Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biodivers ; 21(2): e202301374, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38230544

ABSTRACT

Kurut is a traditional dry dairy product mostly consumed in Central Asia. In this study, the distribution of the dominant bacteria present in kurut samples (n=84) originated from seven (Chuy, Issyk-Kul, Talas, Naryn, Jalal-Abad, Osh, and Batken) regions in Kyrgyzstan were analyzed with Illumina iSeq100 platform. The dominant phylum detected was Firmicutes followed by Proteobacteria, Actinobacteria, Cyanobacteria/Chloroplast, and Tenericutes. The most abundant family detected was Lactobacillaceae followed by Streptococcaceae, Enterococcaceae, Chloroplast, and Leuconostocaceae. At the genus level, Lactobacillus was the predominant one in samples and Streptococcus, Enterococcus, Lactococcus, and Streptophyta followed this. Further comprehensive characterization analyses in kurut samples may have potential applications both in industrial starter culture developments and also future therapeutic approaches based on potential strains with probiotic properties.


Subject(s)
Bacteria , Milk , Animals , Cattle , Female , Milk/microbiology , Kyrgyzstan , Lactobacillus , Streptococcus
2.
Foods ; 12(10)2023 May 11.
Article in English | MEDLINE | ID: mdl-37238774

ABSTRACT

Farming seabass (Dicentrarchus labrax) is an essential activity in the Mediterranean basin including the Aegean Sea. The main seabass producer is Turkey accounting for 155,151 tons of production in 2021. In this study, skin swabs of seabass farmed in the Aegean Sea were analysed with regard to the isolation and identification of Pseudomonas. Bacterial microbiota of skin samples (n = 96) from 12 fish farms were investigated using next-generation sequencing (NGS) and metabarcoding analysis. The results demonstrated that Proteobacteria was the dominant bacterial phylum in all samples. At the species level, Pseudomonas lundensis was identified in all samples. Pseudomonas, Shewanella, and Flavobacterium were identified using conventional methods and a total of 46 viable (48% of all NGS+) Pseudomonas were isolated in seabass swab samples. Additionally, antibiotic susceptibility was determined according to standards of the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and Clinical and Laboratory Standards Institute (CLSI) in psychrotrophic Pseudomonas. Pseudomonas strains were tested for susceptibility to 11 antibiotics (piperacillin-tazobactam, gentamicin, tobramycin, amikacin, doripenem, meropenem, imipenem, levofloxacin, ciprofloxacin, norfloxacin, and tetracycline) from five different groups of antibiotics (penicillins, aminoglycosides, carbapenems, fluoroquinolones, and tetracyclines). The antibiotics chosen were not specifically linked to usage by the aquaculture industry. According to the EUCAST and CLSI, three and two Pseudomonas strains were found to be resistant to doripenem and imipenem (E-test), respectively. All strains were susceptible to piperacillin-tazobactam, amikacin, levofloxacin, and tetracycline. Our data provide insight into different bacteria that are prevalent in the skin microbiota of seabass sampled from the Aegean Sea in Turkey, and into the antibiotic resistance of psychrotrophic Pseudomonas spp.

3.
Microb Pathog ; 164: 105439, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35139420

ABSTRACT

Houseflies (Musca domestica) are important mechanical vectors for the transmission of pathogenic microorganisms. In this study, 129 houseflies (69 males and 60 females) were collected from 10 different environmental sources and a laboratory population was used. The surface microbiota of houseflies was identified by Next-Generation Sequencing. Staphylococci from the surfaces of houseflies were selectively isolated and their virulence genes, antibiotic susceptibilities, biofilm formation, and clonal relatedness were determined. Metagenomic analysis results demonstrated that Staphylococcus, Bacillus, and Enterococcus were mostly present on the surface of houseflies at the genus level. Additionally, the isolated 32 staphylococcal strains were identified as Staphylococcus sciuri (n = 11), S. saprophyticus (n = 9), S. arlettae (n = 6), S. xylosus (n = 4), S. epidermidis (n = 1) and S. gallinarum (n = 1). tetK, tetM, tetL, ermC, msrAB, and aad6 genes were found to carry by some of the staphylococcal strains. The strains were mostly resistant to oxacillin, penicillin, and erythromycin and three strains were multi-drug resistant. There was a statistical difference between housefly collection places and antibiotic resistance of isolated staphylococci to penicillin G, gentamicin, and erythromycin (p < 0.05). Biofilm test showed that 17 strains were strong biofilm formers, and it plays important role in the transmission of these bacteria on the surface of houseflies. Staphylococcal strains showed extracellular proteolytic and lipolytic activity in 31 and 12 strains, respectively. Closely related species were found in PFGE analysis from different environmental sources. By this study, surface microbiota and carriage of pathogenic staphylococci on the surfaces of houseflies and their virulence properties were elucidated.


Subject(s)
Houseflies , Microbiota , Animals , Anti-Bacterial Agents/pharmacology , Female , Male , Oxacillin , Staphylococcus , Staphylococcus epidermidis/genetics
4.
Sci Rep ; 11(1): 18364, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34526632

ABSTRACT

Soda lakes are saline and alkaline ecosystems that are considered to have existed since the first geological records of the world. These lakes support the growth of ecologically and economically important microorganisms due to their unique geochemistry. Microbiota members of lakes are valuable models to study the link between community structure and abiotic parameters such as pH and salinity. Lake Van is the largest endroheic lake and in this study, bacterial diversity of lake water, sediment, and pearl mullet (inci kefali; Alburnus tarichi), an endemic species of fish which are collected from different points of the lake, are studied directly and investigated meticulously using a metabarcoding approach after pre-enrichment. Bacterial community structures were identified using Next Generation Sequencing of the 16S rRNA gene. The analysis revealed that the samples of Lake Van contain high level of bacterial diversity. Direct water samples were dominated by Proteobacteria, Cyanobacteria, and Bacteroidota, on the other hand, pre-enriched water samples were dominated by Proteobacteria and Firmicutes at phylum-level. In direct sediment samples Proteobacteria, whereas in pre-enriched sediment samples Firmicutes and Proteobacteria were determined at highest level. Pre-enriched fish samples were dominated by Proteobacteria and Firmicutes at phylum-level. In this study, microbiota members of Lake Van were identified by taxonomic analysis.


Subject(s)
Lakes/microbiology , Microbiota , Animals , Firmicutes/genetics , Firmicutes/isolation & purification , Firmicutes/pathogenicity , Fishes/microbiology , Geologic Sediments/microbiology , Proteobacteria/genetics , Proteobacteria/isolation & purification , Proteobacteria/pathogenicity , RNA, Ribosomal, 16S/genetics
5.
J Hazard Mater ; 418: 126364, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34329020

ABSTRACT

Benzalkonium chloride (BAC) is a common ingredient of disinfectants used for industrial, medical, food safety and domestic applications. It is a common pollutant detected in surface and wastewaters to induce adverse effects on Human health as well as aquatic and terrestrial life forms. Since disinfectant use is essential in combatting against microorganisms, the best approach to reduce ecotoxicity level is to restrict BAC use. We report here that encapsulation of BAC in mesoporous silica nanoparticles can provide an efficient strategy for inhibition of microbial activity with lower than usual concentrations of disinfectants. As a proof-of-concept, Listeria monocytogenes was evaluated for minimum inhibitory concentration (MIC) of nanomaterial encapsulated BAC. Aptamer molecular gate structures provided a specific targeting of the disinfectant to Listeria cells, leading to high BAC concentrations around bacterial cells, but significantly reduced amounts in total. This strategy allowed to inhibition of BAC resistant Listeria strains with 8 times less the usual disinfectant dose. BAC encapsulated and aptamer functionalized silica nanoparticles (AptBACNP) effectively killed only target bacteria L. monocytogenes, but not the non-target cells, Staphylococcus aureus or Escherichia coli. AptBACNP was not cytotoxic to Human cells as determined by in vitro viability assays.


Subject(s)
Disinfectants , Listeria monocytogenes , Nanoparticles , Benzalkonium Compounds , Disinfectants/toxicity , Environmental Pollution , Humans , Microbial Sensitivity Tests , Nanoparticles/toxicity , Silicon Dioxide/toxicity
6.
Org Biomol Chem ; 18(46): 9433-9437, 2020 12 07.
Article in English | MEDLINE | ID: mdl-33184621

ABSTRACT

Two novel, self-reporting distyryl BODIPY-based photodynamic therapy agents functionalized with singlet oxygen responsive imidazole and tertiary amine moieties are developed. Heavy atom-free photosensitizers are demonstrated to have efficient photodynamic action in MCF7 cells. The fluorescence intensity of the photosensitizers is shown to be reduced as a result of 1O2 generation without any significant change in photodynamic activity.


Subject(s)
Photochemotherapy
7.
ACS Omega ; 4(7): 12293-12299, 2019 Jul 31.
Article in English | MEDLINE | ID: mdl-31460346

ABSTRACT

In biology, the activity of enzymes is usually regulated by feedback loops, which enables direct communication between enzymes and the state of the cell. In a similar manner, with the intention to have automated activity regulation, the therapeutic effect of a photosensitizer (BOD1) is shown to be reduced through a negative feedback loop initiated by the photosensitizer. Photodynamic action produces cytotoxic 1O2 and this reactive oxygen species reacts with ascorbate, generating H2O2. Peroxide-mediated oxidation of the photosensitizer auxiliary group leads to the formation of inactive BOD2 from the parent photosensitizer. BOD1 is shown to accumulate in mitochondria, and cell viability is shown to decrease significantly with BOD1 compared to the loop end product, BOD2. Photoinduced enhancement of fluorescence indicates the formation of inactive BOD2 under cellular conditions, and enhanced fluorescence acts as a reporter for the activity of the photosensitizer. We present the first example of PDT autoinactivation, and such a feedback control mechanism would enable a decrease in post-therapy side effects.

8.
J Hazard Mater ; 377: 299-304, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31173979

ABSTRACT

A new catechol-substituted monostyryl boradiazaindacene (BODIPY)-based lanthanide-free colorimetric and fluorogenic probe was developed for the sequential detection of Cu2+ ions and dipicolinic acid (DPA), a distinctive biomarker of bacterial endospores, with high sensitivity and selectivity. In the presence of Cu2+ ions, the blue solution of the probe changes to cyan and the fluorescence is quenched, however, the cyan color changes to blue immediately and the fluorescence is restored on contact with DPA, resulting from competitive binding of DPA that interact with Cu2+ ions. A practical application by using Geobacillus stearothermophilus spores was further studied and as low as 1.0 x 105 spores were detected.


Subject(s)
Biomarkers/analysis , Boron Compounds/chemistry , Copper/analysis , Fluorescent Dyes/chemistry , Picolinic Acids/analysis , Spores, Bacterial/chemistry , Color , Colorimetry , Geobacillus stearothermophilus/chemistry , Geobacillus stearothermophilus/metabolism , Indicators and Reagents , Lanthanoid Series Elements , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...