Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
bioRxiv ; 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38293085

ABSTRACT

Immune Checkpoint Blockade (ICB) has revolutionized cancer treatment, however mechanisms determining patient response remain poorly understood. Here we used machine learning to predict ICB response from germline and somatic biomarkers and interpreted the learned model to uncover putative mechanisms driving superior outcomes. Patients with higher T follicular helper infiltrates were robust to defects in the class-I Major Histocompatibility Complex (MHC-I). Further investigation uncovered different ICB responses in MHC-I versus MHC-II neoantigen reliant tumors across patients. Despite similar response rates, MHC-II reliant responses were associated with significantly longer durable clinical benefit (Discovery: Median OS=63.6 vs. 34.5 months P=0.0074; Validation: Median OS=37.5 vs. 33.1 months, P=0.040). Characteristics of the tumor immune microenvironment reflected MHC neoantigen reliance, and analysis of immune checkpoints revealed LAG3 as a potential target in MHC-II but not MHC-I reliant responses. This study highlights the value of interpretable machine learning models in elucidating the biological basis of therapy responses.

2.
Int J Pharm ; 651: 123757, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38160992

ABSTRACT

Extracellular vesicles (EVs) are endogenous vesicles that comprise a variety of submicron vesicular structures. Among these, exosomes have been widely investigated as delivery systems for small and large molecules. Herein, the thin-film freeze-drying technology was utilized to engineer aerosolizable dry powders of miR-335-laden induced EVs (iEV-335) generated in B cells for potential delivery into the lung to treat primary lung cancer and/or pulmonary metastases. The size distribution, structure, and morphology of iEV-335 were preserved after they were subjected to thin-film freeze-drying with the proper excipients. Importantly, iEV-335, in liquid or reconstituted from thin-film freeze-dried powders, were equally effective in downregulating SOX4 gene expression in LM2 human triple-negative mammary cancer cells. The iEV-335 dry powder compositions showed mass median aerodynamic diameters (MMAD) of around 1.2 µm with > 60 % of the emitted doses had an MMAD of ≤ 3 µm, indicating that the powders can potentially achieve efficient deposition within the alveolar region following oral inhalation, which is desirable for treatment of primary lung cancer and pulmonary metastases. Overall, it is concluded that it is feasible to apply thin-film freeze-drying to prepare aerosolizable dry powders of iEVs for pulmonary delivery.


Subject(s)
Extracellular Vesicles , Lung Neoplasms , MicroRNAs , Humans , Powders/chemistry , Freeze Drying , Administration, Inhalation , Particle Size , Dry Powder Inhalers , Respiratory Aerosols and Droplets , SOXC Transcription Factors
3.
Am J Hum Genet ; 110(7): 1138-1161, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37339630

ABSTRACT

Autoimmunity and cancer represent two different aspects of immune dysfunction. Autoimmunity is characterized by breakdowns in immune self-tolerance, while impaired immune surveillance can allow for tumorigenesis. The class I major histocompatibility complex (MHC-I), which displays derivatives of the cellular peptidome for immune surveillance by CD8+ T cells, serves as a common genetic link between these conditions. As melanoma-specific CD8+ T cells have been shown to target melanocyte-specific peptide antigens more often than melanoma-specific antigens, we investigated whether vitiligo- and psoriasis-predisposing MHC-I alleles conferred a melanoma-protective effect. In individuals with cutaneous melanoma from both The Cancer Genome Atlas (n = 451) and an independent validation set (n = 586), MHC-I autoimmune-allele carrier status was significantly associated with a later age of melanoma diagnosis. Furthermore, MHC-I autoimmune-allele carriers were significantly associated with decreased risk of developing melanoma in the Million Veteran Program (OR = 0.962, p = 0.024). Existing melanoma polygenic risk scores (PRSs) did not predict autoimmune-allele carrier status, suggesting these alleles provide orthogonal risk-relevant information. Mechanisms of autoimmune protection were neither associated with improved melanoma-driver mutation association nor improved gene-level conserved antigen presentation relative to common alleles. However, autoimmune alleles showed higher affinity relative to common alleles for particular windows of melanocyte-conserved antigens and loss of heterozygosity of autoimmune alleles caused the greatest reduction in presentation for several conserved antigens across individuals with loss of HLA alleles. Overall, this study presents evidence that MHC-I autoimmune-risk alleles modulate melanoma risk unaccounted for by current PRSs.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Alleles , Melanoma/genetics , Melanoma/metabolism , CD8-Positive T-Lymphocytes/metabolism , Skin Neoplasms/genetics , Histocompatibility , Histocompatibility Antigens Class I/genetics
4.
Nat Commun ; 14(1): 2744, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37173324

ABSTRACT

With the continued promise of immunotherapy for treating cancer, understanding how host genetics contributes to the tumor immune microenvironment (TIME) is essential to tailoring cancer screening and treatment strategies. Here, we study 1084 eQTLs affecting the TIME found through analysis of The Cancer Genome Atlas and literature curation. These TIME eQTLs are enriched in areas of active transcription, and associate with gene expression in specific immune cell subsets, such as macrophages and dendritic cells. Polygenic score models built with TIME eQTLs reproducibly stratify cancer risk, survival and immune checkpoint blockade (ICB) response across independent cohorts. To assess whether an eQTL-informed approach could reveal potential cancer immunotherapy targets, we inhibit CTSS, a gene implicated by cancer risk and ICB response-associated polygenic models; CTSS inhibition results in slowed tumor growth and extended survival in vivo. These results validate the potential of integrating germline variation and TIME characteristics for uncovering potential targets for immunotherapy.


Subject(s)
Immunotherapy , Neoplasms , Germ Cells , Germ-Line Mutation , Inhibition, Psychological , Macrophages , Tumor Microenvironment/genetics , Neoplasms/genetics , Neoplasms/therapy
5.
PNAS Nexus ; 2(3): pgad046, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36909826

ABSTRACT

Telomerase reverse transcriptase (TERT) is a conserved self-tumor antigen overexpressed in ∼85% of tumor cells and is immunogenic in cancer patients. The effect of TERT expression on the regulation of intratumor adaptive immunity has not yet been investigated. We used RNA sequencing data from The Cancer Genome Atlas (TCGA) in 11 solid tumor types to investigate potential interactions between TERT expression, and B and T cell infiltrate in the tumor microenvironment. We found a positive correlation between TERT expression, B and T cells in four cancer types with the strongest association in head and neck squamous cell carcinoma (HSNCC). In HNSCC a Bhigh/TERThigh signature was associated with improved progression-free survival (PFS) (P = 0.0048). This effect was independent of HPV status and not shared in comparable analysis by other conserved tumor antigens (NYESO1, MUC1, MAGE, and CEA). Bhigh/TERThigh HNSCC tumors also harbored evidence of tertiary lymphoid structure (TLS) such as signatures for germinal center (GC) and switched memory B cells, central memory CD4 and effector memory CD8 T cells. Bhigh/TERThigh HNSCC tumors also showed an up-regulation of genes and pathways related to B and T cell activation, proliferation, migration, and cytotoxicity, while factors associated with immunosuppression and cancer cell invasiveness were down-regulated. In summary, our study uncovers a new association between high TERT expression and high B cell infiltrate in HNSCC, suggesting a potential benefit from therapeutic strategies that invigorate intratumor TERT-mediated T-B cooperation.

6.
EMBO J ; 41(24): e111071, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36314681

ABSTRACT

Antigen presentation via the major histocompatibility complex (MHC) is essential for anti-tumor immunity. However, the rules that determine which tumor-derived peptides will be immunogenic are still incompletely understood. Here, we investigated whether constraints on peptide accessibility to the MHC due to protein subcellular location are associated with peptide immunogenicity potential. Analyzing over 380,000 peptides from studies of MHC presentation and peptide immunogenicity, we find clear spatial biases in both eluted and immunogenic peptides. We find that including parent protein location improves the prediction of peptide immunogenicity in multiple datasets. In human immunotherapy cohorts, the location was associated with a neoantigen vaccination response, and immune checkpoint blockade responders generally had a higher burden of neopeptides from accessible locations. We conclude that protein subcellular location adds important information for optimizing cancer immunotherapies.


Subject(s)
Antigens, Neoplasm , Neoplasms , Humans , Antigens, Neoplasm/metabolism , Immunotherapy , Antigen Presentation , Peptides , Neoplasms/therapy
7.
Front Oncol ; 12: 915629, 2022.
Article in English | MEDLINE | ID: mdl-35992887

ABSTRACT

The PD-1:PD-L1 axis is a binary interaction that delivers inhibitory signals to T cells, impeding both immune surveillance and response to immunotherapy. Here we analyzed a phenomenon whereby tumor-specific T cells induce PD-L1 upregulation in autologous MDS cells in short-term culture, through a mechanism that is cell-contact-independent and partially IFNγ-dependent. After investigating a panel of small-molecule inhibitors, we determined that PD-L1 upregulation was attributed to the PKR-like ER kinase (PERK) branch of the unfolded protein response. Interestingly, we found that the cytotoxic capacity of tumor-specific T cells was not impaired by the expression of PD-L1 on MDS target cells. These results highlight a little appreciated aspect of PD-1:PD-L1 regulation in hematologic cancers and indicate that this phenomenon, while likely to hinder autochthonous immune surveillance, may not be an obstacle to immunotherapies such as personalized adoptive T-cell therapy.

8.
EMBO J ; 41(16): e111862, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35848116

ABSTRACT

Disulfiram, a drug prescribed for the treatment of alcohol use disorders for more than 60 years, has recently been repurposed for cancer treatment. New work in The EMBO Journal now describes a disulfiram role in immunotherapy of cancer, involving direct binding to Lck to mediate activation of tumor-infiltrating T cells.


Subject(s)
Alcohol Deterrents , Alcoholism , Neoplasms , Alcohol Deterrents/therapeutic use , Alcoholism/drug therapy , Disulfiram/metabolism , Disulfiram/pharmacology , Humans , Neoplasms/drug therapy , Rubber/therapeutic use
9.
PLoS Pathog ; 18(7): e1010686, 2022 07.
Article in English | MEDLINE | ID: mdl-35862442

ABSTRACT

Successful control of the COVID-19 pandemic depends on vaccines that prevent transmission. The full-length Spike protein is highly immunogenic but the majority of antibodies do not target the virus: ACE2 interface. In an effort to affect the quality of the antibody response focusing it to the receptor-binding motif (RBM) we generated a series of conformationally-constrained immunogens by inserting solvent-exposed RBM amino acid residues into hypervariable loops of an immunoglobulin molecule. Priming C57BL/6 mice with plasmid (p)DNA encoding these constructs yielded a rapid memory response to booster immunization with recombinant Spike protein. Immune sera antibodies bound strongly to the purified receptor-binding domain (RBD) and Spike proteins. pDNA primed for a consistent response with antibodies efficient at neutralizing authentic WA1 virus and three variants of concern (VOC), B.1.351, B.1.617.2, and BA.1. We demonstrate that immunogens built on structure selection can be used to influence the quality of the antibody response by focusing it to a conserved site of vulnerability shared between wildtype virus and VOCs, resulting in neutralizing antibodies across variants.


Subject(s)
Antibodies, Neutralizing , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral , COVID-19/prevention & control , Mice , Mice, Inbred C57BL , Pandemics/prevention & control , Spike Glycoprotein, Coronavirus/immunology
10.
Front Immunol ; 13: 823157, 2022.
Article in English | MEDLINE | ID: mdl-35237269

ABSTRACT

The tumor-immune interface has surged to primary relevance in an effort to understand the hurdles facing immune surveillance and cancer immunotherapy. Reports over the past decades have indicated a role for the unfolded protein response (UPR) in modulating not only tumor cell fitness and drug resistance, but also local immunity, with emphasis on the phenotype and altered function of immune cells such as myeloid cells and T cells. Emerging evidence also suggests that aneuploidy correlates with local immune dysregulation. Recently, we reported that the UPR serves as a link between aneuploidy and immune cell dysregulation in a cell nonautonomous way. These new findings add considerable complexity to the organization of the tumor microenvironment (TME) and the origin of its altered function. In this review, we summarize these data and also discuss the role of aneuploidy as a negative regulator of local immunity.


Subject(s)
Neoplasms , Unfolded Protein Response , Aneuploidy , Humans , Myeloid Cells , Neoplasms/pathology , Tumor Microenvironment
11.
J Pers Med ; 11(12)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34945712

ABSTRACT

Multiple myeloma (MM) is characterized by the accumulation of malignant plasma cells in the bone marrow. Despite novel therapies, MM still remains an incurable cancer and new strategies are needed. Increased expression of the transcription factor Sex-determining region Y-related high-mobility-group box transcription factor 4 (SOX4) has been correlated with tumor development and progression through a variety of distinct processes, including inhibition of apoptosis, increased cell invasion and metastasis, and induction and maintenance of cancer-initiating cells. The role of SOX4 in MM is largely unknown. Since SOX4 is a known target of miR-335, we used miR-335 to assess whether SOX4 modulation could promote apoptosis in MM cells. Using an MM cell model we show that miR-335 acts both on SOX4-related genes (AKT, PI3K) and hypoxia-inducible factor 1-alpha (Hif1-α). In addition, we show miR-335-laden extracellular vesicles induced in B cells (iEVs) are also effective in targeting SOX4, causing apoptosis. Collectively, we propose that miR-335-laden iEVs could be developed as a novel form of gene therapy in MM.

12.
EMBO Rep ; 22(12): e52509, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34698427

ABSTRACT

Aneuploidy is a chromosomal abnormality associated with poor prognosis in many cancer types. Here, we tested the hypothesis that the unfolded protein response (UPR) mechanistically links aneuploidy and local immune dysregulation. Using a single somatic copy number alteration (SCNA) score inclusive of whole-chromosome, chromosome arm, and focal alterations in a pan-cancer analysis of 9,375 samples in The Cancer Genome Atlas (TCGA) database, we found an inverse correlation with a cytotoxicity (CYT) score across disease stages. Co-expression patterns of UPR genes changed substantially between SCNAlow and SCNAhigh groups. Pathway activity scores showed increased activity of multiple branches of the UPR in response to aneuploidy. The PERK branch showed the strongest association with a reduced CYT score. The conditioned medium of aneuploid cells transmitted XBP1 splicing and caused IL-6 and arginase 1 transcription in receiver bone marrow-derived macrophages and markedly diminished the production of IFN-γ and granzyme B in activated human T cells. We propose the UPR as a mechanistic link between aneuploidy and immune dysregulation in the tumor microenvironment.


Subject(s)
Neoplasms , Unfolded Protein Response , Aneuploidy , Humans , Neoplasms/genetics , Tumor Microenvironment
13.
Annu Rev Biomed Data Sci ; 4: 227-253, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34465181

ABSTRACT

Next-generation sequencing technologies have revolutionized our ability to catalog the landscape of somatic mutations in tumor genomes. These mutations can sometimes create so-called neoantigens, which allow the immune system to detect and eliminate tumor cells. However, efforts that stimulate the immune system to eliminate tumors based on their molecular differences have had less success than has been hoped for, and there are conflicting reports about the role of neoantigens in the success of this approach. Here we review some of the conflicting evidence in the literature and highlight key aspects of the tumor-immune interface that are emerging as major determinants of whether mutation-derived neoantigens will contribute to an immunotherapy response. Accounting for these factors is expected to improve success rates of future immunotherapy approaches.


Subject(s)
Antigens, Neoplasm , Neoplasms , Antigens, Neoplasm/genetics , High-Throughput Nucleotide Sequencing , Humans , Immunotherapy , Mutation , Neoplasms/genetics
15.
PLoS One ; 16(2): e0246731, 2021.
Article in English | MEDLINE | ID: mdl-33571241

ABSTRACT

SARS-CoV-2 antibodies develop within two weeks of infection, but wane relatively rapidly post-infection, raising concerns about whether antibody responses will provide protection upon re-exposure. Here we revisit T-B cooperation as a prerequisite for effective and durable neutralizing antibody responses centered on a mutationally constrained RBM B cell epitope. T-B cooperation requires co-processing of B and T cell epitopes by the same B cell and is subject to MHC-II restriction. We evaluated MHC-II constraints relevant to the neutralizing antibody response to a mutationally-constrained B cell epitope in the receptor binding motif (RBM) of the spike protein. Examining common MHC-II alleles, we found that peptides surrounding this key B cell epitope are predicted to bind poorly, suggesting a lack MHC-II support in T-B cooperation, impacting generation of high-potency neutralizing antibodies in the general population. Additionally, we found that multiple microbial peptides had potential for RBM cross-reactivity, supporting previous exposures as a possible source of T cell memory.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19/immunology , Epitopes, B-Lymphocyte/immunology , Histocompatibility Antigens Class II/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Motifs , Antibodies, Viral/immunology , Antibody Formation , B-Lymphocytes/immunology , Computer Simulation , Epitopes, B-Lymphocyte/chemistry , Humans , Models, Molecular , Peptides/chemistry , Peptides/immunology , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , T-Lymphocytes/immunology
16.
Nat Commun ; 11(1): 4128, 2020 08 17.
Article in English | MEDLINE | ID: mdl-32807809

ABSTRACT

Individual MHC genotype constrains the mutational landscape during tumorigenesis. Immune checkpoint inhibition reactivates immunity against tumors that escaped immune surveillance in approximately 30% of cases. Recent studies demonstrated poorer response rates in female and younger patients. Although immune responses differ with sex and age, the role of MHC-based immune selection in this context is unknown. We find that tumors in younger and female individuals accumulate more poorly presented driver mutations than those in older and male patients, despite no differences in MHC genotype. Younger patients show the strongest effects of MHC-based driver mutation selection, with younger females showing compounded effects and nearly twice as much MHC-II based selection. This study presents evidence that strength of immune selection during tumor development varies with sex and age, and may influence the availability of mutant peptides capable of driving effective response to immune checkpoint inhibitor therapy.


Subject(s)
Mutation/genetics , Neoplasms/genetics , Neoplasms/immunology , Age Factors , Alleles , Female , Genotype , Humans , Major Histocompatibility Complex/genetics , Major Histocompatibility Complex/immunology , Male , Sex Factors
17.
Cancers (Basel) ; 12(6)2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32630460

ABSTRACT

Telomerase reverse transcriptase (TERT) is a conserved self-tumor antigen which is overexpressed in most tumors and plays a critical role in tumor formation and progression. As such, TERT is an antigen of great relevance to develop widely applicable immunotherapies. CD4 T cells play a major role in the anti-cancer response alone or with other effector cells such as CD8 T cells and NK cells. To date, efforts have been made to identify TERT peptides capable of stimulating CD4 T cells that are also able to bind diverse MHC-II alleles to ease immune status monitoring and immunotherapies. Here, we review the current status of TERT biology, TERT/MHC-II immunobiology, and past and current vaccine clinical trials. We propose that monitoring CD4 T cell immunity against TERT is a simple and direct way to assess immune surveillance in cancer patients and a new way to predict the response to immune checkpoint inhibitors (ICPi). Finally, we present the initial results of a systematic discovery of TERT peptides able to bind the most common HLA Class II alleles worldwide and show that the repertoire of MHC-II TERT peptides is wider than currently appreciated.

18.
PLoS Biol ; 18(6): e3000687, 2020 06.
Article in English | MEDLINE | ID: mdl-32520957

ABSTRACT

In the tumor microenvironment, local immune dysregulation is driven in part by macrophages and dendritic cells that are polarized to a mixed proinflammatory/immune-suppressive phenotype. The unfolded protein response (UPR) is emerging as the possible origin of these events. Here we report that the inositol-requiring enzyme 1 (IRE1α) branch of the UPR is directly involved in the polarization of macrophages in vitro and in vivo, including the up-regulation of interleukin 6 (IL-6), IL-23, Arginase1, as well as surface expression of CD86 and programmed death ligand 1 (PD-L1). Macrophages in which the IRE1α/X-box binding protein 1 (Xbp1) axis is blocked pharmacologically or deleted genetically have significantly reduced polarization and CD86 and PD-L1 expression, which was induced independent of IFNγ signaling, suggesting a novel mechanism in PD-L1 regulation in macrophages. Mice with IRE1α- but not Xbp1-deficient macrophages showed greater survival than controls when implanted with B16.F10 melanoma cells. Remarkably, we found a significant association between the IRE1α gene signature and CD274 gene expression in tumor-infiltrating macrophages in humans. RNA sequencing (RNASeq) analysis showed that bone marrow-derived macrophages with IRE1α deletion lose the integrity of the gene connectivity characteristic of regulated IRE1α-dependent decay (RIDD) and the ability to activate CD274 gene expression. Thus, the IRE1α/Xbp1 axis drives the polarization of macrophages in the tumor microenvironment initiating a complex immune dysregulation leading to failure of local immune surveillance.


Subject(s)
B7-H1 Antigen/metabolism , Cell Polarity , Endoribonucleases/metabolism , Macrophages/metabolism , Neoplasms/pathology , Protein Serine-Threonine Kinases/metabolism , Animals , CD11b Antigen/metabolism , Cell Line, Tumor , Cell Proliferation , Cell Survival , Gene Expression Regulation, Neoplastic , Humans , Inflammation/pathology , Linear Models , Mice, Inbred C57BL , Mice, Knockout , Myeloid Cells/metabolism , Neoplasms/metabolism , Phenotype , Unfolded Protein Response , X-Box Binding Protein 1/metabolism
19.
Sci Rep ; 10(1): 8348, 2020 05 20.
Article in English | MEDLINE | ID: mdl-32433555

ABSTRACT

To date current therapies of glioblastoma multiforme (GBM) are largely ineffective. The induction of apoptosis by an unresolvable unfolded protein response (UPR) represents a potential new therapeutic strategy. Here we tested 12ADT, a sarcoendoplasmic reticulum Ca2+ ATPase (SERCA) inhibitor, on a panel of unselected patient-derived neurosphere-forming cells and found that GBM cells can be distinguished into "responder" and "non-responder". By RNASeq analysis we found that the non-responder phenotype is significantly linked with the expression of UPR genes, and in particular ERN1 (IRE1) and ATF4. We also identified two additional genes selectively overexpressed among non-responders, IGFBP3 and IGFBP5. CRISPR-mediated deletion of the ERN1, IGFBP3, IGFBP5 signature genes in the U251 human GBM cell line increased responsiveness to 12ADT. Remarkably, >65% of GBM cases in The Cancer Genome Atlas express the non-responder (ERN1, IGFBP3, IGFBP5) gene signature. Thus, elevated levels of IRE1α and IGFBPs predict a poor response to drugs inducing unresolvable UPR and possibly other forms of chemotherapy helping in a better stratification GBM patients.


Subject(s)
Brain Neoplasms/drug therapy , Endoribonucleases/metabolism , Glioblastoma/drug therapy , Protein Serine-Threonine Kinases/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/antagonists & inhibitors , Thapsigargin/pharmacology , Adult , Apoptosis/drug effects , Brain/pathology , Brain/surgery , Brain Neoplasms/genetics , Brain Neoplasms/mortality , Brain Neoplasms/surgery , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Endoplasmic Reticulum Stress/drug effects , Endoribonucleases/genetics , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/mortality , Glioblastoma/surgery , Humans , Insulin-Like Growth Factor Binding Protein 3/genetics , Insulin-Like Growth Factor Binding Protein 3/metabolism , Insulin-Like Growth Factor Binding Protein 5/genetics , Insulin-Like Growth Factor Binding Protein 5/metabolism , Primary Cell Culture , Progression-Free Survival , Protein Serine-Threonine Kinases/genetics , RNA-Seq , Signal Transduction/genetics , Spheroids, Cellular , Thapsigargin/analogs & derivatives , Thapsigargin/therapeutic use , Tumor Cells, Cultured , Unfolded Protein Response/drug effects
20.
Crit Rev Immunol ; 40(3): 255-262, 2020.
Article in English | MEDLINE | ID: mdl-33389889

ABSTRACT

This article is a tribute to Eli Sercarz and draws on his proposal of a hierarchical order of T-cell determinants in antigen presentation and T-cell activation. Here I revisit the concept of dominance and crypticity in the context of lymphocyte cooperation in the generation of the adaptive immune response, with emphasis on Th-Th cooperation. The remarks made in this article serve as a basis for a reassessment of the unresponsiveness of self-tumor antigens and how to leverage cryptic T-cell determinants operationally to generate antitumor T-cell immunity.


Subject(s)
Autoimmunity , Cell Communication/immunology , Lymphocyte Activation , Neoplasms/immunology , T-Lymphocytes, Helper-Inducer/immunology , Antigens, Neoplasm/immunology , Autoantigens/immunology , B-Lymphocytes/immunology , Humans , Tumor Escape
SELECTION OF CITATIONS
SEARCH DETAIL
...