Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Cancer ; 152(3): 511-523, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36069222

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is characterized by abundant stroma, the main cellular constituents of which are cancer-associated fibroblasts (CAFs). Stroma-targeting agents have been proposed to improve the poor outcome of current treatments. However, clinical trials using these agents showed disappointing results. Heterogeneity in the PDAC CAF population was recently delineated demonstrating that both tumor-promoting and tumor-suppressive activities co-exist in the stroma. Here, we aimed to identify biomarkers for the CAF population that contribute to a favorable outcome. RNA-sequencing reads from patient-derived xenografts (PDXs) were mapped to the human and mouse genome to allocate the expression of genes to the tumor or stroma. Survival meta-analysis for stromal genes was performed and applied to human protein atlas data to identify circulating biomarkers. The candidate protein was perturbed in co-cultures and assessed in existing and novel single-cell gene expression analysis from control, pancreatitis, pancreatitis-recovered and PDAC mouse models. Serum levels of the candidate biomarker were measured in two independent cohorts totaling 148 PDAC patients and related them to overall survival. Osteoglycin (OGN) was identified as a candidate serum prognostic marker. Single-cell analysis indicated that Ogn is derived from a subgroup of inflammatory CAFs. Ogn-expressing fibroblasts are distinct from resident healthy pancreatic stellate cells and arise during pancreatitis. Serum OGN levels were prognostic for favorable overall survival in two independent PDAC cohorts (HR = 0.47, P = .042 and HR = 0.53, P = .006). Altogether, we conclude that high circulating OGN levels inform on a previously unrecognized subgroup of CAFs and predict favorable outcomes in resectable PDAC.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Pancreatitis , Humans , Mice , Animals , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Cancer-Associated Fibroblasts/metabolism , Pancreatitis/pathology , Tumor Microenvironment , Pancreatic Neoplasms
2.
Nat Cancer ; 3(11): 1284-1299, 2022 11.
Article in English | MEDLINE | ID: mdl-36414711

ABSTRACT

Senolytics, drugs that kill senescent cells, have been proposed to improve the response to pro-senescence cancer therapies; however, this remains challenging due to a lack of broadly acting senolytic drugs. Using CRISPR/Cas9-based genetic screens in different senescent cancer cell models, we identify loss of the death receptor inhibitor cFLIP as a common vulnerability of senescent cancer cells. Senescent cells are primed for apoptotic death by NF-κB-mediated upregulation of death receptor 5 (DR5) and its ligand TRAIL, but are protected from death by increased cFLIP expression. Activation of DR5 signaling by agonistic antibody, which can be enhanced further by suppression of cFLIP by BRD2 inhibition, leads to efficient killing of a variety of senescent cancer cells. Moreover, senescent cells sensitize adjacent non-senescent cells to killing by DR5 agonist through a bystander effect mediated by secretion of cytokines. We validate this 'one-two punch' cancer therapy by combining pro-senescence therapy with DR5 activation in different animal models.


Subject(s)
CASP8 and FADD-Like Apoptosis Regulating Protein , Neoplasms , Animals , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , TNF-Related Apoptosis-Inducing Ligand/genetics , Apoptosis , NF-kappa B/metabolism , Signal Transduction , Neoplasms/drug therapy
3.
Future Oncol ; 16(11): 619-629, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32125175

ABSTRACT

The clinical benefit of treatment with BRAF- and MEK-inhibitors in melanoma is limited due to resistance associated with emerging secondary mutations. Preclinical and clinical studies have shown that short-term treatment with the HDAC inhibitor vorinostat can eliminate cells harboring these secondary mutations causing resistance. This proof of concept study is to determine the efficacy of sequential treatment with vorinostat and BRAFi/MEKi in resistant BRAFV600E mutant melanoma. The primary aim is demonstrating anti-tumor response of progressive lesions according to RECIST 1.1. Secondary end points are to determine that emerging resistant clones with a secondary mutation in the MAPK pathway can be detected in circulating tumor DNA and purged by short-term vorinostat treatment. Exploratory end points include pharmacokinetic, pharmacodynamic and pharmacogenetic analyses (NCT02836548).


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Histone Deacetylase Inhibitors/therapeutic use , Melanoma/drug therapy , Proto-Oncogene Proteins B-raf/genetics , Vorinostat/therapeutic use , Drug Administration Schedule , Drug Resistance, Neoplasm/genetics , Humans , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Melanoma/genetics , Melanoma/pathology , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mutation , Proof of Concept Study , Proto-Oncogene Proteins B-raf/antagonists & inhibitors
4.
Nature ; 574(7777): 268-272, 2019 10.
Article in English | MEDLINE | ID: mdl-31578521

ABSTRACT

Liver cancer remains difficult to treat, owing to a paucity of drugs that target critical dependencies1,2; broad-spectrum kinase inhibitors such as sorafenib provide only a modest benefit to patients with hepatocellular carcinoma3. The induction of senescence may represent a strategy for the treatment of cancer, especially when combined with a second drug that selectively eliminates senescent cancer cells (senolysis)4,5. Here, using a kinome-focused genetic screen, we show that pharmacological inhibition of the DNA-replication kinase CDC7 induces senescence selectively in liver cancer cells with mutations in TP53. A follow-up chemical screen identified the antidepressant sertraline as an agent that kills hepatocellular carcinoma cells that have been rendered senescent by inhibition of CDC7. Sertraline suppressed mTOR signalling, and selective drugs that target this pathway were highly effective in causing the apoptotic cell death of hepatocellular carcinoma cells treated with a CDC7 inhibitor. The feedback reactivation of mTOR signalling after its inhibition6 is blocked in cells that have been treated with a CDC7 inhibitor, which leads to the sustained inhibition of mTOR and cell death. Using multiple in vivo mouse models of liver cancer, we show that treatment with combined inhibition of of CDC7 and mTOR results in a marked reduction of tumour growth. Our data indicate that exploiting an induced vulnerability could be an effective treatment for liver cancer.


Subject(s)
Apoptosis/drug effects , Cellular Senescence/drug effects , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Molecular Targeted Therapy , Sertraline/pharmacology , Animals , Cell Cycle Proteins/antagonists & inhibitors , Cell Line, Tumor , Disease Models, Animal , Female , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Male , Mice , Mice, Inbred BALB C , Mutation , Protein Serine-Threonine Kinases/antagonists & inhibitors , Sertraline/therapeutic use , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/antagonists & inhibitors , Tumor Suppressor Protein p53/genetics
5.
Cell ; 136(5): 839-851, 2009 Mar 06.
Article in English | MEDLINE | ID: mdl-19217150

ABSTRACT

A key function of blood vessels, to supply oxygen, is impaired in tumors because of abnormalities in their endothelial lining. PHD proteins serve as oxygen sensors and may regulate oxygen delivery. We therefore studied the role of endothelial PHD2 in vessel shaping by implanting tumors in PHD2(+/-) mice. Haplodeficiency of PHD2 did not affect tumor vessel density or lumen size, but normalized the endothelial lining and vessel maturation. This resulted in improved tumor perfusion and oxygenation and inhibited tumor cell invasion, intravasation, and metastasis. Haplodeficiency of PHD2 redirected the specification of endothelial tip cells to a more quiescent cell type, lacking filopodia and arrayed in a phalanx formation. This transition relied on HIF-driven upregulation of (soluble) VEGFR-1 and VE-cadherin. Thus, decreased activity of an oxygen sensor in hypoxic conditions prompts endothelial cells to readjust their shape and phenotype to restore oxygen supply. Inhibition of PHD2 may offer alternative therapeutic opportunities for anticancer therapy.


Subject(s)
Blood Vessels/cytology , DNA-Binding Proteins/metabolism , Endothelial Cells/metabolism , Immediate-Early Proteins/metabolism , Neoplasm Metastasis , Neoplasms/blood supply , Oxygen/metabolism , Animals , Blood Vessels/embryology , Blood Vessels/metabolism , Cell Shape , DNA-Binding Proteins/genetics , Endothelial Cells/cytology , Glycolysis , Heterozygote , Hypoxia/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases , Immediate-Early Proteins/genetics , Mice , Neoplasms/pathology , Procollagen-Proline Dioxygenase
6.
Mol Biol Cell ; 18(2): 523-35, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17135289

ABSTRACT

Expression of yeast mitochondrial genes depends on specific translational activators acting on the 5'-untranslated region of their target mRNAs. Mss51p is a translational factor for cytochrome c oxidase subunit 1 (COX1) mRNA and a key player in down-regulating Cox1p expression when subunits with which it normally interacts are not available. Mss51p probably acts on the 5'-untranslated region of COX1 mRNA to initiate translation and on the coding sequence itself to facilitate elongation. Mss51p binds newly synthesized Cox1p, an interaction that could be necessary for translation. To gain insight into the different roles of Mss51p on Cox1p biogenesis, we have analyzed the properties of a new mitochondrial protein, mp15, which is synthesized in mss51 mutants and in cytochrome oxidase mutants in which Cox1p translation is suppressed. The mp15 polypeptide is not detected in cox14 mutants that express Cox1p normally. We show that mp15 is a truncated translation product of COX1 mRNA whose synthesis requires the COX1 mRNA-specific translational activator Pet309p. These results support a key role for Mss51p in translationally regulating Cox1p synthesis by the status of cytochrome oxidase assembly.


Subject(s)
Cytochromes c1/biosynthesis , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Fungal , Protein Biosynthesis/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Transcription Factors/metabolism , 5' Untranslated Regions/metabolism , Chloramphenicol/pharmacology , Cytochromes c1/genetics , Membrane Proteins/analysis , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mitochondrial Proteins , Mutation , Nuclear Proteins/genetics , Peptide Initiation Factors , Peptides/analysis , Peptides/genetics , Peptides/metabolism , RNA, Messenger/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/genetics , Transcription, Genetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...