Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Commun Biol ; 7(1): 394, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561421

ABSTRACT

Brainbow is a genetic cell-labeling technique that allows random colorization of multiple cells and real-time visualization of cell fate within a tissue, providing valuable insights into understanding complex biological processes. However, fluorescent proteins (FPs) in Brainbow have distinct excitation spectra with peak difference greater than 35 nm, which requires sequential imaging under multiple excitations and thus leads to long acquisition times. In addition, they are not easily used together with other fluorophores due to severe spectral bleed-through. Here, we report the development of a single-wavelength excitable Brainbow, UFObow, incorporating three newly developed blue-excitable FPs. We have demonstrated that UFObow enables not only tracking the growth dynamics of tumor cells in vivo but also mapping spatial distribution of immune cells within a sub-cubic centimeter tissue, revealing cell heterogeneity. This provides a powerful means to explore complex biology in a simultaneous imaging manner at a single-cell resolution in organs or in vivo.


Subject(s)
Diagnostic Imaging , Genetic Techniques , Animals , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Coloring Agents , Mammals/genetics
2.
Molecules ; 29(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38611705

ABSTRACT

Extensive industrial activities and anthropogenic agricultural practices have led to substantial ammonia release to the environment. Although croplands can act as ammonia sinks, reduced crop production under high concentrations of ammonium has been documented. Alpha-ketoglutarate (AKG) is a critical carbon source, displaying pleiotropic physiological functions. The objective of the present study is to disclose the potential of AKG to enhance ammonium assimilation in poplars. It showed that AKG application substantially boosted the height, biomass, and photosynthesis activity of poplars exposed to excessive ammonium. AKG also enhanced the activities of key enzymes involved in nitrogen assimilation: glutamine synthetase (GS) and glutamate synthase (GOGAT), elevating the content of amino acids, sucrose, and the tricarboxylic acid cycle (TCA) metabolites. Furthermore, AKG positively modulated key genes tied to glucose metabolism and ATP synthesis, while suppressing ATP-depleting genes. Correspondingly, both H+-ATPase activity and ATP content increased. These findings demonstrate that exogenously applying AKG improves poplar growth under a high level of ammonium treatment. AKG might function through sufficient carbon investment, which enhances the carbon-nitrogen balance and energy stability in poplars, promoting ammonium assimilation at high doses of ammonium. Our study provides novel insight into AKG's role in improving poplar growth in response to excess ammonia exposure.


Subject(s)
Ammonium Compounds , Ammonium Compounds/pharmacology , Ammonia , Ketoglutaric Acids/pharmacology , Carbon , Nitrogen , Adenosine Triphosphate
3.
Neurosci Bull ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38528256

ABSTRACT

Epilepsy is a neural network disorder caused by uncontrolled neuronal hyperexcitability induced by an imbalance between excitatory and inhibitory networks. Abnormal synaptogenesis plays a vital role in the formation of overexcited networks. Recent evidence has confirmed that thrombospondin-1 (TSP-1), mainly secreted by astrocytes, is a critical cytokine that regulates synaptogenesis during epileptogenesis. Furthermore, numerous studies have reported that TSP-1 is also involved in other processes, such as angiogenesis, neuroinflammation, and regulation of Ca2+ homeostasis, which are closely associated with the occurrence and development of epilepsy. In this review, we summarize the potential contributions of TSP-1 to epilepsy development.

4.
Theranostics ; 14(5): 2210-2231, 2024.
Article in English | MEDLINE | ID: mdl-38505603

ABSTRACT

CX3CR1+ cells play a crucial role in liver fibrosis progression. However, changes in the migratory behavior and spatial distribution of spleen-derived and hepatic CX3CR1+ cells in the fibrotic liver as well as their influence on the liver fibrosis remain unclear. METHODS: The CX3CR1GFP/+ transgenic mice and CX3CR1-KikGR transgenic mice were used to establish the CCl4-induced liver fibrosis model. Splenectomy, adoptive transfusion of splenocytes, in vivo photoconversion of splenic CX3CR1+ cells and intravital imaging were performed to study the spatial distribution, migration and movement behavior, and regulatory function of CX3CR1+ cells in liver fibrosis. RESULTS: Intravital imaging revealed that the CX3CR1GFP cells accumulated into the fibrotic liver and tended to accumulate towards the central vein (CV) in the hepatic lobules. Two subtypes of hepatic CX3CR1+ cells existed in the fibrotic liver. The first subtype was the interacting CX3CR1GFP cells, most of which were observed to distribute in the liver parenchyma and had a higher process velocity; the second subtype was mobile CX3CR1GFP cells, most of which were present in the hepatic vessels with a faster moving speed. Splenectomy ameliorated liver fibrosis and decreased the number of CX3CR1+ cells in the fibrotic liver. Moreover, splenectomy rearranged CX3CR1GFP cells to the boundary of the hepatic lobule, reduced the process velocity of interacting CX3CR1GFP cells and decreased the number and mobility of mobile CX3CR1GFP cells in the fibrotic liver. Transfusion of spleen-derived classical monocytes increased the process velocity and mobility of hepatic endogenous CX3CR1GFP cells and facilitated liver fibrosis progression via the production of proinflammatory and profibrotic cytokines. The photoconverted splenic CX3CR1+ KikRed+ cells were observed to leave the spleen, accumulate into the fibrotic liver and contact with hepatic CX3CR1+ KikGreen+ cells during hepatic fibrosis. CONCLUSION: The splenic CX3CR1+ monocytes with classical phenotype migrated from the spleen to the fibrotic liver, modifying the migratory behavior of hepatic endogenous CX3CR1GFP cells and exacerbating liver fibrosis via the secretion of cytokines. This study reveals that splenic CX3CR1+ classical monocytes are a key driver of liver fibrosis via the spleen-liver axis and may be potential candidate targets for the treatment of chronic liver fibrosis.


Subject(s)
Monocytes , Spleen , Mice , Animals , Monocytes/pathology , Spleen/pathology , Liver/pathology , Liver Cirrhosis/pathology , Mice, Transgenic , Cytokines , Intravital Microscopy , Mice, Inbred C57BL
5.
Cell Death Discov ; 10(1): 73, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38346981

ABSTRACT

Childhood febrile seizures (FS) represent one of the most common types of seizures and may lead to severe neurological damage and an increased risk of epilepsy. However, most children with fevers do not show clinical manifestations of convulsions, and the consequences of hyperthermia without seizures remain elusive. This study focused on hyperthermia not reaching the individual's seizure threshold (sub-FS stimulus). Changes in thrombospondin-1 (TSP-1) levels, synapses, seizure susceptibility, and seizure severity in subsequent FS were investigated in rats exposed to sub-FS stimuli. Pharmacological and genetic interventions were used to explore the role of TSP-1 in sub-FS-induced effects. We found that after sub-FS stimuli, the levels of TSP-1 and synapses, especially excitatory synapses, were concomitantly increased, with increased epilepsy and FS susceptibility. Moreover, more severe neuronal damage was found in subsequent FS. These changes were temperature dependent. Reducing TSP-1 levels by genetic intervention or inhibiting the activation of transforming growth factor-ß1 (TGF-ß1) by Leu-Ser-Lys-Leu (LSKL) led to lower synapse/excitatory synapse levels, decreased epileptic susceptibility, and attenuated neuronal injury after FS stimuli. Our study confirmed that even without seizures, hyperthermia may promote synaptogenesis, increase epileptic and FS susceptibility, and lead to more severe neuronal damage by subsequent FS. Inhibition of the TSP-1/TGF-ß1 pathway may be a new therapeutic target to prevent detrimental sub-FS sequelae.

6.
Neurochem Int ; 172: 105644, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38029887

ABSTRACT

PTEN-induced kinase 1 (PINK1) autophosphorylation-triggered mitophagy is the main mitophagic pathway in the nervous system. Moreover, multiple studies have confirmed that mitophagy is closely related to the occurrence and development of epilepsy. Therefore, we speculated that the PINK1 autophosphorylation may be involved in epileptogenesis by mediating mitophagic pathway. This study aimed to explore the contribution of activated PINK1 to epileptogenesis induced by pentylenetetrazol (PTZ) in Sprague‒Dawley rats. During PTZ-induced epileptogenesis, the levels of phosphorylated PINK1 were increased, accompanied by elevated mitophagy, mitochondria oxidative stress and neuronal damage. After microRNA intervention targeting translocase outer mitochondrial membrane 7 (TOM7) or overlapping with the m-AAA protease 1 homolog (OMA1), the levels of PINK1 phosphorylation, mitophagy, mitochondrial oxidative stress, neuronal injury were observed in the rats with induced epileptogenesis. Furthermore, inhibiting of the expression of TOM7, a positive regulator of PINK1 autophosphorylation, reversed the increase in PINK1 phosphorylation and alleviated mitophagy, neuronal injury, thereby preventing epileptogenesis. In contrast, reducing the levels of OMA1, a negative regulator of PINK1 autophosphorylation, led to increased phosphorylation of PINK1, accompanied by aggravated neuronal injury and ultimately, epileptogenesis. This study confirmed the contribution of activated PINK1 to PTZ-induced epileptogenesis and suggested that the inhibition of PINK1 autophosphorylation may assist in preventing epileptogenesis.


Subject(s)
MicroRNAs , Pentylenetetrazole , Rats , Animals , Phosphorylation , Pentylenetetrazole/toxicity , Protein Kinases/metabolism , Rats, Sprague-Dawley , Mitochondria/metabolism , MicroRNAs/metabolism , Ubiquitin-Protein Ligases/metabolism
7.
Article in English | MEDLINE | ID: mdl-38157156

ABSTRACT

Xylooligosaccharides (XOS), as prebiotic oligomers, are increasingly receiving attention as high value-added products produced from lignocellulosic biomass. Although the XOS contains a series of different degrees of polymerization (DP) of xylose units, DP 2 and 3 (xylobiose (X2) and xylotriose (X3)) are regarded as the main active components in food and pharmaceutical fields. Therefore, in the study, in order to achieve the maximum production of XOS with the desired DP, a combination strategy of sequential auto-hydrolysis and xylanase hydrolysis was developed with corncob as raw material. The evidences showed that the hemicellulosic xylan could be effectively decomposed into various higher DP saccharides (> 4), which were dissolved into the auto-hydrolysate; sequentially, the soluble saccharides could be rapidly hydrolyzed into XOS with desired DP by xylanase hydrolysis. Finally, a maximum XOS yield of 56.3% was achieved and the ratio of (X2 + X3)/XOS was over 80%; meanwhile, the by-products could be controlled at lower levels. Overall, this study provides solid data that support the selective and precise preparation of XOS from corncob, vigorously promoting the application of XOS as functional sugar products.

8.
Front Cell Neurosci ; 17: 1155303, 2023.
Article in English | MEDLINE | ID: mdl-37645594

ABSTRACT

Background: Febrile seizures (FS) usually occur in childhood and may cause irreversible neuronal damage, cognitive functional defects, and an increase in the risk of epilepsy later in life. Anti-epileptic drugs (AEDs), currently used to treat FS in children, can relieve seizures. However, their effects in preventing the risk of developing epilepsy in later life are unsatisfactory. Moreover, AEDs may damage child brain development. Here, we evaluated the efficiency of xenon in treating prolonged FS (PFS) and preventing epilepsy in Sprague-Dawley pups. Methods: Prolonged FS was induced by hyperthermic treatment. After 90 min of PFS, the pups in the xenon treatment group were immediately treated with 70% xenon/21% oxygen/9% nitrogen for 60 min. The levels of glutamate, mitochondrial oxidative stress, mitophagy, and neuronal injury, seizures, learning, and memory functions were measured at specific time points. Results: Neonatal period PFS led to spontaneous seizure, learning and memory dysfunction, accompanied by increased levels of glutamate, mitochondrial oxidative stress, mitophagy, and neuronal injury. Xenon treatment alleviated the changes caused by PFS and reduced the risk of PFS developing into epilepsy later. Conclusion: Our results suggest that xenon inhalation could be a potential therapeutic strategy to attenuate neuronal injury and prevent epilepsy in patients with FS.

9.
Front Cell Neurosci ; 16: 1007458, 2022.
Article in English | MEDLINE | ID: mdl-36467611

ABSTRACT

The previous studies have demonstrated the excellent neuroprotective effects of xenon. In this study, we verified the anti-seizure and neuroprotective roles of xenon in epileptogenesis and evaluated the involvement of oxidative stress and iron accumulation in the protective roles of xenon. Epileptogenesis was induced by pentylenetetrazole (PTZ) treatment in Sprague-Dawley rats. During epileptogenesis, we found increased levels of iron and oxidative stress accompanied by elevated levels of divalent metal transporter protein 1 and iron regulatory protein 1, which are closely associated with iron accumulation. Meanwhile, the levels of autophagy and mitophagy increased, alongside significant neuronal damage and cognitive deficits. Xenon treatment reversed these effects: oxidative stress and iron stress were reduced, neuronal injury and seizure severity were attenuated, and learning and memory deficits were improved. Thus, our results confirmed the neuroprotective and anti-seizure effects of xenon treatment in PTZ-induced epileptogenesis. The reduction in oxidative and iron stress may be the main mechanisms underlying xenon treatment. Thus, this study provides a potential intervention strategy for epileptogenesis.

10.
Neurosci Bull ; 38(11): 1347-1364, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35821335

ABSTRACT

An increased level of reactive oxygen species is a key factor in neuronal apoptosis and epileptic seizures. Irisin reportedly attenuates the apoptosis and injury induced by oxidative stress. Therefore, we evaluated the effects of exogenous irisin in a kainic acid (KA)-induced chronic spontaneous epilepsy rat model. The results indicated that exogenous irisin significantly attenuated the KA-induced neuronal injury, learning and memory defects, and seizures. Irisin treatment also increased the levels of brain-derived neurotrophic factor (BDNF) and uncoupling protein 2 (UCP2), which were initially reduced following KA administration. Furthermore, the specific inhibitor of UCP2 (genipin) was administered to evaluate the possible protective mechanism of irisin. The reduced apoptosis, neurodegeneration, and spontaneous seizures in rats treated with irisin were significantly reversed by genipin administration. Our findings indicated that neuronal injury in KA-induced chronic epilepsy might be related to reduced levels of BDNF and UCP2. Moreover, our results confirmed the inhibition of neuronal injury and epileptic seizures by exogenous irisin. The protective effects of irisin may be mediated through the BDNF-mediated UCP2 level. Our results thus highlight irisin as a valuable therapeutic strategy against neuronal injury and epileptic seizures.


Subject(s)
Epilepsy , Kainic Acid , Rats , Animals , Kainic Acid/toxicity , Brain-Derived Neurotrophic Factor/metabolism , Fibronectins/metabolism , Hippocampus/metabolism , Rats, Sprague-Dawley , Epilepsy/chemically induced , Epilepsy/metabolism , Seizures/chemically induced , Seizures/drug therapy , Seizures/prevention & control
11.
Cell Death Discov ; 8(1): 138, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35351859

ABSTRACT

Hypoxia causes neonatal neuronal damage. However, the underlying mechanism remains unclear. This study aimed to explore the changes in succinate levels and identify the mechanisms underlying their contribution to hypoxia-induced damage in newborn mice. The neonatal C57BL/6J mouse hypoxia model was used in our study. We evaluated the levels of succinate, iron, reactive oxygen species (ROS), and mitochondrial ROS, and assessed mitophagy, neuronal damage, and learning and memory function, after hypoxia treatment. The neonatal mice showed increased succinate levels in the early hypoxia stage, followed by increased levels of oxidative stress, iron stress, neuronal damage, and cognitive deficits. Succinate levels were significantly reduced following treatment with inhibitors of succinate dehydrogenase (SDH), purine nucleotide cycle (PNC), and malate/aspartate shuttle (MAS), with the corresponding attenuation of oxidative stress, iron stress, neuronal damage, and cognitive impairment. Reversal catalysis of SDH through fumarate from the PNC and MAS pathways might be involved in hypoxia-induced succinate accumulation. Succinate accumulation in the early period after hypoxia may crucially contribute to oxidative and iron stress. Relieving succinate accumulation at the early hypoxia stage could prevent neuronal damage and cognitive impairment in neonatal hypoxia.

12.
Front Cell Neurosci ; 15: 738533, 2021.
Article in English | MEDLINE | ID: mdl-34658794

ABSTRACT

Elevated reactive oxygen species (ROS) level is considered a crucial causative factor for neuronal damage in epilepsy. Irisin has been reported to ameliorate mitochondrial dysfunction and to reduce ROS levels; therefore, in this study, the effect of exogenous irisin on neuronal injury was evaluated in rats with kainic acid (KA)-induced status epilepticus (SE). Our results showed that exogenous irisin treatment significantly increased the expression of brain-derived neurotrophic factor (BDNF) and uncoupling protein 2 (UCP2), and reduced the levels of neuronal injury and mitochondrial oxidative stress. Additionally, an inhibitor of UCP2 (genipin) was administered to investigate the underlying mechanism of irisin-induced neuroprotection; in rats treated with genipin, the neuroprotective effects of irisin on KA-induced SE were found to be partially reversed. Our findings confirmed the neuroprotective effects of exogenous irisin and provide evidence that these effects may be mediated via the BDNF/UCP2 pathway, thus providing valuable insights that may aid the development of exogenous irisin treatment as a potential therapeutic strategy against neuronal injury in epilepsy.

13.
Ann Palliat Med ; 10(1): 312-322, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33545766

ABSTRACT

BACKGROUND: With the development of radiological technologies, radiotherapy has been gradually widely used in the clinic to intracranial tumours and become standardised. However, the related central nervous system disorders are still the most obvious complications after radiotherapy. This study aims to quantify the effectiveness of anlotinib, a small molecule inhibitor of multiple receptor tyrosine kinases, in mitigating acute phase of radiation-induced brain injury (RBI) in a mouse model. METHODS: The onset and progression of RBI were investigated in vivo. All mice, (except for the sham group) were irradiated at a single-fraction of 20 Gy and treated with different doses of anlotinib (0, 0.2 and 0.8 mg/kg, respectively). The expression levels of glial fibrillary acidic protein (GFAP), hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), and phosphorylated vascular endothelial growth factor receptor-2 (p-VEGFR2) were assessed by western blot. Histological changes were identified by luxol fast blue (LFB) staining. RESULTS: The expression levels of GFAP, HIF-1α, and VEGF were downregulated following treatment with anlotinib. However, anlotinib failed to inhibit the development of demyelination. Cerebral edema [as measured by brain water content (BWC)] was also mitigated following treatment with anlotinib. CONCLUSIONS: In summary, treatment with anlotinib significantly mitigated the adverse effects of acute RBI in a dose-dependent manner by downregulating the activation of astrocytes, improving brain hypoxia, and alleviating cerebral edema.


Subject(s)
Brain Injuries , Quinolines , Animals , Brain/metabolism , Indoles , Mice , Vascular Endothelial Growth Factor A/metabolism
14.
Org Lett ; 21(2): 393-396, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30592427

ABSTRACT

The compounds with a quaternary α-aryl aldehyde skeleton are important units in organic chemistry. Previously, the aryl group and carbonyl group are introduced in a stepwise manner. Herein, a novel route is developed to construct the quaternary α-aryl aldehydes with gem-bis(boronates) as precursors, in which the two groups are installed simultaneously. The gem-bis(boronates) are readily available from ketones; as a result, this methodology provides a more general strategy to produce the quaternary α-aryl aldehydes with broad scopes and synthetic convenience.

15.
Chem Commun (Camb) ; 54(95): 13375-13378, 2018 Nov 27.
Article in English | MEDLINE | ID: mdl-30421750

ABSTRACT

All-carbon quaternary centres are significant and prevalent structural frameworks but their preparation routes are rare and challenging, especially methods with common substrates. Herein, we report a convenient process to construct all-carbon quaternary centres from ketones via the diborylation process and Suzuki-Miyaura cross-coupling reaction. This methodology, which simultaneously introduces two different kinds of electrophilic structures, exhibits a large substrate scope and high functional group tolerance. The reaction products with aldehyde and allylic groups have proved to be versatile synthons to prepare complex molecules crucial for natural product synthesis.

16.
Oncol Lett ; 8(4): 1844-1848, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25202423

ABSTRACT

The optimal post-operative adjuvant treatment for completely resected gastric cancer with D2 lymphadenectomy remains controversial. The present study was a phase II trial on post-operative chemoradiotherapy in 30 patients with gastric cancer. Patients with stage II to IV (M0) gastric cancer received two cycles of chemotherapy prior to and following chemoradiotherapy. The chemotherapy consisted of a 2-h infusion of oxaliplatin (100 mg/m2) and folinic acid (100 mg/m2), which was followed by a 46-h continuous infusion of 5-fluorouracil (5-FU; 2,400 mg/m2) through a portable pump, repeated every 3 weeks. The chemoradiotherapy consisted of 45 Gy of radiotherapy for 5 weeks and 5-FU continuous infusion (350 mg/m2/day). In total, 30 patients were enrolled in this study. All patients underwent the chemoradiotherapy treatment as planned. A total of 10 (33.3%) patients relapsed; two (6.7%) locoregional relapses and mediastinum metastases, four (13.3%) peritoneal relapses, and four (13.3%) distant metastases. The three-year overall survival and disease-free survival rates were 72.7 and 65%, respectively. The toxicities of chemotherapy and radiotherapy, consisting of neutropenia, nausea and hand-foot syndrome, were observed. In conclusion, post-operative chemoradiotherapy following complete resection of gastric cancer with D2 lymphadenectomy is feasible in a significant subset of patients.

17.
Biomed Mater Eng ; 24(6): 2715-24, 2014.
Article in English | MEDLINE | ID: mdl-25226976

ABSTRACT

To realize effective and rapid dynamic biometric identification with low computational complexity, a video-based facial texture program that extracts local binary patterns from three orthogonal planes in the frequency domain of the Gabor transform (GLBP-TOP) was proposed. Firstly, each normalized face was transformed by Gabor wavelet to get the enhanced Gabor magnitude map, and then the LBP-TOP operator was applied to the maps to extract video texture. Finally, weighted Chi square statistics based on the Fisher Criterion were used to realize the identification. The proposed algorithm was proved effective through the biometric experiments using the Honda/UCSD database, and was robust against changes of illumination and expressions.


Subject(s)
Algorithms , Biometry/methods , Face/anatomy & histology , Imaging, Three-Dimensional/methods , Pattern Recognition, Automated/methods , Photography/methods , Video Recording/methods , Artificial Intelligence , Humans , Image Interpretation, Computer-Assisted/methods , Reproducibility of Results , Sensitivity and Specificity , Signal Processing, Computer-Assisted , Subtraction Technique
SELECTION OF CITATIONS
SEARCH DETAIL
...