Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 202
Filter
1.
Animal Model Exp Med ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38591343

ABSTRACT

The mouse genome has a high degree of homology with the human genome, and its physiological, biochemical, and developmental regulation mechanisms are similar to those of humans; therefore, mice are widely used as experimental animals. However, it is undeniable that interspecies differences between humans and mice can lead to experimental errors. The differences in the immune system have become an important factor limiting current immunological research. The application of immunodeficient mice provides a possible solution to these problems. By transplanting human immune cells or tissues, such as peripheral blood mononuclear cells or hematopoietic stem cells, into immunodeficient mice, a human immune system can be reconstituted in the mouse body, and the engrafted immune cells can elicit human-specific immune responses. Researchers have been actively exploring the development and differentiation conditions of host recipient animals and grafts in order to achieve better immune reconstitution. Through genetic engineering methods, immunodeficient mice can be further modified to provide a favorable developmental and differentiation microenvironment for the grafts. From initially only being able to reconstruct single T lymphocyte lineages, it is now possible to reconstruct lymphoid and myeloid cells, providing important research tools for immunology-related studies. In this review, we compare the differences in immune systems of humans and mice, describe the development history of human immune reconstitution from the perspectives of immunodeficient mice and grafts, and discuss the latest advances in enhancing the efficiency of human immune cell reconstitution, aiming to provide important references for immunological related researches.

2.
BMC Public Health ; 24(1): 998, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600464

ABSTRACT

BACKGROUND: This study aimed to investigate the utilization rate and equity of health examination service among the middle-aged and elderly population in China from 2011 to 2018. The contribution of various determinants to the inequity in health examination service utilization was also examined. METHODS: Data from the China Health and Retirement Longitudinal Survey (CHARLS) were analyzed to assess the health examination service utilization rate among the middle-aged and elderly population. A concentration curve and concentration index were employed to measure the equity of health examination service utilization and decomposed into its determining factors. Horizontal inequity index was applied to evaluate the trends in equity of health examination service. RESULTS: The health examination service utilization rates among the middle-aged and elderly population were 29.45%, 20.69%, 25.40%, and 32.05% in 2011, 2013, 2015, and 2018, respectively. The concentration indexes for health examination service utilization were 0.0080 (95% CI: - 0.0084, 0.0244), 0.0155 (95% CI: - 0.0054, 0.0363), 0.0095 (95% CI: - 0.0088, 0.0277), and - 0.0100 (95% CI: - 0.0254, 0.0054) from 2011 to 2018, respectively. The horizontal inequity index was positive from 2011 to 2018, evidencing a pro-rich inequity trend. Age, residence, education, region, and economic status were the major identified contributors influencing the equity of health examination service utilization. CONCLUSIONS: A pro-rich inequity existed in health examination service utilization among the middle-aged and elderly population in China. Reducing the wealth and regional gap, providing equal educational opportunities, and strengthening the capacity for chronic disease prevention and control are crucial for reducing the inequity in health examination service utilization.


Subject(s)
Healthcare Disparities , Retirement , Middle Aged , Humans , Aged , Socioeconomic Factors , China , Longitudinal Studies
3.
Biomolecules ; 14(4)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38672453

ABSTRACT

The heterogeneity of tumors poses a challenge for understanding cell interactions and constructing complex ecosystems within cancer tissues. Current research strategies integrate spatial transcriptomics (ST) and single-cell sequencing (scRNA-seq) data to thoroughly analyze this intricate system. However, traditional deep learning methods using scRNA-seq data tend to filter differentially expressed genes through statistical methods. In the context of cancer tissues, where cancer cells exhibit significant differences in gene expression compared to normal cells, this heterogeneity renders traditional analysis methods incapable of accurately capturing differences between cell types. Therefore, we propose a graph-based deep learning method, GTADC, which utilizes Silhouette scores to precisely capture genes with significant expression differences within each cell type, enhancing the accuracy of gene selection. Compared to traditional methods, GTADC not only considers the expression similarity of genes within their respective clusters but also comprehensively leverages information from the overall clustering structure. The introduction of graph structure effectively captures spatial relationships and topological structures between the two types of data, enabling GTADC to more accurately and comprehensively resolve the spatial composition of different cell types within tissues. This refinement allows GTADC to intricately reconstruct the cellular spatial composition, offering a precise solution for inferring cell spatial composition. This method allows for early detection of potential cancer cell regions within tissues, assessing their quantity and spatial information in cell populations. We aim to achieve a preliminary estimation of cancer occurrence and development, contributing to a deeper understanding of early-stage cancer and providing potential support for early cancer diagnosis.


Subject(s)
Neoplasms , Single-Cell Analysis , Humans , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Single-Cell Analysis/methods , Deep Learning , Gene Expression Profiling/methods , Transcriptome/genetics , Gene Expression Regulation, Neoplastic
4.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38678387

ABSTRACT

In the growth and development of multicellular organisms, the immune processes of the immune system and the maintenance of the organism's internal environment, cell communication plays a crucial role. It exerts a significant influence on regulating internal cellular states such as gene expression and cell functionality. Currently, the mainstream methods for studying intercellular communication are focused on exploring the ligand-receptor-transcription factor and ligand-receptor-subunit scales. However, there is relatively limited research on the association between intercellular communication and highly variable genes (HVGs). As some HVGs are closely related to cell communication, accurately identifying these HVGs can enhance the accuracy of constructing cell communication networks. The rapid development of single-cell sequencing (scRNA-seq) and spatial transcriptomics technologies provides a data foundation for exploring the relationship between intercellular communication and HVGs. Therefore, we propose CPPLS-MLP, which can identify HVGs closely related to intercellular communication and further analyze the impact of Multiple Input Multiple Output cellular communication on the differential expression of these HVGs. By comparing with the commonly used method CCPLS for constructing intercellular communication networks, we validated the superior performance of our method in identifying cell-type-specific HVGs and effectively analyzing the influence of neighboring cell types on HVG expression regulation. Source codes for the CPPLS_MLP R, python packages and the related scripts are available at 'CPPLS_MLP Github [https://github.com/wuzhenao/CPPLS-MLP]'.


Subject(s)
Cell Communication , Single-Cell Analysis , Single-Cell Analysis/methods , Transcriptome , Gene Expression Profiling/methods , Humans , Computational Biology/methods , Gene Regulatory Networks , Animals , Software , Algorithms
5.
Comput Struct Biotechnol J ; 23: 1364-1375, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38596312

ABSTRACT

Protein secondary structure prediction (PSSP) is a pivotal research endeavour that plays a crucial role in the comprehensive elucidation of protein functions and properties. Current prediction methodologies are focused on deep-learning techniques, particularly focusing on multi-factor features. Diverging from existing approaches, in this study, we placed special emphasis on the effects of amino acid properties and protein secondary structure propensity scores (SSPs) on secondary structure during the meticulous selection of multi-factor features. This differential feature-selection strategy results in a distinctive and effective amalgamation of the sequence and property features. To harness these multi-factor features optimally, we introduced a hybrid deep feature extraction model. The model initially employs mechanisms such as dilated convolution (D-Conv) and a channel attention network (SENet) for local feature extraction and targeted channel enhancement. Subsequently, a combination of recurrent neural network variants (BiGRU and BiLSTM), along with a transformer module, was employed to achieve global bidirectional information consideration and feature enhancement. This approach to multi-factor feature input and multi-level feature processing enabled a comprehensive exploration of intricate associations among amino acid residues in protein sequences, yielding a Q3 accuracy of 84.9% and an Sov score of 85.1%. The overall performance surpasses that of the comparable methods. This study introduces a novel and efficient method for determining the PSSP domain, which is poised to deepen our understanding of the practical applications of protein molecular structures.

6.
Adv Mater ; : e2400218, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519145

ABSTRACT

Perovskite solar cells (pero-SCs) are highly unstable even under trace water. Although the blanket encapsulation (BE) strategy applied in the industry can effectively block moisture invasion, the commercial UV-curable adhesives (UVCAs) for BE still trigger power conversion efficiency deterioration, and the degradation mechanism remains unknown. For the first time, the functions of commercial UVCAs are revealed in BE-processed pero-SCs, where the small-sized monomer easily permeates to the perovskite surface, forming an insulating barrier to block charge extraction, while the high-polarity moiety can destroy perovskite lattice. To solve these problems, a macromer, named PIBA is carefully designed, by grafting two acrylate terminal groups on the highly gastight polyisobutylene and realizes an increased molecular diameter as well as avoided high-polarity groups. The PIBA macromer can stabilize on pero-SCs and then sufficiently crosslink, forming a compact and stable network under UV light without sacrificing device performance during the BE process. The resultant BE devices show negligible efficiency loss after storage at 85% relative humidity for 2000 h. More importantly, these devices can even reach ISO 20653:2013 Degrees of protection IPX7 standard when immersed in one-meter-deep water. This BE strategy shows good universality in enhancing the moisture stability of pero-SCs, irrespective of the perovskite composition or device structure.

7.
Clin Chim Acta ; 557: 117859, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38518968

ABSTRACT

BACKGROUND: This study assessed the alternations of kynurenine pathway (KP) and neopterin in type 2 diabetes mellitus (T2DM) and explored possible differential metabolites. METHODS: A fresh residual sera panel was collected from 80 healthy control (HC) individuals and 72 T2DM patients. Metabolites/ratios of interest including tryptophan (TRP), kynurenine (KYN), 5-hydroxytryptamine (5HT), kynurenic acid (KA), xanthurenic acid (XA), neopterin (NEO), KA/KYN ratio and KYN/TRP ratio were determined using a targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics approach, and the difference between groups was assessed. Supervised orthogonal partial least squares-discriminant analysis and differential metabolite screening with fold change (FC) were performed to identify distinct biomarkers. The diagnostic performance of KP metabolites in T2DM was evaluated. RESULTS: Significant decreases of TRP, 5HT, KA, XA, and KA/KYN and increases of KYN/TRP and NEO in T2DM compared to HC group were observed (P < 0.05). The KP metabolites panel significantly changed between T2DM and HC groups (Q2: 0.925, P < 0.005). 5HT (FC: 0.63, P < 0.01) and NEO (FC: 3.27, P < 0.01) were proven to be distinct differential metabolites. A combined testing of fasting plasma glucose and KYN/TRP showed good value in the prediction of T2DM (AUC: 0.904, 95% CI 0.843-0.947). CONCLUSIONS: The targeted LC-MS/MS metabolomics study is a powerful tool for evaluating the status of T2DM. This study facilitated the application of KP metabolomics into future clinical practice. 5HT and NEO are promising biomarkers in T2DM. KYN/TRP was highly associated with the development of T2DM and may serve as a potential treatment target.


Subject(s)
Diabetes Mellitus, Type 2 , Kynurenine , Humans , Kynurenine/metabolism , Neopterin , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Liquid Chromatography-Mass Spectrometry , Tryptophan/metabolism , Biomarkers
8.
Anal Chim Acta ; 1300: 342466, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38521573

ABSTRACT

The fluorescent flexible sensor for point-of-care quantification of clinical anticoagulant drug, Heparin (Hep), is still an urgent need of breakthrough. In this research, a hyperbranched poly(amido amine) (HPA) was decorated with tetraphenylethene (TPE) and Rhodamine B (RhB), constructing a ratiometric fluorescent sensor (TR-HPA) for Hep. When the sensor was exposed to Hep, the TPE units within the probe skeleton would aggregate, resulting in an increasing fluorescent emission at 483 nm. The 580 nm of fluorescence came from RhB enhance, simultaneously, due to the fluorescence resonance energy transfer. As a result, there are two good linear correlation between the fluorescence emission ratio (E483/E580) of TR-HPA and the Hep concentration over a range of 0-1.0 µM, with a low limit of detection of 3.0 nM. Furthermore, we incorporate the TR-HPA probe into a polyvinyl alcohol (PVA) hydrogel matrix to create a flexible fluorescent sensing system platform, denoted as TR-HPA/PVA. This approach offers a straightforward visual detection method by causing a fluorescence color change from pink to blue when trace amounts of Hep are present. The hydrogel-based fluorescent sensor streamlines the detection procedures for Hep in biomedical applications. It shows great potential in rapid and point-of-care human blood clotting condition monitoring, making it suitable for next-generation wearable medical devices.


Subject(s)
Fluorescent Dyes , Heparin , Rhodamines , Humans , Amines , Spectrometry, Fluorescence/methods , Hydrogels
9.
Clin Neurophysiol ; 160: 28-37, 2024 04.
Article in English | MEDLINE | ID: mdl-38368702

ABSTRACT

OBJECTIVE: Face memory impairment significantly affects social interactions and daily functioning in individuals with mild cognitive impairment (MCI). While deficits in recognizing familiar faces among individuals with MCI have been reported, their ability to learn and recognize unfamiliar faces remains unclear. This study examined the behavioral performance and event-related potentials (ERPs) of unfamiliar face memorization and recognition in MCI. METHODS: Fifteen individuals with MCI and 15 healthy controls learned and recognized 90 unfamiliar neutral faces. Their performance accuracy and cortical ERPs were compared between the two groups across the learning and recognition phases. RESULTS: Individuals with MCI had lower accuracy in identifying newly learned faces than healthy controls. Moreover, individuals with MCI had reduced occipitotemporal N170 and central vertex positive potential responses during both the learning and recognition phases, suggesting impaired initial face processing and attentional resources allocation. Also, individuals with MCI had reduced central N200 and frontal P300 responses during the recognition phase, suggesting impaired later-stage face recognition and attention engagement. CONCLUSION: These findings provide neurobehavioral evidence for impaired learning and recognition of unfamiliar faces in individuals with MCI. SIGNIFICANCE: Individuals with MCI may have face memory deficits in both early-stage face processing and later-stage recognition .


Subject(s)
Cognitive Dysfunction , Facial Recognition , Humans , Recognition, Psychology/physiology , Evoked Potentials/physiology , Learning , Facial Recognition/physiology , Cognitive Dysfunction/diagnosis , Pattern Recognition, Visual/physiology
10.
Gen Psychiatr ; 37(1): e101181, 2024.
Article in English | MEDLINE | ID: mdl-38390239

ABSTRACT

Background: The neurophysiological differences in cortical plasticity and cholinergic system function due to ageing and their correlation with cognitive function remain poorly understood. Aims: To reveal the differences in long-term potentiation (LTP)-like plasticity and short-latency afferent inhibition (SAI) between older and younger individuals, alongside their correlation with cognitive function using transcranial magnetic stimulation (TMS). Methods: The cross-sectional study involved 31 younger adults aged 18-30 and 46 older adults aged 60-80. All participants underwent comprehensive cognitive assessments and a neurophysiological evaluation based on TMS. Cognitive function assessments included evaluations of global cognitive function, language, memory and executive function. The neurophysiological assessment included LTP-like plasticity and SAI. Results: The findings of this study revealed a decline in LTP among the older adults compared with the younger adults (wald χ2=3.98, p=0.046). Subgroup analysis further demonstrated a significant reduction in SAI level among individuals aged 70-80 years in comparison to both the younger adults (SAI(N20): (t=-3.37, p=0.018); SAI(N20+4): (t=-3.13, p=0.038)) and those aged 60-70 (SAI(N20): (t=-3.26, p=0.025); SAI(N20+4): (t=-3.69, p=0.006)). Conversely, there was no notable difference in SAI level between those aged 60-70 years and the younger group. Furthermore, after employing the Bonferroni correction, the correlation analysis revealed that only the positive correlation between LTP-like plasticity and language function (r=0.61, p<0.001) in the younger group remained statistically significant. Conclusions: During the normal ageing process, a decline in synaptic plasticity may precede cholinergic system dysfunction. In individuals over 60 years of age, there is a reduction in LTP-like plasticity, while a decline in cholinergic system function is observed in those over 70. Thus, the cholinergic system may play a vital role in preventing cognitive decline during normal ageing. In younger individuals, LTP-like plasticity might represent a potential neurophysiological marker for language function.

11.
Nat Commun ; 15(1): 993, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38307904

ABSTRACT

The concept of precision cell therapy targeting tumor-specific mutations is appealing but requires surface-exposed neoepitopes, which is a rarity in cancer. B cell receptors (BCR) of mature lymphoid malignancies are exceptional in that they harbor tumor-specific-stereotyped sequences in the form of point mutations that drive self-engagement of the BCR and autologous signaling. Here, we use a BCR light chain neoepitope defined by a characteristic point mutation (IGLV3-21R110) for selective targeting of a poor-risk subset of chronic lymphocytic leukemia (CLL) with chimeric antigen receptor (CAR) T cells. We develop murine and humanized CAR constructs expressed in T cells from healthy donors and CLL patients that eradicate IGLV3-21R110 expressing cell lines and primary CLL cells, but neither cells expressing the non-pathogenic IGLV3-21G110 light chain nor polyclonal healthy B cells. In vivo experiments confirm epitope-selective cytolysis in xenograft models in female mice using engrafted IGLV3-21R110 expressing cell lines or primary CLL cells. We further demonstrate in two humanized mouse models lack of cytotoxicity towards human B cells. These data provide the basis for advanced approaches of resistance-preventive and biomarker-guided cellular targeting of functionally relevant lymphoma driver mutations sparing normal B cells.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Female , Mice , Animals , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , B-Lymphocytes , Mutation , Receptors, Antigen, B-Cell/genetics , T-Lymphocytes
12.
Biomolecules ; 14(2)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38397417

ABSTRACT

Severe combined immunodeficient (SCID) mice serve as a critical model for human xenotransplantation studies, yet they often suffer from low engraftment rates and susceptibility to graft-versus-host disease (GVHD). Moreover, certain SCID strains demonstrate 'immune leakage', underscoring the need for novel model development. Here, we introduce an SCID mouse model with a targeted disruption of the dclre1c gene, encoding Artemis, which is essential for V(D)J recombination and DNA repair during T cell receptor (TCR) and B cell receptor (BCR) assembly. Artemis deficiency precipitates a profound immunodeficiency syndrome, marked by radiosensitivity and compromised T and B lymphocyte functionality. Utilizing CRISPR/Cas9-mediated gene editing, we generated dclre1c-deficient mice with an NOD genetic background. These mice exhibited a radiosensitive SCID phenotype, with pronounced DNA damage and defective thymic, splenic and lymph node development, culminating in reduced T and B lymphocyte populations. Notably, both cell lines and patient-derived tumor xenografts were successfully engrafted into these mice. Furthermore, the human immune system was effectively rebuilt following peripheral blood mononuclear cells (PBMCs) transplantation. The dclre1c-knockout NOD mice described herein represent a promising addition to the armamentarium of models for xenotransplantation, offering a valuable platform for advancing human immunobiological research.


Subject(s)
Endonucleases , Immunocompromised Host , Leukocytes, Mononuclear , Nuclear Proteins , Transplantation, Heterologous , Animals , Humans , Mice , Endonucleases/genetics , Heterografts , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Mutation , Nuclear Proteins/genetics , Immunocompromised Host/genetics , Models, Animal
13.
Oncogene ; 43(10): 714-728, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38225339

ABSTRACT

Cisplatin resistance is a major cause of therapeutic failure in patients with high-grade serous ovarian cancer (HGSOC). Long noncoding RNAs (lncRNAs) have emerged as key regulators of human cancers; however, their modes of action in HGSOC remain largely unknown. Here, we provide evidence to demonstrate that lncRNA Platinum sensitivity-related LncRNA from Ascites-Derived Exosomes (PLADE) transmitted by ascites exosomes enhance platinum sensitivity in HGSOC. PLADE exhibited significantly decreased expression in ascites exosomes and tumor tissues, as well as in the corresponding metastatic tumors from patients with HGSOC cisplatin-resistance. Moreover, HGSOC patients with higher PLADE expression levels exhibited longer progression-free survival. Gain- and loss-of-function studies have revealed that PLADE promotes cisplatin sensitivity by suppressing cell proliferation, migration and invasion, and enhancing apoptosis in vitro and in vivo. Furthermore, the functions of PLADE in increasing cisplatin sensitivity were proven to be transferred by exosomes to the cultured recipient cells and to the adjacent tumor tissues in mouse models. Mechanistically, PLADE binds to and downregulates heterogeneous nuclear ribonucleoprotein D (HNRNPD) by VHL-mediated ubiquitination, thus inducing an increased amount of RNA: DNA hybrids (R-loop) and DNA damage, consequently promoting cisplatin sensitivity in HGSOC. Collectively, these results shed light on the understanding of the vital roles of long noncoding RNAs in cancers.


Subject(s)
Ovarian Neoplasms , RNA, Long Noncoding , Animals , Mice , Female , Humans , RNA, Long Noncoding/genetics , Cisplatin/pharmacology , Cisplatin/therapeutic use , Ascites/genetics , R-Loop Structures , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics
14.
Hepatology ; 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38231043

ABSTRACT

BACKGROUND AND AIMS: Acute liver failure (ALF) is a rare but life-threatening condition, and DILI, particularly acetaminophen toxicity, is the leading cause of ALF. Innate immune mechanisms further perpetuate liver injury, while the role of the adaptive immune system in DILI-related ALF is unclear. APPROACH AND RESULTS: We analyzed liver tissue from 2 independent patient cohorts with ALF and identified hepatic T cell infiltration as a prominent feature in human ALF. CD8 + T cells were characterized by zonation toward necrotic regions and an activated gene expression signature. In murine acetaminophen-induced liver injury, intravital microscopy revealed zonation of CD8 + but not CD4 + T cells at necrotic areas. Gene expression analysis exposed upregulated C-C chemokine receptor 7 (CCR7) and its ligand CCL21 in the liver as well as a broadly activated phenotype of hepatic CD8 + T cells. In 2 mouse models of ALF, Ccr7-/- mice had significantly aggravated early-phase liver damage. Functionally, CCR7 was not involved in the recruitment of CD8 + T cells, but regulated their activation profile potentially through egress to lymphatics. Ccr7-/- CD8 + T cells were characterized by elevated expression of activation, effector, and exhaustion profiles. Adoptive transfer revealed preferential homing of CCR7-deficient CD8 + T cells to the liver, and depletion of CD8 + T cells attenuated liver damage in mice. CONCLUSIONS: Our study demonstrates the involvement of the adaptive immune system in ALF in humans and mice. We identify the CCR7-CCL21 axis as an important regulatory pathway, providing downstream protection against T cell-mediated liver injury.

15.
Clin Chem Lab Med ; 62(6): 1092-1100, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38253403

ABSTRACT

OBJECTIVES: The standardization of cystatin C (CysC) measurement has received increasing attention in recent years due to its importance in estimating glomerular filtration rate (GFR). Mass spectrometry-based assays have the potential to provide an accuracy base for CysC measurement. However, a precise, accurate and sustainable LC-MS/MS method for CysC is still lacking. METHODS: The developed LC-MS/MS method quantified CysC by detecting signature peptide (T3) obtained from tryptic digestion. Stable isotope labeled T3 peptide (SIL-T3) was spiked to control matrix effects and errors caused by liquid handling. The protein denaturation, reduction and alkylation procedures were combined into a single step with incubation time of 1 h, and the digestion lasted for 3.5 h. In the method validation, digestion time-course, imprecision, accuracy, matrix effect, interference, limit of quantification (LOQ), carryover, linearity, and the comparability to two routine immunoassays were evaluated. RESULTS: No significant matrix effect or interference was observed with the CysC measurement. The LOQ was 0.21 mg/L; the within-run and total imprecision were 1.33-2.05 % and 2.18-3.90 % for three serum pools (1.18-5.34 mg/L). The LC-MS/MS method was calibrated by ERM-DA471/IFCC and showed good correlation with two immunoassays traceable to ERM-DA471/IFCC. However, significant bias was observed for immunoassays against the LC-MS/MS method. CONCLUSIONS: The developed LC-MS/MS method is robust and simpler and holds the promise to provide an accuracy base for routine immunoassays, which will promote the standardization of CysC measurement.


Subject(s)
Cystatin C , Tandem Mass Spectrometry , Cystatin C/blood , Humans , Tandem Mass Spectrometry/methods , Tandem Mass Spectrometry/standards , Immunoassay/methods , Immunoassay/standards , Chromatography, Liquid/methods , Limit of Detection , Liquid Chromatography-Mass Spectrometry
16.
Cell Mol Immunol ; 21(3): 292-308, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38287103

ABSTRACT

CD8+ T-cell exhaustion is a state of dysfunction that promotes tumor progression and is marked by the generation of Slamf6+ progenitor exhausted (Texprog) and Tim-3+ terminally exhausted (Texterm) subpopulations. Inhibitor of DNA binding protein 2 (Id2) has been shown to play important roles in T-cell development and CD8+ T-cell immunity. However, the role of Id2 in CD8+ T-cell exhaustion is unclear. Here, we found that Id2 transcriptionally and epigenetically regulates the generation of Texprog cells and their conversion to Texterm cells. Genetic deletion of Id2 dampens CD8+ T-cell-mediated immune responses and the maintenance of stem-like CD8+ T-cell subpopulations, suppresses PD-1 blockade and increases tumor susceptibility. Mechanistically, through its HLH domain, Id2 binds and disrupts the assembly of the Tcf3-Tal1 transcriptional regulatory complex, and thus modulates chromatin accessibility at the Slamf6 promoter by preventing the interaction of Tcf3 with the histone lysine demethylase LSD1. Therefore, Id2 increases the abundance of the permissive H3K4me2 mark on the Tcf3-occupied E-boxes in the Slamf6 promoter, modulates chromatin accessibility at the Slamf6 promoter and epigenetically regulates the generation of Slamf6+ Texprog cells. An LSD1 inhibitor GSK2879552 can rescue the Id2 knockout phenotype in tumor-bearing mice. Inhibition of LSD1 increases the abundance of Slamf6+Tim-3- Texprog cells in tumors and the expression level of Tcf1 in Id2-deleted CD8+ T cells. This study demonstrates that Id2-mediated transcriptional and epigenetic modification drives hierarchical CD8+ T-cell exhaustion, and the mechanistic insights gained may have implications for therapeutic intervention with tumor immune evasion.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Mice , Animals , Hepatitis A Virus Cellular Receptor 2/metabolism , T-Cell Exhaustion , Neoplasms/pathology , Histone Demethylases/metabolism , Chromatin/metabolism
17.
Circ Res ; 134(2): 165-185, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38166463

ABSTRACT

BACKGROUND: Atherosclerosis is a globally prevalent chronic inflammatory disease with high morbidity and mortality. The development of atherosclerotic lesions is determined by macrophages. This study aimed to investigate the specific role of myeloid-derived CD147 (cluster of differentiation 147) in atherosclerosis and its translational significance. METHODS AND RESULTS: We generated mice with a myeloid-specific knockout of CD147 and mice with restricted CD147 overexpression, both in an apoE-deficient (ApoE-/-) background. Here, the myeloid-specific deletion of CD147 ameliorated atherosclerosis and inflammation. Consistent with our in vivo data, macrophages isolated from myeloid-specific CD147 knockout mice exhibited a phenotype shift from proinflammatory to anti-inflammatory macrophage polarization in response to lipopolysaccharide/IFN (interferon)-γ. These macrophages demonstrated a weakened proinflammatory macrophage phenotype, characterized by reduced production of NO and reactive nitrogen species derived from iNOS (inducible NO synthase). Mechanistically, the TRAF6 (tumor necrosis factor receptor-associated factor 6)-IKK (inhibitor of κB kinase)-IRF5 (IFN regulatory factor 5) signaling pathway was essential for the effect of CD147 on proinflammatory responses. Consistent with the reduced size of the necrotic core, myeloid-specific CD147 deficiency diminished the susceptibility of iNOS-mediated late apoptosis, accompanied by enhanced efferocytotic capacity mediated by increased secretion of GAS6 (growth arrest-specific 6) in proinflammatory macrophages. These findings were consistent in a mouse model with myeloid-restricted overexpression of CD147. Furthermore, we developed a new atherosclerosis model in ApoE-/- mice with humanized CD147 transgenic expression and demonstrated that the administration of an anti-human CD147 antibody effectively suppressed atherosclerosis by targeting inflammation and efferocytosis. CONCLUSIONS: Myeloid CD147 plays a crucial role in the growth of plaques by promoting inflammation in a TRAF6-IKK-IRF5-dependent manner and inhibiting efferocytosis by suppressing GAS6 during proinflammatory conditions. Consequently, the use of anti-human CD147 antibodies presents a complementary therapeutic approach to the existing lipid-lowering strategies for treating atherosclerotic diseases.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Mice , Animals , Efferocytosis , TNF Receptor-Associated Factor 6/metabolism , Atherosclerosis/metabolism , Inflammation/genetics , Mice, Knockout , Phenotype , Apolipoproteins E , Interferon Regulatory Factors/genetics , Mice, Inbred C57BL
18.
Nat Nanotechnol ; 19(3): 387-398, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38052943

ABSTRACT

Trained immunity enhances the responsiveness of immune cells to subsequent infections or vaccinations. Here we demonstrate that pre-vaccination with bacteria-derived outer-membrane vesicles, which contain large amounts of pathogen-associated molecular patterns, can be used to potentiate, and enhance, tumour vaccination by trained immunity. Intraperitoneal administration of these outer-membrane vesicles to mice activates inflammasome signalling pathways and induces interleukin-1ß secretion. The elevated interleukin-1ß increases the generation of antigen-presenting cell progenitors. This results in increased immune response when tumour antigens are delivered, and increases tumour-antigen-specific T-cell activation. This trained immunity increased protection from tumour challenge in two distinct cancer models.


Subject(s)
Neoplasms , Trained Immunity , Animals , Mice , Interleukin-1beta , Vaccination , Neoplasms/prevention & control , Lymphocyte Activation , Antigens, Neoplasm , Bacteria
19.
Brief Bioinform ; 25(1)2023 11 22.
Article in English | MEDLINE | ID: mdl-38127088

ABSTRACT

With the emergence of spatial transcriptome sequencing (ST-seq), research now heavily relies on the joint analysis of ST-seq and single-cell RNA sequencing (scRNA-seq) data to precisely identify cell spatial composition in tissues. However, common methods for combining these datasets often merge data from multiple cells to generate pseudo-ST data, overlooking topological relationships and failing to represent spatial arrangements accurately. We introduce GTAD, a method utilizing the Graph Attention Network for deconvolution of integrated scRNA-seq and ST-seq data. GTAD effectively captures cell spatial relationships and topological structures within tissues using a graph-based approach, enhancing cell-type identification and our understanding of complex tissue cellular landscapes. By integrating scRNA-seq and ST data into a unified graph structure, GTAD outperforms traditional 'pseudo-ST' methods, providing robust and information-rich results. GTAD performs exceptionally well with synthesized spatial data and accurately identifies cell spatial composition in tissues like the mouse cerebral cortex, cerebellum, developing human heart and pancreatic ductal carcinoma. GTAD holds the potential to enhance our understanding of tissue microenvironments and cellular diversity in complex bio-logical systems. The source code is available at https://github.com/zzhjs/GTAD.


Subject(s)
Single-Cell Gene Expression Analysis , Software , Humans , Animals , Mice
20.
Front Psychol ; 14: 1298065, 2023.
Article in English | MEDLINE | ID: mdl-38022972

ABSTRACT

Introduction: Early decline of episodic memory is detectable in subjective cognitive decline (SCD). The left dorsolateral prefrontal cortex (DLPFC) is associated with encoding episodic memories. Repetitive transcranial magnetic stimulation (rTMS) is a novel and viable tool to improve cognitive function in Alzheimer's disease (AD) and mild cognitive impairment, but the treatment effect in SCD has not been studied. We aim to investigate the efficacy of rTMS on episodic memory in individuals with SCD, and to explore the potential mechanisms of neural plasticity. Methods: In our randomized, sham-controlled trial, patients (n = 60) with SCD will receive 20 sessions (5 consecutive days per week for 4 weeks) of real rTMS (n = 30) or sham rTMS (n = 30) over the left DLPFC. The primary outcome is the Auditory Verbal Learning Test-Huashan version (AVLT-H). Other neuropsychological examinations and the long-term potentiation (LTP)-like cortical plasticity evaluation serve as the secondary outcomes. These outcomes will be assessed before and at the end of the intervention. Discussion: If the episodic memory of SCD improve after the intervention, the study will confirm that rTMS is a promising intervention for cognitive function improvement on the early stage of dementia. This study will also provide important clinical evidence for early intervention in AD and emphasizes the significance that impaired LTP-like cortical plasticity may be a potential biomarker of AD prognosis by demonstrating the predictive role of LTP on cognitive improvement in SCD. Ethics and dissemination: The study was approved by the Human Research Ethics Committee of the hospital (No. 2023-002-01). The results will be published in peer-review publications. Clinical trial registration: https://www.chictr.org.cn/, identifier ChiCTR2300075517.

SELECTION OF CITATIONS
SEARCH DETAIL
...