Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Plants (Basel) ; 13(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38611446

ABSTRACT

Cotton aphid Aphis gossypii Glover damages plants such as cotton directly by feeding on leaves and indirectly by transmitting viruses and excreting honeydew, which interferes with photosynthesis. The control of A. gossypii is still dominated by the frequent use of insecticides, which leads to a gradual increase in pesticide resistance in A. gossypii. Research is therefore needed on non-pesticide controls. In this study, seven plant essential oils (EOs) of Ocimum sanctum L., Ocimum basilicum L., Ocimum gratissimum L., Mentha piperita L., Mentha arvensis L., Tagetes erecta L., and Lavandula angustifolia Mill. were examined as potential controls for A. gossypii. We used life tables and electrical penetration graphs (EPG) to explore the effects of these EOs on the growth, development, and feeding behavior of A. gossypii, followed by a study of effects of the EOs on honeydew secretion by A. gossypii as a measure of their antifeedant activity. We found that the EOs of O. sanctum, M. piperita, M. arvensis and T. erecta significantly extended the pre-adult developmental period. Also, adult longevity, number of oviposition days, and total fecundity of A. gossypii treated with the EOs of M. arvensis or T. erecta were all significantly reduced. Aphids treated with the EOs of O. sanctum, M. piperita, or L. angustifolia showed significant reductions in their net reproductive rate (R0), intrinsic rate of increase (rm), and finite rate of increase (λ), and significant increases in mean generation time (T). In terms of their effects on the feeding behavior of A. gossypii, all seven EOs significantly reduced the total duration of phloem feeding (E2 waves), the number of phloem-feeding bouts, and the proportion of time spent in secretion of saliva into phloem sieve elements (E1 waves) and phloem feeding (E2). The total duration and number of E1 waves (saliva secretion) were significantly reduced by the EOs of O. sanctum, O. gratissimum, and M. arvensis. For C waves (probing in non-vascular tissues), the total duration spent in this behavior was significantly increased by the EOs of O. gratissimum, M. piperita, and L. angustifolia, but the number of such probing events was increased only by L. angustifolia EO. The EOs of O. basilicum, M. arvensis, and T. erecta significantly increased the total duration of ingestion of xylem sap (G waves), while the total time of mechanical difficulty in stylet penetration (F waves) was increased by M. arvensis. The total duration and number of the non-probing events (Np waves) were significantly increased by EOs of O. sanctum and O. basilicum. After treatment with all seven of these EOs, the area covered by honeydew was significantly reduced compared with the control. Studies have analyzed that EOs of O. sanctum, M. piperita, and T. erecta were most effective, followed by the EOs of M. arvensis and L. angustifolia, and finally the EOs of O. basilicum and O. gratissimum. In the present study, the EOs of O. sanctum, M. piperita, and T. erecta were found to have potential for the development as antifeedants of A. gossypii, and these data provide a basis for future research on non-pesticide chemical control of A. gossypii.

2.
Molecules ; 29(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38611821

ABSTRACT

This study aimed to investigate the volatile flavor compounds and tastes of six kinds of sauced pork from the southwest and eastern coastal areas of China using gas chromatography-ion mobility spectroscopy (GC-IMS) combined with an electronic nose (E-nose) and electronic tongue (E-tongue). The results showed that the combined use of the E-nose and E-tongue could effectively identify different kinds of sauced pork. A total of 52 volatile flavor compounds were identified, with aldehydes being the main flavor compounds in sauced pork. The relative odor activity value (ROAV) showed that seven key volatile compounds, including 2-methylbutanal, 2-ethyl-3, 5-dimethylpyrazine, 3-octanone, ethyl 3-methylbutanoate, dimethyl disulfide, 2,3-butanedione, and heptane, contributed the most to the flavor of sauced pork (ROAV ≥1). Multivariate data analysis showed that 13 volatile compounds with the variable importance in projection (VIP) values > 1 could be used as flavor markers to distinguish six kinds of sauced pork. Pearson correlation analysis revealed a significant link between the E-nose sensor and alcohols, aldehydes, terpenes, esters, and hetero-cycle compounds. The results of the current study provide insights into the volatile flavor compounds and tastes of sauced pork. Additionally, intelligent sensory technologies can be a promising tool for discriminating different types of sauced pork.


Subject(s)
Pork Meat , Red Meat , Swine , Animals , Electronic Nose , China , Spectrum Analysis , Aldehydes , Chromatography, Gas
3.
Clin. transl. oncol. (Print) ; 26(4): 808-824, Abr. 2024. ilus
Article in English | IBECS | ID: ibc-VR-45

ABSTRACT

Thyroid cancer (TC) is one of the most common endocrine malignancies, and its incidence has increased globally. Despite extensive research, the underlying molecular mechanisms of TC remain partially understood, warranting continued exploration of molecular markers for diagnostic and prognostic applications. Circular RNAs (circRNAs) have recently garnered significant attention owing to their distinct roles in cancers. This review article introduced the classification and biological functions of circRNAs and summarized their potential as diagnostic and prognostic markers in TC. Further, the interplay of circRNAs with PI3K/Akt/mTOR, Wnt/β-catenin, MAPK/ERK, Notch, JAK/STAT, and AMPK pathways is elaborated upon. The article culminates with an examination of circRNA's role in drug resistance of TC and highlights the challenges in circRNA research in TC.(AU)


Subject(s)
Humans , Male , Female , Neoplasms/drug therapy , Thyroid Neoplasms/drug therapy , /genetics , Class Ia Phosphatidylinositol 3-Kinase
4.
Clin Transl Med ; 14(3): e1636, 2024 03.
Article in English | MEDLINE | ID: mdl-38533646

ABSTRACT

BACKGROUND: Inflammatory bowel diseases (IBDs) pose significant challenges in terms of treatment non-response, necessitating the development of novel therapeutic approaches. Although biological medicines that target TNF-α (tumour necrosis factor-α) have shown clinical success in some IBD patients, a substantial proportion still fails to respond. METHODS: We designed bispecific nanobodies (BsNbs) with the ability to simultaneously target human macrophage-expressed membrane TNF-α (hmTNF-α) and IL-23. Additionally, we fused the constant region of human IgG1 Fc (hIgG1 Fc) to BsNb to create BsNb-Fc.  Our study encompassed in vitro and in vivo characterization of BsNb and BsNb-Fc. RESULTS: BsNb-Fc exhibited an improved serum half-life, targeting capability and effector function than BsNb. It's demonstrated that BsNb-Fc exhibited superior anti-inflammatory effects compared to the anti-TNF-α mAb (infliximab, IFX) combined with anti-IL-12/IL-23p40 mAb (ustekinumab, UST) by Transwell co-culture assays. Notably, in murine models of acute colitis brought on by 2,4,6-trinitrobenzene sulfonic acid(TNBS) and dextran sulphate sodium (DSS), BsNb-Fc effectively alleviated colitis severity. Additionally, BsNb-Fc outperformed the IFX&UST combination in TNBS-induced colitis, significantly reducing colon inflammation in mice with colitis produced by TNBS and DSS. CONCLUSION: These findings highlight an enhanced efficacy and improved biostability of BsNb-Fc, suggesting its potential as a promising therapeutic option for IBD patients with insufficient response to TNF-α inhibition. KEY POINTS: A bispecific nanobody (BsNb) was created to target TNF-α and IL-23p19, exhibiting high affinity and remarkable stability. BsNb-Fc inhibited the release of cytokines in CD4+T cells during co-culture experiments. BsNb-Fc effectively alleviated colitis severity in mouse model with acute colitis induced by DSS or TNBS, outperforming the IFX&UST combination.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Mice , Humans , Animals , Tumor Necrosis Factor-alpha , Interleukin-23 Subunit p19 , Tumor Necrosis Factor Inhibitors/adverse effects , Colitis/drug therapy , Inflammatory Bowel Diseases/drug therapy , Inflammation
5.
Virol J ; 21(1): 59, 2024 03 07.
Article in English | MEDLINE | ID: mdl-38454484

ABSTRACT

Human metapneumovirus (HMPV) is a newly identified pathogen causing acute respiratory tract infections in young infants worldwide. Since the initial document of HMPV infection in China in 2003, Chinese scientists have made lots of efforts to prevent and control this disease, including developing diagnosis methods, vaccines and antiviral agents against HMPV, as well as conducting epidemiological investigations. However, effective vaccines or special antiviral agents against HMPV are currently not approved, thus developing early diagnosis methods and knowing its epidemiological characteristics will be beneficial for HMPV control. Here, we summarized current research focused on the epidemiological characteristics of HMPV in China and its available detection methods, which will be beneficial to increase the public awareness and disease control in the future.


Subject(s)
Metapneumovirus , Paramyxoviridae Infections , Respiratory Tract Infections , Vaccines , Infant , Humans , Metapneumovirus/genetics , Paramyxoviridae Infections/diagnosis , Paramyxoviridae Infections/epidemiology , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Antiviral Agents , China/epidemiology
6.
Front Public Health ; 12: 1367614, 2024.
Article in English | MEDLINE | ID: mdl-38476493

ABSTRACT

Objective: This study aimed to investigate the epidemiological characteristics of common pathogens contributing to childhood lower respiratory tract infections (LRTIs) in Xiangtan City, Hunan Province before and during the coronavirus disease 2019 (COVID-19) pandemic. Methods: A total of 11,891 enrolled patients, aged 1 month to 14 years, diagnosed with LRTIs and admitted to Xiangtan Central Hospital from January 2018 to December 2021 were retrospectively reviewed in this study. Specifically, the epidemiological characteristics of these pathogens before and during the COVID-19 pandemic were analyzed. Results: There was a significant decrease in the number of children hospitalized with LRTIs during the COVID-19 pandemic (2020-2021) compared to data from 2018 to 2019 (before the COVID-19 pandemic). Of these cases, 60.01% (7,136/11,891) were male and 39.99% (4,755/11,891) were female. 78.9% (9,381/11,891) cases occurred in children under 4 years of age. The average pathogen detection rate among 11,891 hospitalized LRTIs children was 62.19% (7,395/11,891), with the average pathogen detection rate of 60.33% (4,635/7,682) and 65.57% (2,670/4,209) before and during COVID-19 pandemic, respectively. The detection rates of adenovirus (ADV), bordetella pertussis (BP) and moraxella catarrhalis (M. catarrhalis) decreased dramatically, while the detection rates of influenza viruses (IFV), parainfluenza viruses (PIV), respiratory syncytial virus (RSV), haemophilus influenzae (H. influenzae), streptococcus pneumoniae (S. pneumoniae), and staphylococcus aureus (S. aureus) increased significantly during the COVID-19 pandemic. Overall, RSV, mycoplasma pneumoniae (MP), H. influenzae, and IFV were the major pathogens causing LRTIs in hospitalized children before and during the COVID-19 pandemic. Conclusion: Public health interventions for COVID-19 prevention are beneficial to reduce the incidence of LRTIs in children by limiting the prevalence of ADV, MP, BP, and M. catarrhalis, but which have limited restrictive effects on other common LRTIs-associated pathogens. Collectively, the data in this study comprehensively investigated the effects of COVID-19 pandemic on the epidemiological characteristics of respiratory pathogens, which will be beneficial for improving early preventive measures.


Subject(s)
COVID-19 , Respiratory Tract Infections , Child , Humans , Male , Female , Child, Preschool , Child, Hospitalized , Retrospective Studies , Staphylococcus aureus , Pandemics , COVID-19/epidemiology , Respiratory Tract Infections/epidemiology , Respiratory Syncytial Viruses
7.
J Dairy Sci ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38428493

ABSTRACT

The objective of this study was to examine the sensory interactions between lactones and ketones in a cheddar simulation matrix through perceptual interaction analysis. The olfactory thresholds of 6 key lactones had values ranging from 8.32 to 58.88 µg/kg, whereas those of the 4 key ketones ranged from 6.61 to 660.69 µg/kg. Both Feller's additive model and σ-τ plots demonstrated complex interactions in 24 binary mixtures composed of the 6 lactones and 4 ketones, including synergy, addition, and masking effects. Specifically, we found that 6 binary mixtures exhibited aroma synergistic effects using both methods. Moreover, the σ-τ plot showed a synergistic effect of aroma in 3 ternary mixtures. The U-model further confirmed the synergistic effects of the 6 groups of binary systems and 3 groups of ternary systems on aroma at actual cheese concentrations. In an aroma addition experiment, the combination of δ-octalactone and diacetyl in binary mixtures had the most pronounced impact on enhancing milk flavor. In ternary mixtures, 2 combinations, namely δ-octalactone/δ-dodecalactone/diacetyl and γ-dodecalactone/δ-dodecalactone/acetoin, significantly enhanced the milky and sweet aroma properties of cheese, while also enhancing the overall acceptability of the cheese aroma.

8.
Medicine (Baltimore) ; 103(8): e36770, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38394518

ABSTRACT

Little is known about the relationship between programmed cell death-ligand 1 (PD-L1) expression and histologic and genetic features in real-world Chinese non-small cell lung cancer patients. From November 2017 to June 2019, tumor tissues were collected from 2674 non-small cell lung cancer patients. PD-L1 expression was detected with immunohistochemistry using the 22C3 and SP263 antibodies, and patients were stratified into subgroups based on a tumor proportion score of 1%, 1% to 49%, and ≥ 50%. Genetic alterations were profiled using targeted next-generation sequencing. In the total population, 50.5% had negative PD-L1 expression (tumor proportion score < 1%), 32.0% had low-positive expression (1%-49%), and 17.5% had high-positive expression (≥50%). The PD-L1 positive rate was 39.0% in squamous cell carcinomas and 53.6% in adenocarcinomas. PD-L1 expression was higher in squamous cell carcinomas (P < .001) and lower in adenocarcinomas (P < .001). Of the overall patient population, 11.2% had Kirsten rat sarcoma viral oncogene (KRAS) mutations, 44.9% had epidermal growth factor receptor (EGFR) mutations, 2.1% had BRAF V600E mutations, 0.3% had MET exon 14 skipping mutations, 5.4% had anaplastic lymphoma kinase translocations, and 0.9% had ROS proto-oncogene 1 translocations. Patients carrying ROS proto-oncogene 1 translocations (P = .006), KRAS (P < .001), and MET (P = .023) mutations had significantly elevated expression of PD-L1, while those harboring EGFR (P < .001) mutations had lower PD-L1 expression. In our study, PD-L1 expression was significantly higher in squamous cell carcinomas and lower in adenocarcinomas, and was positively associated with MET and KRAS mutations, as well as the wild-type EGFR gene state. Nonetheless, additional studies are needed to further validate those associations and determine the clinical significance for immune checkpoint inhibitors of these factors.


Subject(s)
Adenocarcinoma , Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , B7-H1 Antigen , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Reactive Oxygen Species/metabolism , Adenocarcinoma/genetics , ErbB Receptors/genetics , ErbB Receptors/metabolism , Carcinoma, Squamous Cell/genetics , Mutation , China
9.
Thorax ; 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38242710

ABSTRACT

BACKGROUND: Transbronchial cryoablation shows potential as a local therapy for inoperable peripheral lung cancer. However, its clinical application for peripheral pulmonary lesions has not been reported yet. METHODS: An improved cryoprobe with an 8-mm-long, 1.9-mm-wide cryotip was used. Initially, the safety and effectiveness of this cryoprobe were assessed in an in vivo porcine model. Transbronchial cryoablation with 2 or 3 freeze-thaw cycles (10 min or 15 min in each freezing time) was performed in 18 pigs under CT monitoring. Radiological and pathological examinations were performed to evaluate the extent of cryoablation. Subsequently, nine patients with stage IA peripheral lung cancer or metastases underwent transbronchial cryoablation with this cryoprobe under the guidance of navigation bronchoscopy and cone-beam CT. Technical success, safety and outcomes were assessed. RESULTS: 36 cryoablation procedures were performed successfully without any major complications in the porcine model. The extent of cryoablation increased with freezing time and the number of freeze-thaw cycles, which peaked at 24 hours and then gradually decreased. Pathological results showed a change from massive haemorrhage at 24 hours to fibrous hyperplasia with chronic inflammation after 4 weeks. In the clinical trial, 10 cryoablations were performed on 9 tumours with a technical success rate of 100%. One mild treatment-related complication occurred. Of the nine tumours, seven achieved complete ablation, while two exhibited incomplete ablation and subsequent local progression at 6 months. CONCLUSION: Our initial experience indicated that transbronchial cryoablation was a safe and feasible procedure for non-surgical peripheral stage IA lung cancer or pulmonary metastases. TRIAL REGISTRATION NUMBER: ChiCTR2200061544.

10.
Clin Transl Oncol ; 26(4): 808-824, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37864677

ABSTRACT

Thyroid cancer (TC) is one of the most common endocrine malignancies, and its incidence has increased globally. Despite extensive research, the underlying molecular mechanisms of TC remain partially understood, warranting continued exploration of molecular markers for diagnostic and prognostic applications. Circular RNAs (circRNAs) have recently garnered significant attention owing to their distinct roles in cancers. This review article introduced the classification and biological functions of circRNAs and summarized their potential as diagnostic and prognostic markers in TC. Further, the interplay of circRNAs with PI3K/Akt/mTOR, Wnt/ß-catenin, MAPK/ERK, Notch, JAK/STAT, and AMPK pathways is elaborated upon. The article culminates with an examination of circRNA's role in drug resistance of TC and highlights the challenges in circRNA research in TC.


Subject(s)
RNA, Circular , Thyroid Neoplasms , Humans , RNA, Circular/genetics , Phosphatidylinositol 3-Kinases , Thyroid Neoplasms/pathology , Prognosis
11.
J Dairy Sci ; 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38101743

ABSTRACT

The objective of this study was to examine the aroma profiles of 12 Gouda cheeses sold in China and determine which aromas were preferred by young Chinese consumers (n = 110). The consumers selected 11 descriptors of the aromas of the Gouda cheeses in a Check-All-That-Apply (CATA) questionnaire. These 11 descriptors were used by a panel of experts for sensory analysis to perform a Quantitative Descriptive Analysis (QDA) of the cheeses. A principal component analysis of the data from the QDA revealed that the characteristic aromas of the young Gouda cheeses, medium-aged Gouda cheeses and aged Gouda cheeses were "milky" and "whey"; "creamy"; and "sour," "rancid," "nutty," etc., respectively. The results of a penalty analysis combined with the CATA results and the preference scores showed that the 3 groups of young Chinese consumers (those who often ate cheese, occasionally ate cheese, and never ate cheese) preferred the Gouda cheeses with "milky" or "creamy" aromas and did not like those with "sour" or "rancid" aromas. Occasional cheese eaters comprised the majority of the young Chinese consumers, and they were more tolerant of the Gouda cheeses with "whey" and "sulfury" aromas than those who often ate cheese and those who never ate cheese. In addition, there was a positive correlation between the consumers' preferences for the aromas of the Gouda cheeses and their willingness to pay for the cheeses. Overall, the results of this study should help promote the development of Gouda cheeses and associated products that meet the preferences of young Chinese consumers.

12.
Appl Environ Microbiol ; 89(11): e0149323, 2023 11 29.
Article in English | MEDLINE | ID: mdl-37943058

ABSTRACT

IMPORTANCE: Branched-chain aldehydes are the primary compounds that contribute to the nutty flavor in cheddar cheese. Lactococcus lactis, which is often applied as primary starter culture, is a significant contributor to the nutty flavor of cheddar cheese due to its ability of conversion of BCAAs into branched-chain aldehydes. In the present study, we found that the regulatory role of CodY is crucial for the conversion. CodY acts as a pleiotropic transcriptional regulator via binding to various regulatory regions of key genes. The results presented valuable knowledge into the role of CodY on the regulation and biosynthetic pathway of branched-chain amino acids and the related aldehydes. Furthermore, it provided new insight for increasing the nutty flavor produced during the manufacture and ripening of cheese.


Subject(s)
Cheese , Lactococcus lactis , Amino Acids, Branched-Chain/metabolism , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Aldehydes/metabolism
13.
J Dairy Sci ; 106(11): 7432-7446, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37641282

ABSTRACT

Milk fan is an acid-curd cheese with strong national characteristics (a traditional dairy product of the Bai nationality with a shape like a piece of paper) and a long history in Yunnan province, China. In our previous study, we characterized the microbial community diversity of milk fan, but the succession of microorganisms associated with flavor formation in milk fan is still unknown. Therefore, we examined the predominant microorganisms and their correlations with the formation of flavor in the fermentation of sour juice and drying of milk fan by gas chromatography mass spectrometry, high-throughput 16S rDNA sequencing, intergenic spacer sequencing and metatranscriptome analysis. We found that the relative abundances of Lactobacillus and Issatchenkia initially decreased and then increased with time during the fermentation of sour juice. However, the relative abundances of Acetobacter, Leuconostoc, Lactococcus, Geotrichum, and Dipodascus initially increased and then decreased. During the drying step, the relative abundances of Lactobacillus and Issatchenkia continuously increased and became the dominant microorganisms in the milk fan. The metatranscriptomes generated from the milk fan showed that "carbohydrate metabolism," "translation," and "signal transduction" were the main metabolic functions of the microbial communities. Rhodotorula and Yarrowia contained more differentially expressed genes than other genera, which indicated they may be associated with the production of the characteristic flavor. Furthermore, a Pearson correlation analysis showed that Lactococcus, Rhodotorula, Candida, Cutaneotrichosporon, and Yarrowia were significantly positively correlated with more aroma-active compounds, mainly ethyl acetate, 2-heptanone, isovaleraldehyde, butyric acid, nonanal, and hexanal. In conclusion, these findings contribute to a better understanding of the flavor production mechanism during the production of milk fan.

14.
Int J Biol Macromol ; 247: 125733, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37423452

ABSTRACT

Routinely screened antibody fragments usually require further in vitro maturation to achieve the desired biophysical properties. Blind in vitro strategies can produce improved ligands by introducing random mutations into the original sequences and selecting the resulting clones under more and more stringent conditions. Rational approaches exploit an alternative perspective that aims first at identifying the specific residues potentially involved in the control of biophysical mechanisms, such as affinity or stability, and then to evaluate what mutations could improve those characteristics. The understanding of the antigen-antibody interactions is instrumental to develop this process the reliability of which, consequently, strongly depends on the quality and completeness of the structural information. Recently, methods based on deep learning approaches critically improved the speed and accuracy of model building and are promising tools for accelerating the docking step. Here, we review the features of the available bioinformatic instruments and analyze the reports illustrating the result obtained with their application to optimize antibody fragments, and nanobodies in particular. Finally, the emerging trends and open questions are summarized.


Subject(s)
Antibodies , Immunoglobulin Fragments , Reproducibility of Results , Mutation , Antibodies/genetics , Antibody Affinity
15.
Food Chem X ; 18: 100696, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37187488

ABSTRACT

The adulteration of soymilk (SM) into raw bovine milk (RM) to gain profit without declaration could cause a health risk. In this study, electronic nose (E-nose) and headspace-gas chromatography ion-mobility spectrometry (HS-GC-IMS) were applied to establish a rapid and effective method to identify adulteration in RM with SM. The obtained data from HS-GC-IMS and E-nose can distinguish the adulterated samples with SM by principal component analysis. Furthermore, a quantitative model of partial least squares was established. The detection limits of E-nose and HS-GC-IMS quantitative models were 1.53% and 1.43%, the root mean square errors of prediction were 0.7390 and 0.5621, the determination coefficients of prediction were 0.9940 and 0.9958, and the relative percentage difference were 10.02 and 13.27, respectively, indicating quantitative regression and good prediction performances of SM adulteration levels in RM were achieved. This research can provide scientific information on the rapid, non-destructive and effective adulteration detection for RM.

16.
Foods ; 12(7)2023 Mar 26.
Article in English | MEDLINE | ID: mdl-37048231

ABSTRACT

Stinky tofu is a traditional Chinese food with wide consumption in China. Nevertheless, the dynamic changes in the flavour of stinky tofu during storage have yet to be investigated. In this study, the flavour changes of stinky tofu over six different storage periods were comprehensively analysed through sensory, electronic nose and gas chromatography-mass spectrometry (GC-MS) analyses. The results of the sensory and electronic nose analyses confirmed the changes in the flavour of stinky tofu across different storage periods. In the GC-MS analysis, 60 volatile compounds were detected during storage, and the odour activity values indicated that 29 of these 60 compounds significantly contributed to the aroma profile. During storage, the alcohol concentration of the stinky tofu gradually decreased while the acid and ester concentrations increased. According to a partial least squares analysis, 2-phenylethyl acetate, 2-phenylethyl propanoate, p-cresol, and phenylethyl alcohol, which were detected after 10 days of storage, promoting the release of an overripe apple-like odour from the stinky tofu. Findings regarding the flavour changes and characteristics of stinky tofu during different storage periods can provide a potential reference for recognising the quality of these products.

17.
BMC Biol ; 21(1): 2, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36600240

ABSTRACT

BACKGROUND: The black cutworm, Agrotis ipsilon, is a serious global underground pest. Its distinct phenotypic traits, especially its polyphagy and ability to migrate long distances, contribute to its widening distribution and increasing difficulty of control. However, knowledge about these traits is still limited. RESULTS: We generated a high-quality chromosome-level assembly of A. ipsilon using PacBio and Hi-C technology with a contig N50 length of ~ 6.7 Mb. Comparative genomic and transcriptomic analyses showed that detoxification-associated gene families were highly expanded and induced after insects fed on specific host plants. Knockout of genes that encoded two induced ABC transporters using CRISPR/Cas9 significantly reduced larval growth rate, consistent with their contribution to host adaptation. A comparative transcriptomic analysis between tethered-flight moths and migrating moths showed expression changes in the circadian rhythm gene AiCry2 involved in sensing photoperiod variations and may receipt magnetic fields accompanied by MagR and in genes that regulate the juvenile hormone pathway and energy metabolism, all involved in migration processes. CONCLUSIONS: This study provides valuable genomic resources for elucidating the mechanisms involved in moth migration and developing innovative control strategies.


Subject(s)
Moths , Animals , Seasons , Moths/genetics , Larva , Gene Expression Profiling , Chromosomes
18.
Comput Struct Biotechnol J ; 21: 601-613, 2023.
Article in English | MEDLINE | ID: mdl-36659922

ABSTRACT

Random mutagenesis is the natural opportunity for proteins to evolve and biotechnologically it has been exploited to create diversity and identify variants with improved characteristics in the mutant pools. Rational mutagenesis based on biophysical assumptions and supported by computational power has been proposed as a faster and more predictable strategy to reach the same aim. In this work we confirm that substantial improvements in terms of both affinity and stability of nanobodies can be obtained by using combinations of algorithms, even for binders with already high affinity and elevated thermal stability. Furthermore, in silico approaches allowed the development of an optimized bispecific construct able to bind simultaneously the two clinically relevant antigens TNF-α and IL-23 and, by means of its enhanced avidity, to inhibit effectively the apoptosis of TNF-α-sensitive L929 cells. The results revealed that salt bridges, hydrogen bonds, aromatic-aromatic and cation-pi interactions had a critical role in increasing affinity. We provided a platform for the construction of high-affinity bispecific constructs based on nanobodies that can have relevant applications for the control of all those biological mechanisms in which more than a single antigen must be targeted to increase the treatment effectiveness and avoid resistance mechanisms.

19.
Macromol Biosci ; 23(3): e2200459, 2023 03.
Article in English | MEDLINE | ID: mdl-36575859

ABSTRACT

Oxidized bacterial nanocellulose (OBC) is reported to prevent microbial growth, but its antibacterial characteristics and mechanism are still unclear. Here, the antibacterial mechanism of OBC is explored by detecting and assessing the interaction of OBC with different carboxyl content on Staphylococcus aureus and Escherichia coli. The results show that OBC has strong antibacterial activity and antibiofilm activity against S. aureus and E. coli, which is positively correlated with the carboxyl content of OBC. After OBC treatment, the bacteria adhesion is inhibited and the cell membrane is destroyed leading to increased permeability. Further investigation reveals that the concentration of cyclic diguanosine monophosphate (c-di-GMP) that induced biofilm formation is significantly decreased to 1.81 pmol mg-1 after OBC treatment. In addition, OBC inactivates mature biofilms, with inactivation rates up to 79.3%. This study suggests that OBC has excellent antibacterial and antiadhesion properties, which can increase the cell membrane permeability and inhibit c-di-GMP formation. In addition, OBC also has a strong inactivation effect on mature biofilm, which can be used as an effective antibiofilm agent.


Subject(s)
Anti-Bacterial Agents , Bacteria , Nanostructures , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria/cytology , Bacteria/drug effects , Bacteria/metabolism , Bacterial Adhesion/drug effects , Biofilms/drug effects , Cell Membrane Permeability/drug effects , Cytokines/biosynthesis , Escherichia coli/drug effects , Meat/microbiology , Microbial Sensitivity Tests , Nanostructures/chemistry , Oxidation-Reduction , Staphylococcus aureus/drug effects , Animals
20.
Plant Biotechnol J ; 21(2): 391-404, 2023 02.
Article in English | MEDLINE | ID: mdl-36345605

ABSTRACT

China is the world's second-largest maize producer and consumer. In recent years, the invasive fall armyworm Spodoptera frugiperda (J.E. Smith) has adversely affected maize productivity and compromised food security. To mitigate pest-inflicted food shortages, China's Government issued biosafety certificates for two genetically modified (GM) Bt maize hybrids, Bt-Cry1Ab DBN9936 and Bt-Cry1Ab/Cry2Aj Ruifeng 125, in 2019. Here, we quantitatively assess the impact of both Bt maize hybrids on pest feeding damage, crop yield and food safety throughout China's maize belt. Without a need to resort to synthetic insecticides, Bt maize could mitigate lepidopteran pest pressure by 61.9-97.3%, avoid yield loss by 16.4-21.3% (range -11.9-99.2%) and lower mycotoxin contamination by 85.5-95.5% as compared to the prevailing non-Bt hybrids. Yield loss avoidance varied considerably between experimental sites and years, as mediated by on-site infestation pressure and pest identity. For either seed mixtures or block refuge arrangements, pest pressure was kept below established thresholds at 90% Bt maize coverage in Yunnan (where S. frugiperda was the dominant species) and 70% Bt maize coverage in other sites dominated by Helicoverpa armigera (Hübner) and Ostrinia furnacalis (Guenée). Drawing on experiences from other crop/pest systems, Bt maize in se can provide area-wide pest management and thus, contribute to a progressive phase-down of chemical pesticide use. Hence, when consciously paired with agroecological and biodiversity-based measures, GM insecticidal crops can ensure food and nutrition security, contribute to the sustainable intensification of China's agriculture and reduce food systems' environmental footprint.


Subject(s)
Insecticides , Moths , Animals , Zea mays/genetics , Endotoxins/genetics , Bacillus thuringiensis Toxins , Plants, Genetically Modified/genetics , Hemolysin Proteins/genetics , Bacterial Proteins/genetics , China , Insecticides/pharmacology , Pest Control, Biological , Food Safety
SELECTION OF CITATIONS
SEARCH DETAIL
...