Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
Cancer Lett ; 596: 217009, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38849015

ABSTRACT

Renal cell carcinoma (RCC) bone metastatis progression is driven by crosstalk between tumor cells and the bone microenvironment, which includes osteoblasts, osteoclasts, and osteocytes. RCC bone metastases (RCCBM) are predominantly osteolytic and resistant to antiresorptive therapy. The molecular mechanisms underlying pathologic osteolysis and disruption of bone homeostasis remain incompletely understood. We previously reported that BIGH3/TGFBI (transforming growth factor-beta-induced protein ig-h3, shortened to BIGH3 henceforth) secreted by colonizing RCC cells drives osteolysis by inhibiting osteoblast differentiation, impairing healing of osteolytic lesions, which is reversible with osteoanabolic agents. Here, we report that BIGH3 induces osteocyte apoptosis in both human RCCBM tissue specimens and in a preclinical mouse model. We also demonstrate that BIGH3 reduces Cx43 expression, blocking gap junction (GJ) function and osteocyte network communication. BIGH3-mediated GJ inhibition is blocked by the lysosomal inhibitor hydroxychloroquine (HCQ), but not osteoanabolic agents. Our results broaden the understanding of pathologic osteolysis in RCCBM and indicate that targeting the BIGH3 mechanism could be a combinational strategy for the treatment of RCCBM-induced bone disease that overcomes the limited efficacy of antiresorptives that target osteoclasts.


Subject(s)
Apoptosis , Bone Neoplasms , Carcinoma, Renal Cell , Extracellular Matrix Proteins , Gap Junctions , Kidney Neoplasms , Osteocytes , Osteocytes/metabolism , Osteocytes/pathology , Humans , Animals , Bone Neoplasms/secondary , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Bone Neoplasms/drug therapy , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/secondary , Apoptosis/drug effects , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Kidney Neoplasms/drug therapy , Gap Junctions/metabolism , Gap Junctions/pathology , Extracellular Matrix Proteins/metabolism , Mice , Disease Progression , Connexin 43/metabolism , Cell Line, Tumor , Transforming Growth Factor beta/metabolism , Osteolysis/pathology , Osteolysis/metabolism , Female
2.
bioRxiv ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38765966

ABSTRACT

Microenvironment niches determine cellular fates of metastatic cancer cells. However, robust and unbiased approaches to identify niche components and their molecular profiles are lacking. We established Sortase A-Based Microenvironment Niche Tagging (SAMENT), which selectively labels cells encountered by cancer cells during metastatic colonization. SAMENT was applied to multiple cancer models colonizing the same organ and the same cancer to different organs. Common metastatic niche features include macrophage enrichment and T cell depletion. Macrophage niches are phenotypically diverse between different organs. In bone, macrophages express the estrogen receptor alpha (ERα) and exhibit active ERα signaling in male and female hosts. Conditional knockout of Esr1 in macrophages significantly retarded bone colonization by allowing T cell infiltration. ERα expression was also discovered in human bone metastases of both genders. Collectively, we identified a unique population of ERα+ macrophages in the metastatic niche and functionally tied ERα signaling in macrophages to T cell exclusion during metastatic colonization. HIGHLIGHTS: SAMENT is a robust metastatic niche-labeling approach amenable to single-cell omics.Metastatic niches are typically enriched with macrophages and depleted of T cells.Direct interaction with cancer cells induces ERα expression in niche macrophages. Knockout of Esr1 in macrophages allows T cell infiltration and retards bone colonization.

3.
bioRxiv ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38712292

ABSTRACT

Tumor-associated neutrophils (TANs) have been shown to promote immunosuppression and tumor progression, and a high TAN frequency predicts poor prognosis in triple-negative breast cancer (TNBC). Dysregulation of CREB binding protein (CBP)/P300 function has been observed with multiple cancer types. The bromodomain (BRD) of CBP/P300 has been shown to regulate its activity. In this study, we found that IACS-70654, a novel and selective CBP/P300 BRD inhibitor, reduced TANs and inhibited the growth of neutrophil-enriched TNBC models. In the bone marrow, CBP/P300 BRD inhibition reduced the tumor-driven abnormal differentiation and proliferation of neutrophil progenitors. Inhibition of CBP/P300 BRD also stimulated the immune response by inducing an IFN response and MHCI expression in tumor cells and increasing tumor-infiltrated CTLs. Moreover, IACS-70654 improved the response of a neutrophil-enriched TNBC model to docetaxel and immune checkpoint blockade. This provides a rationale for combining a CBP/P300 BRD inhibitor with standard-of-care therapies in future clinical trials for neutrophil-enriched TNBC.

4.
bioRxiv ; 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38562769

ABSTRACT

Racial disparities in triple-negative breast cancer (TNBC) outcomes have been reported. However, the biological mechanisms underlying these disparities remain unclear. We integrated imaging mass cytometry and spatial transcriptomics, to characterize the tumor microenvironment (TME) of African American (AA) and European American (EA) patients with TNBC. The TME in AA patients was characterized by interactions between endothelial cells, macrophages, and mesenchymal-like cells, which were associated with poor patient survival. In contrast, the EA TNBC-associated niche is enriched in T-cells and neutrophils suggestive of an exhaustion and suppression of otherwise active T cell responses. Ligand-receptor and pathway analyses of race-associated niches found AA TNBC to be immune cold and hence immunotherapy resistant tumors, and EA TNBC as inflamed tumors that evolved a distinctive immunosuppressive mechanism. Our study revealed the presence of racially distinct tumor-promoting and immunosuppressive microenvironments in AA and EA patients with TNBC, which may explain the poor clinical outcomes.

5.
Biomacromolecules ; 25(4): 2338-2347, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38499995

ABSTRACT

Bone is a frequent site for metastatic development in various cancer types, including breast cancer, with a grim prognosis due to the distinct bone environment. Despite considerable advances, our understanding of the underlying processes leading to bone metastasis progression remains elusive. Here, we applied a bioactive three-dimensional (3D) model capable of mimicking the endosteal bone microenvironment. MDA-MB-231 and MCF7 breast cancer cells were cultured on the scaffolds, and their behaviors and the effects of the biomaterial on the cells were examined over time. We demonstrated that close interactions between the cells and the biomaterial affect their proliferation rates and the expression of c-Myc, cyclin D, and KI67, leading to cell cycle arrest. Moreover, invasion assays revealed increased invasiveness within this microenvironment. Our findings suggest a dual role for endosteal mimicking signals, influencing cell fate and potentially acting as a double-edged sword, shuttling between cell cycle arrest and more active, aggressive states.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Bone and Bones/metabolism , Cell Line, Tumor , Biocompatible Materials/pharmacology , Phenotype , Cell Proliferation , Tumor Microenvironment/genetics
6.
Mol Ther ; 32(5): 1219-1237, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38449313

ABSTRACT

Bone cancer is common and severe. Both primary (e.g., osteosarcoma, Ewing sarcoma) and secondary (e.g., metastatic) bone cancers lead to significant health problems and death. Currently, treatments such as chemotherapy, hormone therapy, and radiation therapy are used to treat bone cancer, but they often only shrink or slow tumor growth and do not eliminate cancer completely. The bone microenvironment contributes unique signals that influence cancer growth, immunogenicity, and metastasis. Traditional cancer therapies have limited effectiveness due to off-target effects and poor distribution on bones. As a result, therapies with improved specificity and efficacy for treating bone tumors are highly needed. One of the most promising strategies involves the targeted delivery of pharmaceutical agents to the site of bone cancer by introduction of bone-targeting moieties, such as bisphosphonates or oligopeptides. These moieties have high affinities to the bone hydroxyapatite matrix, a structure found exclusively in skeletal tissue, and can enhance the targeting ability and efficacy of anticancer drugs when combating bone tumors. This review focuses on the engineering of small molecules and proteins with bone-targeting moieties for the treatment of bone tumors.


Subject(s)
Antineoplastic Agents , Bone Neoplasms , Humans , Bone Neoplasms/drug therapy , Bone Neoplasms/therapy , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Animals , Diphosphonates/therapeutic use , Diphosphonates/pharmacology , Diphosphonates/chemistry , Drug Delivery Systems/methods , Osteosarcoma/drug therapy , Osteosarcoma/pathology , Sarcoma, Ewing/drug therapy , Sarcoma, Ewing/therapy , Molecular Targeted Therapy/methods , Tumor Microenvironment/drug effects
7.
Cancer Discov ; 14(7): 1252-1275, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38427556

ABSTRACT

Bone is the most common site of breast cancer metastasis. Bone metastasis is incurable and is associated with severe morbidity. Utilizing an immunocompetent mouse model of spontaneous breast cancer bone metastasis, we profiled the immune transcriptome of bone metastatic lesions and peripheral bone marrow at distinct metastatic stages, revealing dynamic changes during the metastatic process. We show that cross-talk between granulocytes and T cells is central to shaping an immunosuppressive microenvironment. Specifically, we identified the PD-1 and TIGIT signaling axes and the proinflammatory cytokine IL1ß as central players in the interactions between granulocytes and T cells. Targeting these pathways in vivo resulted in attenuated bone metastasis and improved survival, by reactivating antitumor immunity. Analysis of patient samples revealed that TIGIT and IL1ß are prominent in human bone metastasis. Our findings suggest that cotargeting immunosuppressive granulocytes and dysfunctional T cells may be a promising novel therapeutic strategy to inhibit bone metastasis. Significance: Temporal transcriptome profiling of the immune microenvironment in breast cancer bone metastasis revealed key communication pathways between dysfunctional T cells and myeloid derived suppressor cells. Cotargeting of TIGIT and IL1ß inhibited bone metastasis and improved survival. Validation in patient data implicated these targets as a novel promising approach to treat human bone metastasis.


Subject(s)
Bone Neoplasms , Breast Neoplasms , Myeloid-Derived Suppressor Cells , Receptors, Immunologic , Animals , Mice , Female , Bone Neoplasms/secondary , Bone Neoplasms/immunology , Breast Neoplasms/pathology , Breast Neoplasms/immunology , Breast Neoplasms/drug therapy , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Humans , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/metabolism , Tumor Microenvironment/immunology
8.
Cancer Res ; 84(5): 650-651, 2024 03 04.
Article in English | MEDLINE | ID: mdl-38241708

ABSTRACT

Macrophages are plastic immune cells that have varying functions dependent on stimulation from their environment. In a recent issue of Immunity, Do and colleagues demonstrated that activating mechanistic target of rapamycin complex 1 signaling in tumor macrophages alters their metabolism, localization, and function. Specifically, these tumor macrophages promote vascular remodeling that develops a hypoxic environment toxic to cancer cells. This culminates in a tangible reduction in tumor burden in a murine model of breast cancer. Their findings reveal a unique strategy to promote vascular remodeling through macrophage polarization and thereby highlight the intimate connections between macrophage metabolism and function. Additionally, their model highlights parallels between tumor progression and wound healing contexts while emphasizing the amplified effect of small perturbations to a tumor ecosystem.


Subject(s)
Ecosystem , Vascular Remodeling , Humans , Animals , Mice , Macrophages/metabolism , Signal Transduction , Nutrients , Tumor Microenvironment
9.
Clin Exp Metastasis ; 2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37688650

ABSTRACT

This paper is a cross fertilization of ideas about the importance of molecular aspects of breast cancer metastasis by basic scientists, a pathologist, and clinical oncologists at the Henry Ford Health symposium. We address four major topics: (i) the complex roles of lymphatic endothelial cells and the molecules that stimulate them to enhance lymph node and systemic metastasis and influence the anti-tumor immunity that might inhibit metastasis; (ii) the interaction of molecules and cells when breast cancer spreads to bone, and how bone metastases may themselves spread to internal viscera; (iii) how molecular expression and morphologic subtypes of breast cancer assist clinicians in determining which patients to treat with more or less aggressive therapies; (iv) how the outcomes of patients with oligometastases in breast cancer are different from those with multiple metastases and how that could justify the aggressive treatment of these patients with the hope of cure.

10.
Cancer Immunol Res ; 11(11): 1462-1479, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37603945

ABSTRACT

Long noncoding RNAs (lncRNA) play an important role in gene regulation in both normal tissues and cancer. Targeting lncRNAs is a promising therapeutic approach that has become feasible through the development of gapmer antisense oligonucleotides (ASO). Metastasis-associated lung adenocarcinoma transcript (Malat1) is an abundant lncRNA whose expression is upregulated in several cancers. Although Malat1 increases the migratory and invasive properties of tumor cells, its role in the tumor microenvironment (TME) is still not well defined. We explored the connection between Malat1 and the tumor immune microenvironment (TIME) using several immune-competent preclinical syngeneic Tp53-null triple-negative breast cancer (TNBC) mouse models that mimic the heterogeneity and immunosuppressive TME found in human breast cancer. Using a Malat1 ASO, we were able to knockdown Malat1 RNA expression resulting in a delay in primary tumor growth, decreased proliferation, and increased apoptosis. In addition, immunophenotyping of tumor-infiltrating lymphocytes revealed that Malat1 inhibition altered the TIME, with a decrease in immunosuppressive tumor-associated macrophages (TAM) and myeloid-derived suppressor cells (MDSC) as well as an increase in cytotoxic CD8+ T cells. Malat1 depletion in tumor cells, TAMs, and MDSCs decreased immunosuppressive cytokine/chemokine secretion whereas Malat1 inhibition in T cells increased inflammatory secretions and T-cell proliferation. Combination of a Malat1 ASO with chemotherapy or immune checkpoint blockade (ICB) improved the treatment responses in a preclinical model. These studies highlight the immunostimulatory effects of Malat1 inhibition in TNBC, the benefit of a Malat1 ASO therapeutic, and its potential use in combination with chemotherapies and immunotherapies.


Subject(s)
Adenocarcinoma , RNA, Long Noncoding , Triple Negative Breast Neoplasms , Humans , Animals , Mice , RNA, Long Noncoding/genetics , Triple Negative Breast Neoplasms/metabolism , Tumor Microenvironment , Gene Expression Regulation, Neoplastic , Cell Proliferation/physiology , Adenocarcinoma/genetics , Cell Line, Tumor
11.
Bioinformatics ; 39(7)2023 07 01.
Article in English | MEDLINE | ID: mdl-37436699

ABSTRACT

SUMMARY: In the era where transcriptome profiling moves toward single-cell and spatial resolutions, the traditional co-expression analysis lacks the power to fully utilize such rich information to unravel spatial gene associations. Here, we present a Python package called Spatial Enrichment Analysis of Gene Associations using L-index (SEAGAL) to detect and visualize spatial gene correlations at both single-gene and gene-set levels. Our package takes spatial transcriptomics datasets with gene expression and the aligned spatial coordinates as input. It allows for analyzing and visualizing genes' spatial correlations and cell types' colocalization within the precise spatial context. The output could be visualized as volcano plots and heatmaps with a few lines of code, thus providing an easy-yet-comprehensive tool for mining spatial gene associations. AVAILABILITY AND IMPLEMENTATION: The Python package SEAGAL can be installed using pip: https://pypi.org/project/seagal/. The source code and step-by-step tutorials are available at: https://github.com/linhuawang/SEAGAL.


Subject(s)
Computational Biology , Transcriptome , Gene Expression Profiling , Software , Data Analysis
12.
Cell Stem Cell ; 30(5): 648-664.e8, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37146584

ABSTRACT

Remote tumors disrupt the bone marrow (BM) ecosystem (BME), eliciting the overproduction of BM-derived immunosuppressive cells. However, the underlying mechanisms remain poorly understood. Herein, we characterized breast and lung cancer-induced BME shifts pre- and post-tumor removal. Remote tumors progressively lead to osteoprogenitor (OP) expansion, hematopoietic stem cell dislocation, and CD41- granulocyte-monocyte progenitor (GMP) aggregation. The tumor-entrained BME is characterized by co-localization between CD41- GMPs and OPs. OP ablation abolishes this effect and diminishes abnormal myeloid overproduction. Mechanistically, HTRA1 carried by tumor-derived small extracellular vesicles upregulates MMP-13 in OPs, which in turn induces the alterations in the hematopoietic program. Importantly, these effects persist post-surgery and continue to impair anti-tumor immunity. Conditional knockout or inhibition of MMP-13 accelerates immune reinstatement and restores the efficacies of immunotherapies. Therefore, tumor-induced systemic effects are initiated by OP-GMP crosstalk that outlasts tumor burden, and additional treatment is required to reverse these effects for optimal therapeutic efficacy.


Subject(s)
Ecosystem , Neoplasms , Humans , Matrix Metalloproteinase 13/pharmacology , Myelopoiesis , Hematopoietic Stem Cells , Neoplasms/pathology , Immunosuppression Therapy , High-Temperature Requirement A Serine Peptidase 1/pharmacology
13.
Am J Physiol Cell Physiol ; 324(3): C707-C717, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36717100

ABSTRACT

A better understanding of the mechanisms regulating cancer metastasis is critical to develop new therapies and decrease mortality. Emerging evidence suggests that the interactions between tumor cells and the host immune system play important roles in establishing metastasis. Tumor cells are able to recruit immune cells, which in turn promotes tumor cell invasion, intravasation, survival in circulation, extravasation, and colonization in different organs. The tumor-host immunological interactions also generate a premetastatic niche in distant organs which facilitates metastasis. In this review, we summarize the recent findings on how tumor cells and immune cells regulate each other to coevolve and promote the formation of metastases at the major organ sites of metastasis.


Subject(s)
Ecosystem , Neoplasms , Humans , Neoplasms/pathology , Neoplastic Stem Cells/pathology , Neoplasm Metastasis/pathology , Tumor Microenvironment/physiology
14.
Cancer Discov ; 13(2): 474-495, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36287038

ABSTRACT

The bone microenvironment is dynamic and undergoes remodeling in normal and pathologic conditions. Whether such remodeling affects disseminated tumor cells (DTC) and bone metastasis remains poorly understood. Here, we demonstrated that pathologic fractures increase metastatic colonization around the injury. NG2+ cells are a common participant in bone metastasis initiation and bone remodeling in both homeostatic and fractured conditions. NG2+ bone mesenchymal stem/stromal cells (BMSC) often colocalize with DTCs in the perivascular niche. Both DTCs and NG2+ BMSCs are recruited to remodeling sites. Ablation of NG2+ lineage impaired bone remodeling and concurrently diminished metastatic colonization. In cocultures, NG2+ BMSCs, especially when undergoing osteodifferentiation, enhanced cancer cell proliferation and migration. Knockout of N-cadherin in NG2+ cells abolished these effects in vitro and phenocopied NG2+ lineage depletion in vivo. These findings uncover dual roles of NG2+ cells in metastasis and remodeling and indicate that osteodifferentiation of BMSCs promotes metastasis initiation via N-cadherin-mediated cell-cell interaction. SIGNIFICANCE: The bone colonization of cancer cells occurs in an environment that undergoes constant remodeling. Our study provides mechanistic insights into how bone homeostasis and pathologic repair lead to the outgrowth of disseminated cancer cells, thereby opening new directions for further etiologic and epidemiologic studies of tumor recurrences. This article is highlighted in the In This Issue feature, p. 247.


Subject(s)
Bone Neoplasms , Osteogenesis , Humans , Osteogenesis/genetics , Neoplasm Recurrence, Local , Bone Neoplasms/genetics , Cell Differentiation , Bone Remodeling , Cadherins/genetics , Tumor Microenvironment
15.
Oncogene ; 41(48): 5214-5222, 2022 11.
Article in English | MEDLINE | ID: mdl-36261627

ABSTRACT

Signal transducer and activator of transcription 5 (STAT5) promotes cell survival and instigates breast tumor formation, and in the normal breast it also drives alveolar differentiation and lactogenesis. However, whether STAT5 drives a differentiated phenotype in breast tumorigenesis and therefore impacts cancer spread and metastasis is unclear. We found in two genetically engineered mouse models of breast cancer that constitutively activated Stat5a (Stat5aca) caused precancerous mammary epithelial cells to become lactogenic and evolve into tumors with diminished potential to metastasize. We also showed that STAT5aca reduced the migratory and invasive ability of human breast cancer cell lines in vitro. Furthermore, we demonstrated that STAT5aca overexpression in human breast cancer cells lowered their metastatic burden in xenografted mice. Moreover, RPPA, Western blotting, and studies of ChIPseq data identified several EMT drivers regulated by STAT5. In addition, bioinformatic studies detected a correlation between STAT5 activity and better prognosis of breast cancer patients. Together, we conclude that STAT5 activation during mammary tumorigenesis specifies a tumor phenotype of lactogenic differentiation, suppresses EMT, and diminishes potential for subsequent metastasis.


Subject(s)
Breast Neoplasms , STAT5 Transcription Factor , Animals , Female , Humans , Mice , Breast/pathology , Breast Neoplasms/pathology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Epithelial Cells/metabolism , Mammary Glands, Animal/pathology , STAT5 Transcription Factor/metabolism
16.
Breast Cancer Res ; 24(1): 68, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36258226

ABSTRACT

BACKGROUND: Ductal carcinoma in situ (DCIS) is the most common type of in situ premalignant breast cancers. What drives DCIS to invasive breast cancer is unclear. Basal-like invasive breast cancers are aggressive. We have previously shown that NRAS is highly expressed selectively in basal-like subtypes of invasive breast cancers and can promote their growth and progression. In this study, we investigated whether NRAS expression at the DCIS stage can control transition from luminal DCIS to basal-like invasive breast cancers. METHODS: Wilcoxon rank-sum test was performed to assess expression of NRAS in DCIS compared to invasive breast tumors in patients. NRAS mRNA levels were also determined by fluorescence in situ hybridization in patient tumor microarrays (TMAs) with concurrent normal, DCIS, and invasive breast cancer, and association of NRAS mRNA levels with DCIS and invasive breast cancer was assessed by paired Wilcoxon signed-rank test. Pearson's correlation was calculated between NRAS mRNA levels and basal biomarkers in the TMAs, as well as in patient datasets. RNA-seq data were generated in cell lines, and unsupervised hierarchical clustering was performed after combining with RNA-seq data from a previously published patient cohort. RESULTS: Invasive breast cancers showed higher NRAS mRNA levels compared to DCIS samples. These NRAShigh lesions were also enriched with basal-like features, such as basal gene expression signatures, lower ER, and higher p53 protein and Ki67 levels. We have shown previously that NRAS drives aggressive features in DCIS-like and basal-like SUM102PT cells. Here, we found that NRAS-silencing induced a shift to a luminal gene expression pattern. Conversely, NRAS overexpression in the luminal DCIS SUM225 cells induced a basal-like gene expression pattern, as well as an epithelial-to-mesenchymal transition signature. Furthermore, these cells formed disorganized mammospheres containing cell masses with an apparent reduction in adhesion. CONCLUSIONS: These data suggest that elevated NRAS levels in DCIS are not only a marker but can also control the emergence of basal-like features leading to more aggressive tumor activity, thus supporting the therapeutic hypothesis that targeting NRAS and/or downstream pathways may block disease progression for a subset of DCIS patients with high NRAS.


Subject(s)
Breast Neoplasms , Carcinoma, Ductal, Breast , Carcinoma, Intraductal, Noninfiltrating , Humans , Female , Carcinoma, Intraductal, Noninfiltrating/genetics , Carcinoma, Intraductal, Noninfiltrating/pathology , Ki-67 Antigen/genetics , Ki-67 Antigen/metabolism , Carcinoma, Ductal, Breast/pathology , Tumor Suppressor Protein p53/genetics , Breast Neoplasms/pathology , In Situ Hybridization, Fluorescence , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , RNA, Messenger , Disease Progression , Membrane Proteins/genetics , Membrane Proteins/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism
17.
Cancer Cell ; 40(8): 812-814, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35839779

ABSTRACT

A Cell article reports that lymph node metastases can suppress the immune system, thereby promoting further cancer spread in mouse models; this is corroborated in patients as described in a letter in this issue of Cancer Cell. The lymph node thus actively generates a cancer-permissive environment and is an untapped target to manipulate the immune system.


Subject(s)
Lymph Nodes , Animals , Lymph Nodes/pathology , Lymphatic Metastasis/pathology , Mice
18.
Clin Exp Metastasis ; 39(5): 727-742, 2022 10.
Article in English | MEDLINE | ID: mdl-35907112

ABSTRACT

Despite the significant progress made over the past decade with combination of molecular profiling data and the development of new clinical strategies, our understanding of metastasis remains elusive. Bone metastasis is a complex process and a major cause of mortality in breast and prostate cancer patients, for which there is no effective treatment to-date. The current review summarizes the routes taken by the metastatic cells and the interactions between them and the bone microenvironment. We emphasize the role of the specified niches and cues that promote cellular adhesion, colonization, prolonged dormancy, and reactivation. Understanding these mechanisms will provide better insights for future studies and treatment strategies for bone metastatic conditions.


Subject(s)
Bone Neoplasms , Prostatic Neoplasms , Bone Neoplasms/genetics , Bone Neoplasms/secondary , Bone and Bones/pathology , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Tumor Microenvironment
19.
Cancer Res ; 82(12): 2281-2297, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35442423

ABSTRACT

Immunosuppressive elements within the tumor microenvironment, such as tumor-associated macrophages (TAM), can present a barrier to successful antitumor responses by cytolytic T cells. Here we employed preclinical syngeneic p53 null mouse models of triple-negative breast cancer (TNBC) to develop a treatment regimen that harnessed the immunostimulatory effects of low-dose cyclophosphamide coupled with the pharmacologic inhibition of TAMs using either a small-molecule CSF1R inhibitor or an anti-CSF1R antibody. This therapeutic combination was effective in treating several highly aggressive TNBC murine mammary tumor and lung metastasis models. Single-cell RNA sequencing characterized tumor-infiltrating lymphocytes including Th cells and antigen-presenting B cells that were highly enriched in responders to combination therapy. In one model that exhibited long-term posttreatment tumor regression, high-dimensional imaging techniques identified the close spatial localization of B220+/CD86+-activated B cells and CD4+ T cells in tertiary lymphoid structures that were present up to 6 weeks posttreatment. The transcriptional and metabolic heterogeneity of TAMs was also characterized in two closely related claudin-low/mesenchymal subtype tumor models with differential treatment responses. A murine TAM signature derived from the T12 model was highly conserved in human claudin-low breast cancers, and high expression of the TAM signature correlated with reduced overall survival in patients with breast cancer. This TAM signature may help identify human patients with claudin-low breast cancer that will benefit from the combination of cyclophosphamide and anti-CSF1R therapy. These studies illustrate the complexity of the tumor immune microenvironment and highlight different immune responses that result from rational immunotherapy combinations. SIGNIFICANCE: Immunostimulatory chemotherapy combined with pharmacologic inhibition of TAMs results in durable treatment responses elicited by Th cells and B cells in claudin-low TNBC models.


Subject(s)
Triple Negative Breast Neoplasms , Animals , B-Lymphocytes , Claudins/metabolism , Claudins/therapeutic use , Cyclophosphamide/pharmacology , Cyclophosphamide/therapeutic use , Humans , Macrophages/metabolism , Mice , T-Lymphocytes, Cytotoxic/pathology , Triple Negative Breast Neoplasms/pathology , Tumor Microenvironment
20.
ACS Cent Sci ; 8(3): 312-321, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35355817

ABSTRACT

Despite the rapid evolution of therapeutic antibodies, their clinical efficacy in the treatment of bone tumors is hampered due to the inadequate pharmacokinetics and poor bone tissue accessibility of these large macromolecules. Here, we show that engineering therapeutic antibodies with bone-homing peptide sequences dramatically enhances their concentrations in the bone metastatic niche, resulting in significantly reduced survival and progression of breast cancer bone metastases. To enhance the bone tumor-targeting ability of engineered antibodies, we introduced varying numbers of bone-homing peptides into permissive sites of the anti-HER2 antibody, trastuzumab. Compared to the unmodified antibody, the engineered antibodies have similar pharmacokinetics and in vitro cytotoxic activity, but exhibit improved bone tumor distribution in vivo. Accordingly, in xenograft models of breast cancer metastasis to bone sites, engineered antibodies with enhanced bone specificity exhibit increased inhibition of both initial bone metastases and secondary multiorgan metastases. Furthermore, this engineering strategy is also applied to prepare bone-targeting antibody-drug conjugates with enhanced therapeutic efficacy. These results demonstrate that adding bone-specific targeting to antibody therapy results in robust bone tumor delivery efficacy. This provides a powerful strategy to overcome the poor accessibility of antibodies to the bone tumors and the consequential resistance to the therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...