Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
2.
Skin Res Technol ; 30(5): e13702, 2024 May.
Article in English | MEDLINE | ID: mdl-38743386

ABSTRACT

BACKGROUND: Many studies have indicated that negative emotions and personality traits are related to psoriasis, though few have provided causal evidence. METHODS: Our analysis utilized 15 genome-wide association study datasets to identify instrumental variables associated with negative emotions, personality traits and psoriasis vulgaris. Two-sample Mendelian randomization was conducted to identify the causal associations of negative emotions and personality traits with psoriasis vulgaris. To mitigate bias from multiple tests, we adjusted p-values using the Benjamini-Hochberg method. RESULTS: Our study revealed causal links between negative emotions and psoriasis vulgaris, including depressed affect, worry too long, feeling hurt, guilty feelings, mood swings, unenthusiasm, miserableness, fed-up feelings. However, there was no significant evidence of a causal relationship between feeling lonely and psoriasis vulgaris. Additionally, personality traits including neuroticism and openness to experience were found to have causal effects on psoriasis vulgaris. However, no significant evidence supported a causal relationship between agreeableness, conscientiousness, and extraversion with psoriasis vulgaris. CONCLUSION: Our findings suggest that experiencing negative emotions including depressed affect, worrying excessively, feeling hurt, guilty feelings, mood swings, lack of enthusiasm, miserableness and fed-up feelings may pose risks for psoriasis vulgaris. Additionally, neuroticism is associated with a risk of psoriasis vulgaris. Conversely, the openness trait may serve a protective role against psoriasis vulgaris.


Subject(s)
Emotions , Genome-Wide Association Study , Mendelian Randomization Analysis , Personality , Psoriasis , Humans , Psoriasis/psychology , Psoriasis/genetics , Polymorphism, Single Nucleotide
3.
Photodermatol Photoimmunol Photomed ; 40(3): e12972, 2024 May.
Article in English | MEDLINE | ID: mdl-38752300

ABSTRACT

BACKGROUND: In previous studies, the 308-nm light-emitting diode (LED) has been proven safe and effective for treating vitiligo. However, direct comparisons between the 308-nm LED and 308-nm excimer lamp (308-nm MEL) for the treatment of vitiligo are lacking. OBJECTIVE: To compare the efficacy of the 308-nm LED and 308-nm MEL for treating nonsegmental stable vitiligo. PATIENTS AND METHODS: This randomized controlled trial was conducted between January 2018 and August 2023. Enrolled patients were randomly assigned to either the 308-nm LED or the 308-nm MEL groups, both receiving 16 treatment sessions. Adverse events that occurred during the treatment were documented. RESULTS: In total, 269 stable vitiligo patches from 174 patients completed the study. A total of 131 lesions were included in the 308-nm LED group, and 138 lesions were included in the 308-nm MEL group. After 16 treatment sessions, 38.17% of the vitiligo patches in the 308-nm LED group achieved repigmentation of at least 50% versus 38.41% in the 308-nm MEL group. The two devices exhibited similar results in terms of efficacy for a repigmentation of at least 50% (p = .968). The incidence of adverse effects with the two phototherapy devices was comparable (p = .522). CONCLUSIONS: Treatment of vitiligo with the 308-nm LED had a similar efficacy rate to the 308-nm MEL, and the incidence of adverse effects was comparable between the two devices.


Subject(s)
Vitiligo , Humans , Vitiligo/radiotherapy , Vitiligo/therapy , Female , Male , Adult , Middle Aged , Adolescent , Lasers, Excimer/therapeutic use , Lasers, Excimer/adverse effects , Young Adult , Child
4.
Cell Signal ; 119: 111171, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38604345

ABSTRACT

BACKGROUND: Psoriasis is a chronic, inflammatory skin disease. MicroRNAs (miRNAs) are an abundant class of non-coding RNA molecules. Recent studies have shown that multiple miRNAs are abnormally expressed in patients with psoriasis. The upregulation of miR-374a-5p has been associated with psoriasis severity. However, the specific role of miR-374a-5p in the pathogenesis of psoriasis remain unclear. METHODS: qRT-PCR was employed to validate the expression of miR-374a-5p in psoriatic lesions and in a psoriasis-like cell model constructed using a mixture of M5 (IL-17A, IL-22, OSM, IL-1α, and TNF-α). HaCaT cells were transfected with miR-374a-5p mimic/inhibitor, and assays including EdU, CCK-8, and flow cytometry were conducted to evaluate the effect of miR-374a-5p on cell proliferation. The expression of inflammatory cytokines IL-1ß, IL-6, IL-8, and TNF-α was verified by qRT-PCR. Bioinformatics analysis and dual-luciferase reporter gene assay were performed to detect the downstream target genes and upstream transcription factors of miR-374a-5p, followed by validation of their expression through qRT-PCR and Western blotting. A psoriasis-like mouse model was established using imiquimod cream topical application. The psoriasis area and severity index scoring, hematoxylin-eosin histology staining, and Ki67 immunohistochemistry were employed to validate the effect of miR-374a-5p on the psoriatic inflammation phenotype after intradermal injection of miR-374a-5p agomir/NC. Additionally, the expression of pathway-related molecules and inflammatory factors such as IL-1ß, IL-17a, and TNF-α was verified by immunohistochemistry. RESULTS: Upregulation of miR-374a-5p was observed in psoriatic lesions and the psoriasis-like cell model. In vitro experiments demonstrated that miR-374a-5p not only promoted the proliferation of HaCaT cells but also upregulated the expression of inflammatory cytokines, including IL-1ß, IL-6, IL-8, and TNF-α. Furthermore, miR-374a-5p promoted skin inflammation and epidermal thickening in the Imiquimod-induced psoriasis-like mouse model. Mechanistic studies revealed that miR-374a-5p led to downregulation of WIF1, thereby activating the Wnt5a/NF-κB signaling pathway. The transcription factor p65 encoded by RELA, as a subunit of NF-κB, further upregulated the expression of miR-374a-5p upon activation. This positive feedback loop promoted keratinocyte proliferation and abnormal inflammation, thereby facilitating the development of psoriasis. CONCLUSION: Our findings elucidate the role of miR-374a-5p upregulation in the pathogenesis of psoriasis through inhibition of WIF1 and activation of the Wnt5a/NF-κB pathway, providing new potential therapeutic targets for psoriasis.


Subject(s)
Adaptor Proteins, Signal Transducing , MicroRNAs , NF-kappa B , Psoriasis , Wnt-5a Protein , Animals , Humans , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cell Proliferation , Down-Regulation , HaCaT Cells , Imiquimod , MicroRNAs/metabolism , MicroRNAs/genetics , NF-kappa B/metabolism , Psoriasis/genetics , Psoriasis/pathology , Psoriasis/metabolism , Repressor Proteins/metabolism , Repressor Proteins/genetics , Up-Regulation , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics
5.
Aging Cell ; 23(5): e14123, 2024 05.
Article in English | MEDLINE | ID: mdl-38380598

ABSTRACT

Exposure to ultraviolet radiation can lead to skin photoaging, which increases the risk of skin tumors. This study aims to investigate how microRNA m6A modification contributes to skin photoaging. This study found that skin fibroblasts exposed to a single UVB dose of 30 mJ/cm2 exhibited characteristics of photoaging. The m6A level of total RNA decreased in photoaged cells with a down-regulated level of METTL14, and overexpression of METTL14 displayed a photoprotective function. Moreover, miR-100-3p was a downstream target of METTL14. And METTL14 could affect pri-miR-100 processing to mature miR-100-3p in an m6A-dependent manner via DGCR8. Furthermore, miR-100-3p targeted at 3' end untranslated region of ERRFI1 mRNA with an inhibitory effect on translation. Additionally, photoprotective effects of overexpression of METTL14 were reversed by miR-100-3p inhibitor or overexpression of ERRFI1. In UVB-induced photoaging of human skin fibroblasts, METTL14-dependent m6A can regulate miR-100-3p maturation via DGCR8 and affect skin fibroblasts photoaging through miR-100-3p/ERRFI1 axis.


Subject(s)
Fibroblasts , Methyltransferases , MicroRNAs , Skin Aging , Ultraviolet Rays , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Fibroblasts/metabolism , Fibroblasts/radiation effects , Methyltransferases/metabolism , Methyltransferases/genetics , Skin Aging/radiation effects , Skin Aging/genetics , Skin/metabolism , Skin/radiation effects , Adenosine/analogs & derivatives , Adenosine/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics
6.
An. bras. dermatol ; 91(5,supl.1): 26-28, Sept.-Oct. 2016. graf
Article in English | LILACS | ID: biblio-837962

ABSTRACT

Abstract Chemical leukoderma occurs due to the toxic effect of a variety of chemical agents. Mechanisms include either destruction or inhibition of melanocytes. We report two male patients (36 and 51 years old) who presented with multiple hypopigmented macules and patches on the neck, wrist, and legs after exposure to dimethyl sulfate in a chemical industry. Physical examination revealed irregular depigmentation macules with sharp edges and clear hyperpigmentation around the lesions. History of repeated exposure to a chemical agent can help the clinical diagnosis of chemical leukoderma. This diagnosis is very important for prognosis and therapeutic management of the disease.


Subject(s)
Humans , Male , Adult , Middle Aged , Sulfuric Acid Esters/toxicity , Hypopigmentation/chemically induced , Hypopigmentation/pathology , Dermatitis, Occupational/etiology , Dermatitis, Occupational/pathology , Skin/drug effects , Skin/pathology , Hyperpigmentation/chemically induced , Hyperpigmentation/pathology , Melanocytes/drug effects , Melanocytes/pathology
SELECTION OF CITATIONS
SEARCH DETAIL