ABSTRACT
INTRODUCTION AND OBJECTIVES: The optimal blood pressure (BP) range for patients with metabolic dysfunction-associated fatty liver disease (MAFLD) is currently unknown. This study aimed to explore the relationship between stratified BP levels and MAFLD progression. PATIENTS AND METHODS: The data of adults who underwent yearly health check-ups were screened to establish both a cross-sectional and a 6-year longitudinal cohort of individuals with MAFLD. BP was classified into the following categories optimal, normal, high-normal, and hypertension. Liver fibrosis was diagnosed with fibrosis-4 (FIB-4) score, nonalcoholic fatty liver disease fibrosis score (NFS), and aspartate aminotransferase-to-platelet ratio index (APRI). RESULTS: A total of 10,232 individuals were included in the cross-sectional cohort. In the MAFLD population, individuals with liver fibrosis had significantly higher BP levels and hypertension prevalence (P < 0.001) than those without. Furthermore, liver fibrosis score was significantly associated with BP levels (P < 0.001). In the 6-year longitudinal cohort of 3661 individuals with MAFLD without liver fibrosis, the incidence rates of liver fibrosis increased with increasing BP levels as follows optimal=11.20%, normal=13.90%, high-normal=19.50%, hypertension=26.20% (log-rank 22.205; P < 0.001). Cox regression analysis showed that both baseline high-normal BP (hazard ratio [HR], 1.820; P=0.019) and hypertension (HR, 2.656; P < 0.001) were predictive of liver fibrosis. CONCLUSIONS: BP stratification may be useful in predicting the progression of MAFLD. Individuals having MAFLD with concurrent hypertension or high-normal BP are at a higher risk of liver fibrosis. These findings may provide a criteria for early intervention of MAFLD to prevent liver fibrosis.
Subject(s)
Hypertension , Non-alcoholic Fatty Liver Disease , Adult , Humans , Blood Pressure , Cross-Sectional Studies , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/epidemiology , Hypertension/diagnosis , Hypertension/epidemiology , Liver Cirrhosis/diagnosis , Liver Cirrhosis/epidemiologyABSTRACT
BACKGROUND: The transition of aortic valve interstitial cells (AVICs) to myofibroblastic and osteoblast-like phenotypes plays a critical role in calcific aortic valve disease progression. Several microRNAs (miRs) are implicated in stem cell differentiation into osteoblast. We hypothesized that an epigenetic mechanism regulates valvular pro-osteogenic activity. This study examined miR profile in AVICs of calcified valves and identified miRs responsible for AVIC phenotypic transition. METHODS AND RESULTS: AVICs were isolated from normal and diseased valves. The miR microarray analysis revealed 14 upregulated and 12 downregulated miRs in diseased AVICs. Increased miR-486 and decreased miR-204 levels were associated with higher levels of myofibroblastic biomarker α-smooth muscle actin and osteoblastic biomarkers runt-related transcription factor 2 (Runx2) and osterix (Osx). Cotransfection of miR-486 antagomir and miR-204 mimic in diseased AVICs reduced their ability to express Runx2 and Osx. The miR-486 mimic upregulated α-smooth muscle actin expression in normal AVICs through the protein kinase B pathway and moderately elevated Runx2 and Osx levels. Knockdown of α-smooth muscle actin attenuated Runx2 and Osx expression induced by miR-486. The miR-486 mimic and miR-204 antagomir synergistically promoted Runx2 and Osx expression and calcium deposition in normal AVICs and normal aortic valve tissue. CONCLUSIONS: In AVICs of calcified valves, increased levels of miR-486 induce myofibroblastic transition to upregulate Runx2 and Osx expression and synergize with miR-204 deficiency to elevate cellular and valvular pro-osteogenic activity. These novel findings indicate that modulation of the epigenetic mechanism underlying valvular pro-osteogenic activity has therapeutic potential for prevention of calcific aortic valve disease progression.
Subject(s)
Aortic Valve Stenosis/genetics , Aortic Valve/cytology , Aortic Valve/pathology , Calcinosis/genetics , MicroRNAs/genetics , Myofibroblasts/cytology , Osteoblasts/cytology , Osteogenesis/genetics , Actins/metabolism , Adult , Aged , Antagomirs/pharmacology , Aortic Valve/surgery , Aortic Valve Stenosis/surgery , Calcinosis/surgery , Case-Control Studies , Core Binding Factor Alpha 1 Subunit/metabolism , Epigenesis, Genetic , Female , Gene Knockdown Techniques , Humans , Male , Middle Aged , Myofibroblasts/drug effects , Osteoblasts/drug effects , Osteogenesis/drug effects , Phenotype , Sp7 Transcription Factor/metabolismABSTRACT
OBJECTIVE: The aim of this study was to determine the efficacy of 252Californium neutron intracavitary brachytherapy using a two-channel Y applicator combined with external beam radiotherapy for the treatment of endometrial cancer. METHODS: Thirty-one patients with stage I-III endometrial cancer were recruited for this study. The stage I patients received only 252Californium neutron intracavitary brachytherapy with a two-channel applicator. The stage II and III patients received both 252Californium neutron intracavitary brachytherapy using a two-channel applicator and parallel-opposed whole pelvic radiotherapy. RESULTS: The five-year local control rate was 80.6% (25/31), the overall survival rate was 51.6% (16/31), and the disease-free survival rate was 54.8% (17/31). The incidence of serious late complications was 12.9% (4/31). CONCLUSIONS: 252Californium neutron intracavitary brachytherapy using a two-channel applicator combined with external beam radiotherapy was effective for treating endometrial cancer and the incidence of serious late complications related to this combination was within an acceptable range.
Subject(s)
Adenocarcinoma/radiotherapy , Brachytherapy/methods , Californium/therapeutic use , Endometrial Neoplasms/radiotherapy , Adenocarcinoma/mortality , Adenocarcinoma/pathology , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Brachytherapy/instrumentation , Carmustine/therapeutic use , Combined Modality Therapy , Cytarabine/therapeutic use , Endometrial Neoplasms/mortality , Endometrial Neoplasms/pathology , Female , Follow-Up Studies , Humans , Melphalan/therapeutic use , Middle Aged , Podophyllotoxin/therapeutic use , Survival Rate , Treatment OutcomeABSTRACT
OBJECTIVE: The aim of this study was to determine the efficacy of 252Californium neutron intracavitary brachytherapy using a two-channel Y applicator combined with external beam radiotherapy for the treatment of endometrial cancer. METHODS: Thirty-one patients with stage I-III endometrial cancer were recruited for this study. The stage I patients received only 252Californium neutron intracavitary brachytherapy with a two-channel applicator. The stage II and III patients received both 252Californium neutron intracavitary brachytherapy using a two-channel applicator and parallel-opposed whole pelvic radiotherapy. RESULTS: The five-year local control rate was 80.6% (25/31), the overall survival rate was 51.6% (16/31), and the disease-free survival rate was 54.8% (17/31). The incidence of serious late complications was 12.9% (4/31). CONCLUSIONS: 252Californium neutron intracavitary brachytherapy using a two-channel applicator combined with external beam radiotherapy was effective for treating endometrial cancer and the incidence of serious late complications related to this combination was within an acceptable range.
Subject(s)
Adult , Aged , Female , Humans , Middle Aged , Adenocarcinoma/radiotherapy , Brachytherapy/methods , Californium/therapeutic use , Endometrial Neoplasms/radiotherapy , Adenocarcinoma/mortality , Adenocarcinoma/pathology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Brachytherapy/instrumentation , Combined Modality Therapy , Carmustine/therapeutic use , Cytarabine/therapeutic use , Endometrial Neoplasms/mortality , Endometrial Neoplasms/pathology , Follow-Up Studies , Melphalan/therapeutic use , Podophyllotoxin/therapeutic use , Survival Rate , Treatment OutcomeABSTRACT
Basic fibroblast growth factor (bFGF) regulates skin wound healing; however, the underlying mechanism remains to be defined. In the present study, we determined the effects of bFGF on the regulation of cell growth as well as collagen and fibronectin expression in fibroblasts from normal human skin and from hypertrophic scars. We then explored the involvement of mitochondria in mediating bFGF-inducedeffects on the fibroblasts. We isolated and cultivated normal and hypertrophic scar fibroblasts from tissue biopsies of patients who underwent plastic surgery for repairing hypertrophic scars. The fibroblasts were then treated with different concentrations of bFGF (ranging from 0.1 to 1000 ng/mL). The growth of hypertrophic scar fibroblasts became slower with selective inhibition of type I collagen production after exposure to bFGF. However, type III collagen expression was affected in both normal and hypertrophic scar fibroblasts. Moreover, fibronectin expression in the normal fibroblasts was up-regulated after bFGF treatment. bFGF (1000 ng/mL) also induced mitochondrial depolarization in hypertrophic scar fibroblasts (P < 0.01). The cellular ATP level decreased in hypertrophic scar fibroblasts (P < 0.05), while it increased in the normal fibroblasts following treatment with bFGF (P < 0.01). These data suggest that bFGF has differential effects and mechanisms on fibroblasts of the normal skin and hypertrophic scars, indicating that bFGF may play a role in the early phase of skin wound healing and post-burn scar formation.
Subject(s)
Humans , Cicatrix, Hypertrophic/pathology , Collagen Type I/metabolism , Collagen Type III/metabolism , /pharmacology , Fibroblasts/drug effects , Fibronectins/metabolism , Skin/cytology , Cells, Cultured , Cicatrix, Hypertrophic/metabolism , Collagen Type I/ultrastructure , Collagen Type III/ultrastructure , Fibroblasts/metabolism , Fibroblasts/ultrastructure , Fibronectins/ultrastructure , Microscopy, Electron, Transmission , Membrane Potential, Mitochondrial/drug effects , Membrane Potential, Mitochondrial/physiology , Reverse Transcriptase Polymerase Chain Reaction , Skin/metabolism , Up-Regulation , Wound HealingABSTRACT
Basic fibroblast growth factor (bFGF) regulates skin wound healing; however, the underlying mechanism remains to be defined. In the present study, we determined the effects of bFGF on the regulation of cell growth as well as collagen and fibronectin expression in fibroblasts from normal human skin and from hypertrophic scars. We then explored the involvement of mitochondria in mediating bFGF-induced effects on the fibroblasts. We isolated and cultivated normal and hypertrophic scar fibroblasts from tissue biopsies of patients who underwent plastic surgery for repairing hypertrophic scars. The fibroblasts were then treated with different concentrations of bFGF (ranging from 0.1 to 1000 ng/mL). The growth of hypertrophic scar fibroblasts became slower with selective inhibition of type I collagen production after exposure to bFGF. However, type III collagen expression was affected in both normal and hypertrophic scar fibroblasts. Moreover, fibronectin expression in the normal fibroblasts was up-regulated after bFGF treatment. bFGF (1000 ng/mL) also induced mitochondrial depolarization in hypertrophic scar fibroblasts (P < 0.01). The cellular ATP level decreased in hypertrophic scar fibroblasts (P < 0.05), while it increased in the normal fibroblasts following treatment with bFGF (P < 0.01). These data suggest that bFGF has differential effects and mechanisms on fibroblasts of the normal skin and hypertrophic scars, indicating that bFGF may play a role in the early phase of skin wound healing and post-burn scar formation.