Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Histochem ; 66(4)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36172711

ABSTRACT

Gastric cancer (GC) is one of the leading causes of cancer-related deaths worldwide. Despite progress in the last decades, there are still no reliable biomarkers for the diagnosis of and prognosis for GC. Aberrant sialylation is a widespread critical event in the development of GC. Neuraminidases (Neu) and sialyltransferases (STs) regulate the ablation and addition of sialic acid during glycoconjugates biosynthesis, and they are a considerable source of biomarkers in various cancers. This study retrospectively characterized Neu3 and ST3Gal3 expression by immunohistochemistry in 71 paraffin-embedded GC tissue specimens and analyzed the relationship between their expression and the clinicopathological parameters. Neu3 expression was markedly increased in GC tissues compared with non-tumoral tissues (p<0.0001). Intratumoral ST3Gal3 staining was significantly associated with intestinal subtype (p=0.0042) and was negatively associated with angiolymphatic invasion (p=0.0002) and higher histological grade G3 (p=0.0066). Multivariate analysis revealed that ST3Gal3 positivity is able to predict Lauren's classification. No associations were found between Neu3 staining and clinical parameters. The in silico analysis of mRNA expression in GC validation cohorts corroborates the significant ST3Gal3 association with higher histological grade observed in our study. These findings suggest that ST3Gal3 expression may be an indicator for aggressiveness of primary GC.


Subject(s)
Stomach Neoplasms , Humans , N-Acetylneuraminic Acid , RNA, Messenger , Retrospective Studies , Sialyltransferases/genetics , Sialyltransferases/metabolism , Stomach Neoplasms/pathology
2.
Comb Chem High Throughput Screen ; 23(5): 359-368, 2020.
Article in English | MEDLINE | ID: mdl-32189590

ABSTRACT

AIM AND OBJECTIVE: In the last decades, cancer has become a major problem in public health all around the globe. Chimeric chemical structures have been established as an important trend on medicinal chemistry in the last years. Thiazacridines are hybrid molecules composed of a thiazolidine and acridine nucleus, both pharmacophores that act on important biological targets for cancer. By the fact it is a serious disease, seven new 3-acridin-9-ylmethyl-thiazolidine-2,4-dione derivatives were synthesized, characterized, analyzed by computer simulation and tested in tumor cells. In order to find out if the compounds have therapeutic potential. MATERIALS AND METHODS: Seven new 3-acridin-9-ylmethyl-thiazolidine-2,4-dione derivatives were synthesized through Michael addition and Knoevenagel condensation strategies. Characterization was performed by NMR and Infrared spectroscopy techniques. Regarding biological activity, thiazacridines were tested against solid and hematopoietic tumoral cell lines, namely Jurkat (acute T-cell leukemia); HL-60 (acute promyelocytic leukemia); DU 145 (prostate cancer); MOLT-4 (acute lymphoblastic leukemia); RAJI (Burkitt's lymphoma); K562 (chronic myelogenous leukemia) and normal cells PBMC (healthy volunteers). Molecular docking analysis was also performed in order to assess major targets of these new compounds. Cell cycle and clonogenic assay were also performed. RESULTS: Compound LPSF/AA-62 (9f) exhibited the most potent anticancer activity against HL-60 (IC50 3,7±1,7 µM), MOLT-4 (IC50 5,7±1,1 µM), Jurkat (IC50 18,6 µM), Du-145 (IC50 20±5 µM) and Raji (IC50 52,3±9,2 µM). While the compound LPSF/AA-57 (9b) exhibited anticancer activity against the K562 cell line (IC50 51,8±7,8 µM). Derivative LPSF/AA-62 (9f) did not interfere in the cell cycle phases of the Molt-4 lineage. However, the LPSF/AA-62 (9f) derivative significantly reduced the formation of prostate cancer cell clones. The compound LPSF/AA-62 (9f) has shown strong anchorage stability with enzymes topoisomerases 1 and 2, in particular due the presence of chlorine favored hydrogen bonds with topoisomerase 1. CONCLUSION: The 3-(acridin-9-ylmethyl)-5-((10-chloroanthracen-9-yl)methylene)thiazolidine-2,4-dione (LPSF/AA-62) presented the most promising results, showing anti-tumor activity in 5 of the 6 cell types tested, especially inhibiting the formation of colonies of prostate tumor cells (DU-145).


Subject(s)
Acridines/pharmacology , Antineoplastic Agents/pharmacology , Molecular Docking Simulation , Acridines/chemical synthesis , Acridines/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Humans , Molecular Structure
3.
Eur J Histochem ; 62(2): 2931, 2018 Jun 14.
Article in English | MEDLINE | ID: mdl-29943957

ABSTRACT

Gastric cancer (GC) is the second most common cause of cancer-related deaths in the world. This study aims to investigate the differential tissue expression of ppGalNAc-T15 and to evaluate its possible association with clinical-pathological parameters and outcome of gastric adenocarcinoma patients. For these 70 patients were evaluated the expression by immunohistochemistry to ppGalNAc-T15. Our results showed that 33 (47.1%) patients were ppGalNAC-T15+ positive and 37 (52.9%) negative. Positive staining for ppGalNAc-T15 was significantly present in patients older than 60 years (P=0.0306) and submitted to total gastrectomy (P=0.0087). Also, some results remained at the limit of significance as surgical standing (P=0.0562) and histological grade (P=0.0549). Therefore, the ppGalNAc-T15 immunoreactivity can be useful to understand the prognosis of patients with gastric cancer.


Subject(s)
Adenocarcinoma/enzymology , Adenocarcinoma/pathology , Immunohistochemistry/methods , N-Acetylgalactosaminyltransferases/metabolism , Stomach Neoplasms/enzymology , Stomach Neoplasms/pathology , Adenocarcinoma/surgery , Adult , Age Factors , Aged , Aged, 80 and over , Female , Gastrectomy , Humans , Male , Middle Aged , Prognosis , Stomach Neoplasms/surgery , Polypeptide N-acetylgalactosaminyltransferase
4.
Comb Chem High Throughput Screen ; 20(8): 713-718, 2017.
Article in English | MEDLINE | ID: mdl-28738767

ABSTRACT

AIM AND OBJECTIVE: Cancer has become one of the leading causes of morbidity and mortality worldwide. Limitations associated with existing agents increase the need to develop more effective anticancer drugs to improve the therapeutic arsenal available. The aim of this study was to synthesize and evaluate the antiproliferative effects of three new thiazacridine derivatives. MATERIAL AND METHODS: Using a three steps synthesis reaction, three novel thiazacridine derivatives were obtained and characterized: (Z)-5-acridin-9-ylmethylene-3-(4-methyl-benzyl)-4-thioxo-thiazolidin- 2-one (LPSF/AC-99), (Z)-5-acridin-9-ylmethylene-3-(4-chloro-benzyl)-4-thioxo-thiazolidin-2- one (LPSF/AC-119) and (Z)-5-acridin-9-ylmethylene-3-(3-chloro-benzyl)-4-thioxo-thiazolidin-2- one (LPSF/AC-129). Toxicity and selectivity assays were performed by colorimetric assay. Then, changes in cell cycle and cell death induction mechanisms were assessed by flow cytometry. RESULTS: All compounds exhibited cytotoxicity to Raji (Burkitt's lymphoma) and Jurkat (acute T cell leukemia) cells, where LPSF/AC-119 showed best IC50 values (0.6 and 1.53 µ M, respectively). LPSF/AC-129 was the only cytotoxic compound in glioblastoma cell line NG97 (IC50 = 55.77 µ M). None of the compounds were toxic to normal human cells and induced neoplastic cell death primarily by apoptosis. CONCLUSION: All derivatives were more cytotoxic to hematopoietic neoplastic cells when compared to solid tumor derived cells. All three compounds are promising for in vivo and combination therapy studies against cancer.


Subject(s)
Acridines/pharmacology , Antineoplastic Agents/pharmacology , Hematologic Neoplasms/drug therapy , Acridines/chemical synthesis , Acridines/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Hematologic Neoplasms/pathology , Humans , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...