Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 22(10)2022 May 10.
Article in English | MEDLINE | ID: mdl-35632026

ABSTRACT

A modified sigmoid sliding mode control (MS-SMC) approach is proposed for stabilizing and tracking a quadrotor system with a nonlinear sliding surface, where the dynamics model is underactuated, highly coupled, and nonlinear. The constructed nonlinear sliding surface is based on the traditional sliding mode surface with a modified sigmoid function, allowing the initial value to quickly reach equilibrium. A new type of nonlinear SMC is applied for performance improvement of the quadrotor using the proposed modified sigmoid sliding surface. To control the quadrotor effectively, a double-loop control method is used to design the control rate, in which the position subsystem is the outer loop, and the attitude subsystem is the inner loop.With the Lyapunov function, the stability of the overall closed-loop system is ensured by stabilizing each subsystem step by step. Moreover, from a practical point of view, the system performance under the model uncertainties and external disturbances are also considered. The simulation results show that the proposed MS-SMC performs better than the conventional sliding mode control (CSMC) and the back-stepping sliding mode control (BS-SMC) in terms of stabilization and tracking against external disturbances.

2.
Sensors (Basel) ; 22(6)2022 Mar 13.
Article in English | MEDLINE | ID: mdl-35336390

ABSTRACT

The discrimination between earthquakes and artificial explosions is a significant issue in seismic analysis to efficiently prevent and respond to seismic events. However, the discrimination of seismic events is challenging due to the low incidence rate. Moreover, the similarity between earthquakes and artificial explosions with a local magnitude derives a nonlinear data distribution. To improve the discrimination accuracy, this paper proposes machine-learning-based seismic discrimination methods-support vector machine, naive Bayes, and logistic regression. Furthermore, to overcome the nonlinear separation problem, the kernel functions and regularized logistic regression are applied to design seismic classifiers. To efficiently design the classifier, P- and S-wave amplitude ratios on the time domain and spectral ratios on the frequency domain, which is converted by fast Fourier transform and short-time Fourier transform are selected as feature vectors. Furthermore, an adaptive synthetic sampling algorithm is adopted to enhance the classifier performance against the seismic data imbalance issue caused by the non-equivalent number of occurrences. The comparisons among classifiers are evaluated by the binary classification performance analysis methods.

3.
Sensors (Basel) ; 21(1)2021 Jan 02.
Article in English | MEDLINE | ID: mdl-33401778

ABSTRACT

Among various localization methods, a localization method that uses a radio frequency signal-based wireless sensor network has been widely applied due to its robustness against noise factors and few limits on installation location. In this paper, we focus on an iterative localization scheme for a mobile with a limited number of time difference of arrival (TDOA) and angle of arrival (AOA) data measured from base stations. To acquire the optimal location of a mobile, we propose a recursive solution for localization using an iteratively reweighted-recursive least squares (IR-RLS) algorithm. The proposed IR-RLS scheme can obtain the optimal solution with a fast computational speed when additional TDOA and/or AOA data is measured from base stations. Moreover, while the number of measured TDOA/AOA data was limited, the proposed IR-RLS scheme could obtain the precise location of a mobile. The performance of the proposed IR-RLS method is confirmed through some simulation results.

4.
Sensors (Basel) ; 20(7)2020 Mar 28.
Article in English | MEDLINE | ID: mdl-32231075

ABSTRACT

The discrimination between earthquakes and explosions is a serious issue in seismic signal analysis. This paper proposes a seismic discrimination method using support vector machine (SVM), wherein the amplitudes of the P-wave and the S-wave of the seismic signals are selected as feature vectors. Furthermore, to improve the seismic discrimination performance using a heterodyne laser interferometer for seismic wave detection, the Hough transform is applied as a compensation method for the periodic nonlinearity error caused by the frequency-mixing in the laser interferometric seismometer. In the testing procedure, different kernel functions of SVM are used to discriminate between earthquakes and explosions. The outstanding performance of a laser interferometer and Hough transform method for precision seismic measurement and nonlinearity error compensation is confirmed through some experiments using a linear vibration stage. In addition, the effectiveness of the proposed discrimination method using a heterodyne laser interferometer is verified through a receiver operating characteristic curve and other performance indices obtained from practical experiments.

5.
Sensors (Basel) ; 19(6)2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30934582

ABSTRACT

In this paper, a heterodyne laser interferometer, which is used as a sensor for high-precision displacement measurement, is introduced to measure ground vibration and seismic waves as a seismometer. The seismic wave is measured precisely through the displacement variation obtained by the heterodyne laser interferometer. The earthquake magnitude is estimated using only the P-wave magnitudes for the first 3 s through the total noise enhanced optimization (TNEO) model. We use data from southern California to investigate the relationship between peak acceleration amplitude ( P d ) and the earthquake magnitude ( M g ). For precise prediction of the earthquake magnitude using only the P d value, the TNEO model derives the relation equation between P d and the magnitude, considering the noise present in each measured seismic data. The optimal solution is obtained from the TNEO model based objective function. We proved the performance of the proposed method through simulation and experimental results.

6.
Sensors (Basel) ; 17(10)2017 Oct 23.
Article in English | MEDLINE | ID: mdl-29065515

ABSTRACT

In this paper, we suggest a seismic signal measurement system that uses a laser interferometer. The heterodyne laser interferometer is used as a seismometer due to its high accuracy and robustness. Seismic data measured by the laser interferometer is used to analyze crucial earthquake characteristics. To measure P-S time more precisely, the short time Fourier transform and instantaneous frequency estimation methods are applied to the intensity signal ( I y ) of the laser interferometer. To estimate the epicenter location, the range difference of arrival algorithm is applied with the P-S time result. The linear matrix equation of the epicenter localization can be derived using P-S time data obtained from more than three observatories. We prove the performance of the proposed algorithm through simulation and experimental results.

SELECTION OF CITATIONS
SEARCH DETAIL