented.


Subject(s)
Immunohistochemistry , Phosphoenolpyruvate Carboxylase/metabolism , Photosynthesis , Zea mays/metabolism , Antibodies, Monoclonal/immunology , Antigens, Plant/immunology , Carbon Cycle , Immunoblotting , Immunohistochemistry/methods , Isoenzymes , Phosphopeptides , Phosphoproteins , Phosphorylation , Protein Binding
17.
Methods Mol Biol ; 2103: 129-138, 2020.
Article in English | MEDLINE | ID: mdl-31879922

ABSTRACT

The O-acyl isopeptide method was developed for the preparation of difficult sequence-containing peptides, whose hydrophobic nature hampers both peptide chain construction on resin and purification with HPLC after deprotection. In the O-acyl isopeptide method, the target peptide is synthesized in an O-acyl isopeptide form, which contains an O-acyl isopeptide bond instead of the native N-acyl peptide bond at a hydroxy group-containing amino acid residue, such as Ser or Thr. The hydrophilic O-acyl isopeptide can be isolated, e.g., as a lyophilized TFA salt. The target peptide can be quantitatively obtained by a final O-to-N intramolecular acyl migration reaction with exposure to neutral conditions. Additionally, the O-acyl isopeptide is important as a hydrophilic precursor peptide for biological peptide assays that are difficult to handle. This chapter describes the synthesis of such O-acyl isopeptides by stepwise and convergent Fmoc solid-phase peptide synthesis.


Subject(s)
Peptides/chemical synthesis , Solid-Phase Synthesis Techniques/methods , Amino Acids/chemistry , Chemistry Techniques, Synthetic , Esters/chemistry , Hydrophobic and Hydrophilic Interactions , Peptides/chemistry , Peptides/isolation & purification
18.
J Org Chem ; 85(3): 1674-1679, 2020 02 07.
Article in English | MEDLINE | ID: mdl-31631664

ABSTRACT

Preparation of C-terminal Cys-containing peptide acid by Fmoc solid-phase peptide synthesis (SPPS) is difficult due to base-mediated epimerization at Cys. In this paper, use of a C-terminal pseudoproline structure and Trt(2-Cl) resin achieved epimerization-free direct preparation of the C-terminal Cys-containing peptide acid by Fmoc SPPS. Additionally, the C-terminal Cys(ΨDmp,Hpro)-containing protected peptide segment was applied to an epimerization-free segment condensation reaction.

19.
Org Biomol Chem ; 17(48): 10228-10236, 2019 12 28.
Article in English | MEDLINE | ID: mdl-31782417

ABSTRACT

Hydrophobic membrane peptides/proteins having low water solubility are often difficult to prepare. To overcome this issue, temporal introduction of solubilizing tags has been demonstrated to be beneficial. Following our recent work on the solubilization of a difficult target by using a hydrophilic oligo-Lys tag bearing a trityl linker (Trt-K method), this paper describes a comparative study of the solubilizing abilities of several peptidic trityl tags containing Lys, Arg, Glu, Asn, Nε-tri-Me-Lys or Cys-sulfonate using two hydrophobic model peptides. Among the tags evaluated, that containing Nε-tri-Me-Lys exhibits superior solubilizing ability.


Subject(s)
Lysine/analogs & derivatives , Peptides/chemical synthesis , Amino Acid Sequence , Amino Acids/chemistry , Hydrophobic and Hydrophilic Interactions , Lysine/chemistry , Solubility , Structure-Activity Relationship , Sulfonic Acids/chemistry , Water
20.
Anticancer Res ; 39(9): 4811-4816, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31519583

ABSTRACT

BACKGROUND/AIM: γ-Glutamylcyclotransferase (GGCT) is highly expressed in many forms of cancer, and is a promising therapeutic target. The present study investigated whether inhibition of GGCT enhanced the antiproliferative effects of the drug docetaxel in prostate cancer cells. MATERIALS AND METHODS: Immunohistochemistry and western blot analysis were conducted to measure GGCT expression in prostate cancer tissue samples and cell lines. GGCT was inhibited using RNAi and a novel enzymatic inhibitor, pro-GA, and cell proliferation was evaluated with single and combination treatments of GGCT inhibitors and docetaxel. RESULTS: GGCT was highly expressed in cultured prostate cancer cells and patient samples. GGCT inhibition alone inhibited prostate cancer cell line proliferation and induced cellular senescence. GGCT inhibition in combination with apoptosis-inducing docetaxel had more potent antiproliferative effects than either drug used alone. CONCLUSION: GGCT inhibition may potentiate anticancer drug efficacy.


Subject(s)
Antineoplastic Agents/pharmacology , Docetaxel/pharmacology , Enzyme Inhibitors/pharmacology , gamma-Glutamylcyclotransferase/antagonists & inhibitors , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cellular Senescence/drug effects , Gene Expression , Humans , Immunohistochemistry , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , RNA, Small Interfering/genetics , gamma-Glutamylcyclotransferase/genetics , gamma-Glutamylcyclotransferase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...