Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
Childs Nerv Syst ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38802706

ABSTRACT

PURPOSE: Genetic mutations stand as pivotal factors leading to the occurrence of embryonal tumor with multilayered rosettes (ETMR). This study aims to identify improved treatment approaches by unraveling the genetic drivers and immune infiltration in ETMR. METHODS: Two siblings with ETMR, treated at the General Hospital of Ningxia Medical University, were enrolled. Diagnosis involved MRI, Hematoxylin and Eosin (HE), and immunohistochemical (IHC) staining. Differentially expressed genes (DEGs) in ETMR were identified using GSE122077 and GSE14296 datasets. GO and KEGG analyses were used to determine ETMR-related pathways. Whole exome sequencing (WES) was utilized to annotate genetic variations in ETMR. Core genes, identified by protein-protein interaction (PPI), formed a diagnostic model evaluated by Logistic Regression. Single-sample Gene Set Enrichment Analysis (ssGSEA) assessed immune infiltration in ETMR, examining correlations between immune cells and core genes. RESULTS: Two siblings were diagnosed with ETMR. In ETMR, 135 DEGs were identified, of which 25 genes were annotated with 28 mutation sites. Moreover, ETMR-related pathways included cell cycle, synaptic functions, and neurodegeneration. Three ETMR-related core genes (ALB, PSMD1, and PAK2) were screened by protein-protein interaction (PPI). The diagnostic model constructed using these genes demonstrated an AUC value of 0.901 (95% CI: 0.811-0.991) in the training set, indicating accurate predictions in ETMR. Enhanced ssGSEA scores for 16 immune cells in ETMR tissues suggested a strong immune response. CONCLUSION: This study identifies diagnostic models associated with three core variant genes (ALB, PSMD1, PAK2) and enhanced immune cell activity in ETMR. It reveals crucial genetic features and significant immune responses in ETMR.

2.
J Biol Eng ; 16(1): 2, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34986861

ABSTRACT

BACKGROUND: Although long non-coding RNA (lncRNA) NCK1-AS1 plays important roles in human cancer, its function in atherosclerosis (AS) remains unclear. METHOD: The expression of NCK1-AS1 in AS blood samples was detected by qRT-PCR. Oxidized low-density lipoprotein (ox-LDL) was used to construct the AS cell model, and quantitative real-time polymerase chain reaction (qRT-PCR) assay was used to evaluate NCK1-AS1 level. Cell phenotypes including proliferation and apoptosis were assessed by Cell Counting Kit-8 (CCK-8) assay and flow cytometer, respectively. The malondialdehyde level was measured to evaluate oxidative stress. The expression of apoptosis-related proteins was evaluated by western blot. The expression of inflammatory cytokines (IL-1ß, IL-6 and TNK-α) was measured by qRT-PCR and ELISA assays. The relationship among NCK1-AS1, miR-1197 and COX10 was determined by bioinformatic analysis and luciferase reporter assay. RESULTS: NCK1-AS1 was significantly upregulated in AS blood samples and ox-LDL stimulated vascular smooth muscle cells (VSMCs). Knockdown of NCK1-AS1 increased cell viability, reduced cell apoptosis and MDA level, and also inhibited the expression of inflammatory cytokines (IL-1ß, IL-6 and TNK-α) in ox-LDL stimulated VSMCs. NCK1-AS1 could positively regulate COX10 expression by directly sponging miR-1197. Moreover, co-transfection of sh-NCK1-AS1 and miR-1197 inhibitor, or co-transfection of sh-NCK1-AS1 and pc-COX10 (COX10 overexpressing plasmid) obviously reduced cell viability, promoted cell apoptosis, and increased MDA level in VSMCs followed by ox-LDL treatment for 24 h compared to that in sh-NCK1-AS1 transfected VSMCs. CONCLUSION: Our study revealed that knockdown of NCK1-AS1 attenuated the development of AS by regulating miR-1197/COX10 axis, suggesting that this lncRNA might be a potential therapeutic target for AS.

3.
Article in English | MEDLINE | ID: mdl-34788108

ABSTRACT

Objective: The most commonly reported primary brain tumor in adults is glioma. Choline kinase alpha (CHKA) has been proved to play important roles in glioma. However, the mechanism of CHKA involved remains unclear. Therefore, this study aims to explore the mechanism of CHKA in glioma development. Methods: Immunohistochemistry, qRT-PCR, and Western blot were used to detect the expression of CHKA. Flow cytometry, Cell Counting Kit-8 (CCK-8), transwell, and wound healing assays were performed to evaluate cell apoptosis, proliferation, invasion, and migration, respectively. RNA sequencing was used to explore the differentially expressed genes affected by CHKA. The enrichment analysis of gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) helped to detect the signaling pathways CHKA affected. Tumor-bearing mice were established and evaluated by TUNEL assay, Ki-67 immunohistochemistry. and hematoxylin and eosin staining. Results: CHKA increased in glioma tissues and promoted cell proliferation, invasion, and migration, while inhibiting the glioma cell apoptosis. It was also showed that CHKA promoted glioma development in vivo. GO and KEGG analysis indicated that PI3K/AKT was significantly enriched in CHKA knockdown U251 cells. And CHKA promoted glioma development by activating PI3K/AKT signaling pathway. Conclusions: The authors demonstrated that CHKA was significantly elevated in glioma tissues. Mechanism analysis indicated that CHKA could promote glioma development by activating PI3K/AKT signaling pathway, suggesting that CHKA is promising to be a biomarker and therapeutic strategy for prognostic prediction of patients with glioma.

4.
Immunopharmacol Immunotoxicol ; 43(2): 138-144, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33509007

ABSTRACT

OBJECTIVE: Polydatin has been used in the treatment of various inflammatory diseases. However, its role in the regulation of neuroinflammation has not been reported. In this study, we designed to investigate the anti-inflammatory effects of polydatin in LPS-stimulated BV2 microglia cells. METHODS: Inflammatory mediators TNF-α, IL-1ß, NO, and PGE2 production were measured by ELISA. The protein of signaling pathways were detected by western blot analysis. RESULTS: The results showed that polydatin significantly ameliorated the production of TNF-α, IL-1ß, NO, and PGE2 up-regulated by LPS. Polydatin also blocked LPS-induced NF-κB activation. In addition, PI3K and AKT, the up-stream molecules of NF-κB signaling pathway, were inhibited by the treatment of polydatin. Also, we found the formation of lipid rafts was inhibited by polydatin through attenuating the cholesterol content. Finally, polydatin was found to increase the expression of ABCA1 and ABCG1. CONCLUSION: In conclusion, the results of the present study suggested that polydatin exhibited its anti-inflammatory effects in BV2 cells through disrupting lipid rafts, which subsequently inhibiting PI3K/AKT signaling pathway.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Glucosides/pharmacology , Inflammation Mediators/antagonists & inhibitors , Lipopolysaccharides/toxicity , Membrane Microdomains/drug effects , Microglia/drug effects , Stilbenes/pharmacology , Animals , Cell Line , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Drugs, Chinese Herbal/pharmacology , Inflammation Mediators/metabolism , Membrane Microdomains/metabolism , Mice , Microglia/metabolism
5.
J Clin Neurosci ; 83: 56-63, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33334663

ABSTRACT

In order to assess combined application of MRS and DWI for prediction cell proliferation and grade diagnosis of glioma, We prospectively collected the Cho/Cr, Cho/NAA, Cr/NAA of MRS and tumor parenchyma ADC (ADCT), contralateral mirror brain tissue ADC (ADCH), rADC (rADC = ADCT/ADCH). According to postoperative pathology, the patients were divided into two groups: LGG group and HGG group, compared differences of age, gender, Ki67, MRS, DWI between two groups. Next, we analyzed the correlation between MRS, DWI and Ki67. On this basis, the sensitivity and specificity of MRS, DWI and MRS combined with DWI (MRS + DWI) in diagnosis of glioma grade were evaluated. The differences of Ki67, Cho/Cr, Cho/NAA, Cr/NAA, ADCT, rADC between LGG group and HGG group were statistically significant (p = 0.000, 0.000, 0.000, 0.008, 0.000, and 0.000 respectively). From ROC curve, area under the curve (AUC), sensitivity and specificity of Cho/Cr, Cho/NAA, Cr/NAA, ADCT, rADC, PRE (MRS + DWI) were (0.901, 86.7%, 85.7%), (0.876, 80.0%, 82.1%), (0.704, 63.3%, 71.4%), (0.862, 82.1%, 83.3%), (0.820, 75.0%, 76.7%), (0.920, 86.7%, 89.3%), respectively. Fisher's linear discriminant functions results suggest: Y1 = -20.447 + 3.46•X1 + 17.141•X2 (LGG), Y2 = -19.415 + 4.828•X1 + 14.543•X2 (HGG). Our study suggested that MRS and DWI can effectively predict cell proliferation preoperative. MRS combined with DWI can further improve sensitivity and specificity in assessing the grade of glioma.


Subject(s)
Brain Neoplasms/diagnosis , Cell Proliferation , Glioma/diagnosis , Adult , Aged , Aged, 80 and over , Area Under Curve , Brain/pathology , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Female , Glioma/diagnostic imaging , Glioma/pathology , Humans , Magnetic Resonance Spectroscopy/methods , Male , Middle Aged , Prospective Studies , ROC Curve , Sensitivity and Specificity , Young Adult
6.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 36(8): 724-728, 2020 Aug.
Article in Chinese | MEDLINE | ID: mdl-32958130

ABSTRACT

Objective To detect the expression of choline kinase α (CHKA) in glioma and to further explore the effect of CHKA knockdown on the proliferation, invasion and migration of U87MG human glioma cells. Methods The mRNA expression of CHKA in high-grade gliomas and traumatic brain tissues was detected by real-time quantitative PCR. The expression of CHKA protein in high-grade gliomas and traumatic brain tissues was detected by Western blot analysis. The short hairpin RNA of CHKA (shCHKA) lentivirus and its control lentivirus (shNC) were constructed and used to infect U87MG glioma cells, which were then divided into the following three groups: shCHKA group, shNC group and blank control group. The proliferation of U87MG cells was examined by CCK-8 assay, the invasion ability of glioma cells was tested by TranswellTM invasion assay, and the migration ability of glioma cells was evaluated by scratch healing test. Results The CHKA mRNA and protein were highly expressed in glioma. Knockdown of CHKA gene inhibited the proliferation, invasion and migration of U87MG glioma cells. Conclusion The expression of CHKA in glioma tissue is significantly higher than that in the normal brain tissue, and knockdown of CHKA gene inhibits the proliferation, invasion and migration of glioma cells. It suggests that CHKA may be related to the occurrence and development of gliomas.


Subject(s)
Brain Neoplasms , Choline Kinase , Glioma , Neoplasm Invasiveness , Brain Neoplasms/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Choline Kinase/genetics , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Glioma/genetics , Humans , Neoplasm Invasiveness/genetics
7.
Int J Clin Exp Pathol ; 13(6): 1349-1360, 2020.
Article in English | MEDLINE | ID: mdl-32661470

ABSTRACT

AIM: To investigate the effect of the hyperplasia suppressor gene (HSG) on human glioma cell invasion and its possible mechanism. METHODS: Human glioma U251 cells were infected with recombinant viral vectors carrying the HSG gene sequence (HSG overexpression group) and HSG interference sequence (HSG suppression group). The negative control group with no-load virus transcription and a blank control group with only PBS treatment were set up. CCK-8 assay, cell scratch healing test, transwell migration, and invasion test were used to detect the effect of HSG expression on proliferation, migration and invasion of U251 glioma cells. Cell immunofluorescence and cell adhesion test were used to analyze the effect of HSG expression on cytoskeleton formation and adhesion ability of U251 cells. Gene chip technology was employed to preliminarily explore the effect of HSG expression change on the inherent gene expression in U251 cells. The expression of Rho family key molecule mRNA and protein was detected by light quantitative PCR and western blot. RESULTS: After 24 h of transcription with the recombinant virus vector, the cells showed a green color under an inverted fluorescence microscope. HSG expression increased in the HSG overexpression group (P < 0.01), and decreased in the HSG inhibition group (P < 0.01). Compared with the two control groups, the proliferation, scratch healing rate, migrating cell number, invasive cell number and adhesion cell number in the HSG overexpression group were markedly lower. After HSG overexpression, the morphology of U251 cells changed; filamentous pseudopods shortened and partially flaked. However, after HSG inhibition, the pseudopods grew toward both ends and were arranged axially. The overexpression of HSG inhibited the expression of rho family proteins (RhoA, Rock1, Rock2, Rac1, and Cdc42). CONCLUSION: The overexpression of HSG inhibits the progression of glioma U251 cells by regulating the expression of rho family proteins.

8.
Int J Mol Med ; 38(4): 1190-8, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27599901

ABSTRACT

Our previous in vitro study demonstrated that the rat hyperplasia suppressor gene (rHSG) inhibited the proliferation of C6 cells. In the present study, we investigated further the effects of rHSG overexpression on the apoptosis of C6 cells and the possible pathways involved. Hoechst 33342/PI double staining and comet assay were used to examine the morphological characteristics of apoptosis and to examine the effects of rHSG on the apoptosis of the C6 cells. Western blot analysis was used to determine the effects of rHSG overexpression on the protein expression levels of poly(ADP­ribose) polymerase (PARP), cleaved caspase-3, phosphorylated extracellular signal-regulated kinase 1/2 (p-Erk1/2), phosphorylated Akt (p-Akt) and phosphoinositide 3-kinase (PI3K)/Akt, as well as on the mitogen-activated protein kinase (MAPK) pathways induced by insulin­like growth factor (IGF)-1. Our results revealed that the C6 cells transfected with the rHSG adenoviral vector (Adv-rHSG-GFP group) efficiently expressed rHSG protein; Hoechst 33342/PI double staining and comet assay revealed that rHSG increased C6 cell apoptosis and induced DNA damage. Western blot analysis indicated that rHSG overexpression significantly increased the level of full-length PARP at 24 and 72 h (P<0.01), but decreased the level at 48 h following transfection (P<0.01), while the proteins levels of cleaved PARP and cleaved caspase-3 increased significantly (P<0.01). The protein expression of p-Erk1/2 and p-Akt began to decrease at 48 h post-transfection (P<0.01). In addition, the protein levels of Akt and Erk1/2 induced by IGF-1 were significantly inhibited. On the whole, the findings of the present study demonstrate that rHSG overexpression induces the apoptosis of rat glioma cells, and that these effects may involve the PI3K/Akt and MAPK pathways.


Subject(s)
Apoptosis , Glioma/metabolism , Glioma/pathology , Tumor Suppressor Proteins/metabolism , Adenoviridae/metabolism , Animals , Caspase 3/metabolism , Cell Line, Tumor , DNA Damage , Extracellular Signal-Regulated MAP Kinases/metabolism , Insulin-Like Growth Factor I/metabolism , Phosphorylation , Poly(ADP-ribose) Polymerases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Signal Transduction , Time Factors , Transfection
9.
Int J Biol Markers ; 29(4): e411-22, 2014 Dec 09.
Article in English | MEDLINE | ID: mdl-25362936

ABSTRACT

BACKGROUND: Among all neurological tumors, tumor incidence of the neuroepithelial tissue is the highest, where 50% are gliomas. Treatment for gliomas has traditionally included surgery and adjuvant therapy. With advancements in medicine, gene therapy has entered the clinical setting, in which control of tumor growth, tumor volume and decrease of supply of blood to the tumor have been observed. Rat hyperplasia suppressor gene (rHSG) has been proven to inhibit the injury-mediated proliferation of vascular smooth muscle cells. METHODS: A recombinant adenovirus, Adv-rHSG-GFP, was constructed and characterized by in vitro and in vivo studies. The function of rHSG on cell proliferation was determined in vitro by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) exclusion assay and plate clone formation, while a C6/Sprague Dawley rat glioma model was established to observe the effect of rHSG in vivo. RESULTS: Overexpression of rHSG displayed a strong effect on suppressing C6 cells proliferation in vitro and growth of glioma in vivo, which suggests the use of rHSG as a possible treatment strategy for glioma. p21Cip1, p27Kip1 and proliferating cell nuclear antigen were found to be involved in the tumor suppression mechanism of rHSG. CONCLUSIONS: rHSG can markedly inhibit of the growth of rat glioma cells. The suppression mechanism of rHSG may be related to cell cycle regulation, which shows that rHSG is a potential therapeutic target of glioma tumor. This preclinical study supports a further in-depth study on the effect of rHSG on cell proliferation, migration and change in the extracellular matrix component of glioma cells.


Subject(s)
Genetic Therapy/methods , Glioma/genetics , Glioma/therapy , Membrane Proteins/genetics , Mitochondrial Proteins/genetics , Adenoviridae/genetics , Animals , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p27/genetics , GTP Phosphohydrolases , HEK293 Cells , Humans , Male , Muscle, Smooth, Vascular/cytology , Proliferating Cell Nuclear Antigen/genetics , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...