Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(24)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38133058

ABSTRACT

Carvacrol is well documented for its antibacterial and antioxidant effects. However, its high volatility has directed researchers toward nanoencapsulation technology according to bioeconomy and sustainability trends. This study examined and compared free carvacrol (FC), carvacrol microemulsion (MC), carvacrol microemulsion busted with chitosan (MMC), and carvacrol nanoemulsions (NC) as active coatings on extending minced pork meat shelf life at 4 ± 1 °C for 9 days, focusing on microbiological, physiochemical, and sensory characteristics. The research involved pre-characterizing droplet sizes, evaluating antioxidants, and determining antibacterial efficacy. The results demonstrated that NC with a 21 nm droplet size exhibited the highest antioxidant and antibacterial activity. All coatings succeeded in extending the preservation of fresh minced pork meat in comparison to the free carvacrol sample (FC). The NC coating showed the highest extension of minced pork meat preservation and maintained meat freshness for 9 days, with a lower TBARs of 0.736 mg MDA/Kg, and effectively reduced mesophilic, lactic acid, and psychotrophic bacterial counts more significantly by 1.2, 2, and 1.3 log, respectively, as compared to FC. Sensory assessments confirmed the acceptability of NC and MCC coatings. Overall, the carvacrol-based nanoemulsion can be considered a novel antioxidant and antimicrobial active coating due to its demonstrated higher efficacy in all the examined tests performed.

2.
Gels ; 9(10)2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37888380

ABSTRACT

The necessity of reducing the greenhouse effect by decreasing the carbon dioxide fingerprint directed the food packaging technology to use biobased raw materials. Alginates, which are derived from brown algae species, are one of the most promising biobased biopolymers for the development of edible active coatings capable of protecting food from oxidation/bacterial spoilage. In this study, sodium alginate, which was plasticized with glycerol and mixed with a biobased thymol/natural halloysite nanohybrid, was used to develop novel edible active coatings. Nanocomposite coatings were also developed in this project by mixing pure halloysite with sodium alginate/glycerol matrix and were used as reference material for comparison reasons. Instrumental analysis indicated a higher compatibility of a thymol/halloysite nanohybrid with a sodium alginate/glycerol matrix compared to pure halloysite with a sodium alginate/glycerol matrix. Increased compatibility resulted in improved tensile properties, water/oxygen barrier properties, and total antioxidant activity. These edible active coatings were applied to traditional Greek spread cheese and showed a reduction in the mesophilic microbial population over one log10 unit (cfu/g) compared to uncoated cheese. Moreover, the reduction in the mesophilic microbial population increased with the increase in halloysite and thymol content, indicating such sodium alginate/glycerol/thymol/halloysite hydrogels as promising edible active coatings for dairy products.

3.
Gels ; 9(7)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37504449

ABSTRACT

Currently, food saving, a circular economy, and zero environmental fingerprints are of major interest. Scientific efforts for enhanced food preservation using "green" methods have been intensified. Even though chemicals could achieve such targets effectively, the global trend against the "greenhouse effect" suggests the use of environmentally friendly biobased materials for this purpose. In this study, the promising biopolymer chitosan is incorporated with the promising biodegradable polymer polyvinyl alcohol to produce an improved biopolymeric matrix. This biodegradable biopolymer was further mixed homogeneously with 15% thymol/nano-zeolite nanohybrid material. The properties of the final developed film were improved compared to the relevant values of chitosan/polyvinyl alcohol film. The mechanical properties were enhanced significantly, i.e., there was a 34% increase in Young's modulus and a 4.5% increase in the ultimate tensile strength, while the antioxidant activity increased by 53.4%. The antibacterial activity increased by 134% for Escherichia coli, 87.5% for Staphylococcus aureus, 32% for Listeria monocytogenes, and 9% for Salmonella enterica. The water vapor diffusion coefficient and the oxygen permeability coefficient decreased to -51% and -74%, respectively, and thus, the water vapor and oxygen barrier increased significantly. The active pads were used in strawberries, and the antimicrobial activity evaluation against the mold of fungi was carried out. The visual evaluation shows that the active pads could extend the shelf life duration of strawberries.

4.
Foods ; 12(13)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37444330

ABSTRACT

Τhe replacement of food packaging additives and preservatives with bio-based antioxidant/antibacterial compounds has been a common practice in recent years following the trend of bioeconomy and nanotechnology. Such bio-additives are often enclosed in nanocarriers for a controlled release process. Following this trend in this work, a thymol (TO)-rich activated carbon (AC) nanohybrid was prepared and characterized physicochemically with various techniques. This TO@AC nanohybrid, along with the pure activated carbon, was extruded with low-density polyethylene (LDPE) to develop novel active packaging films. The codenames used in this paper were LDPE/xTO@AC and LDPE/xAC for the nanohybrid and the pure activated carbon, respectively. X-ray diffractometry, Fourier-transform infrared spectroscopy, and scanning electron microscopy measurements showed high dispersity of both the TO@AC nanohybrid and the pure AC in the LDPE matrix, resulting in enhanced mechanical properties. The active film with 15 wt.% of the TO@AC nanohybrid (LDPE/15TO@AC) exhibited a 230% higher water/vapor barrier and 1928% lower oxygen permeability than the pure LDPE film. For this active film, the highest antioxidant activity referred to the DPPH assay (44.4%), the lowest thymol release rate (k2 ≈ 1.5 s-1), and the highest antibacterial activity were recorded, resulting in a 2-day extension of fresh pork fillets' shelf-life.

5.
Gels ; 8(9)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36135251

ABSTRACT

This study presents, the development of a green method to produce rich in thymol natural zeolite (TO@NZ) nanostructures. This material was used to prepare sodium-alginate/glycerol/xTO@NZ (ALG/G/TO@NZ) nanocomposite active films for the packaging of soft cheese to extend its shelf-life. Differential scanning calorimetry (DSC), X-ray analysis (XRD), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR) instruments were used for the characterization of such nanostructures and films, to identify the thymol adsorbed amount, to investigate the thermal behaviour, and to confirm the dispersion of nanostructure powder into the polymer matrix. Water vapor transmission rate, oxygen permeation analyzer, tensile measurements, antioxidant measurements, and antimicrobial measurements were used to estimate the film's water and oxygen barrier, mechanical properties, nanostructure's nanoreinforcement activity, antioxidant and antimicrobial activity. The findings from the study revealed that ALG/G/TO@NZ nanocomposite film could be used as an active packaging film for foods with enhanced, mechanical properties, oxygen and water barrier, antioxidant and antimicrobial activity, and it is capable of extending food shelf-life.

SELECTION OF CITATIONS
SEARCH DETAIL