Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Haematologica ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721739

ABSTRACT

Anti T-lymphocyte globulin (ATLG) is used in hematopoietic stem cell transplantation (HSCT) to prevent graft-versus-host disease (GvHD) and graft failure. To date, insight in ATLG pharmacokinetics and -dynamics (PK/PD) is limited, and population PK (POPPK) models are lacking. In this prospective study, we describe ATLG POPPK using NONMEM® and the impact of ATLG exposure on clinical outcome and immune reconstitution in a homogeneous cohort of pediatric acute lymphoblastic leukemia (ALL) patients transplanted with a matched unrelated donor and receiving uniform ATLG dosing. Based on 121 patients and 812 samples for POPPK analysis, a two-compartmental model with parallel linear and non-linear clearance and bodyweight as covariate, best described the ATLG concentrationtime data. The level of ATLG exposure (day active ATLG day 16 8.2%, p.

2.
Blood Adv ; 7(16): 4462-4474, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37285798

ABSTRACT

Alemtuzumab (anti-CD52 antibody) is frequently prescribed to children with nonmalignant diseases undergoing allogeneic hematopoietic stem cell transplantation (HSCT) to prevent graft failure (GF) and acute graft-versus-host disease (aGVHD). The aim of this multicenter study was the characterization of alemtuzumab population pharmacokinetics to perform a novel model-based exposure-response analysis in 53 children with nonmalignant immunological or hematological disease and a median age of 4.4 years (interquartile range [IQR], 0.8-8.7). The median cumulative alemtuzumab dose was 0.6 mg/kg (IQR, 0.6-1) administered over 2 to 7 days. A 2-compartment population pharmacokinetics model with parallel linear and nonlinear elimination including allometrically scaled bodyweight (median, 17.50 kg; IQR, 8.76-33.00) and lymphocyte count at baseline (mean, 2.24 × 109/L; standard deviation ± 1.87) as significant pharmacokinetic predictors was developed using nonlinear mixed effects modeling. Based on the model-estimated median concentration at day of HSCT (0.77 µg/mL; IQR, 0.33-1.82), patients were grouped into a low- (≤0.77 µg/mL) or high- (>0.77 µg/mL) exposure groups. High alemtuzumab exposure at day of HSCT correlated with delayed CD4+ and CD8+ T-cell reconstitution (P value < .0001) and increased risk of GF (P value = .043). In contrast, alemtuzumab exposure did not significantly influence the incidence of aGVHD grade ≥2, mortality, chimerism at 1 year, viral reactivations, and autoimmunity at a median follow-up of 3.3 years (IQR, 2.5-8.0). In conclusion, this novel population pharmacokinetics model is suitable for individualized intravenous precision dosing to predict alemtuzumab exposure in pediatric allogeneic HSCT for nonmalignant diseases, aiming at the achievement of early T-cell reconstitution and prevention of GF in future prospective studies.


Subject(s)
CD8-Positive T-Lymphocytes , Hematopoietic Stem Cell Transplantation , Child , Humans , Child, Preschool , Alemtuzumab/therapeutic use , Lymphocyte Count , Hematopoietic Stem Cell Transplantation/adverse effects , Prospective Studies
3.
Blood ; 141(11): 1277-1292, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36044666

ABSTRACT

Acute graft-versus-host disease (aGVHD) is an immune cell‒driven, potentially lethal complication of allogeneic hematopoietic stem cell transplantation affecting diverse organs, including the skin, liver, and gastrointestinal (GI) tract. We applied mass cytometry (CyTOF) to dissect circulating myeloid and lymphoid cells in children with severe (grade III-IV) aGVHD treated with immune suppressive drugs alone (first-line therapy) or in combination with mesenchymal stromal cells (MSCs; second-line therapy). These results were compared with CyTOF data generated in children who underwent transplantation with no aGVHD or age-matched healthy control participants. Onset of aGVHD was associated with the appearance of CD11b+CD163+ myeloid cells in the blood and accumulation in the skin and GI tract. Distinct T-cell populations, including TCRγδ+ cells, expressing activation markers and chemokine receptors guiding homing to the skin and GI tract were found in the same blood samples. CXCR3+ T cells released inflammation-promoting factors after overnight stimulation. These results indicate that lymphoid and myeloid compartments are triggered at aGVHD onset. Immunoglobulin M (IgM) presumably class switched, plasmablasts, and 2 distinct CD11b- dendritic cell subsets were other prominent immune populations found early during the course of aGVHD in patients refractory to both first- and second-line (MSC-based) therapy. In these nonresponding patients, effector and regulatory T cells with skin- or gut-homing receptors also remained proportionally high over time, whereas their frequencies declined in therapy responders. Our results underscore the additive value of high-dimensional immune cell profiling for clinical response evaluation, which may assist timely decision-making in the management of severe aGVHD.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Mesenchymal Stem Cell Transplantation , Child , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Graft vs Host Disease/etiology , Mesenchymal Stem Cell Transplantation/methods , Immunosuppression Therapy , Acute Disease
4.
Ther Drug Monit ; 45(1): 79-86, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36150715

ABSTRACT

BACKGROUND: Alemtuzumab is a humanized monoclonal antibody that targets the CD52 glycoprotein expressed on most lymphocytes, subsequently inducing complement-mediated and antibody-mediated cytotoxicity. Owing to its ability to induce profound immune depletion, alemtuzumab is frequently used in patients before allogeneic hematopoietic stem cell transplantation to prevent graft rejection and acute graft-versus-host disease. In this clinical context, a stable immunoassay with high sensitivity and specificity to determine alemtuzumab levels is essential for performing pharmacokinetic and pharmacodynamic analyses; however, the available methods have several limitations. Here, we report the successful development and validation of an efficient and highly sensitive enzyme-linked immunosorbent assay technique based on commercially available reagents to quantify alemtuzumab in human serum or plasma. METHODS: This enzyme-linked immunosorbent assay technique was developed and validated in accordance with the European Medicines Agency guidelines on bioanalytical method validation. RESULTS: The assay sensitivity (lower limit of quantification) is 0.5 ng·mL -1 , and the dynamic range is 0.78-25 ng·mL -1 . To accommodate quantification of peak concentration and concentrations below the lympholytic level (<0.1 mcg·mL -1 ), patients' serum samples were prediluted 20-400 times according to the expected alemtuzumab concentration. The overall within-run accuracy was between 96% and 105%, whereas overall within-run precision (coefficient of variation) was between 3% and 9%. The between-run assessment provided an overall accuracy between 86% and 95% and an overall coefficient of variation between 5% and 14%. CONCLUSIONS: The developed assay provides accurate insight into alemtuzumab exposure and its effects on the clinical response to treatment, which is key to optimizing treatment strategies.


Subject(s)
Antibodies, Monoclonal , Graft vs Host Disease , Humans , Alemtuzumab , Antibodies, Monoclonal, Humanized , Graft vs Host Disease/prevention & control , Enzyme-Linked Immunosorbent Assay
5.
J Neuroimmunol ; 373: 577978, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36240543

ABSTRACT

Muscle-specific kinase (MuSK) myasthenia gravis (MG) is a neuromuscular autoimmune disease belonging to a growing group of IgG4 autoimmune diseases (IgG4-AIDs), in which the majority of pathogenic autoantibodies are of the IgG4 subclass. The more prevalent form of MG with acetylcholine receptor (AChR) antibodies is caused by IgG1-3 autoantibodies. A dominant role for IgG4 in autoimmune disease is intriguing due to its anti-inflammatory characteristics. It is unclear why MuSK autoantibodies are predominantly IgG4. We hypothesized that MuSK MG patients have a general predisposition to generate IgG4 responses, therefore resulting in high levels of circulating IgG4. To investigate this, we quantified serum Ig isotypes and IgG subclasses using nephelometric and turbidimetric assays in MuSK MG and AChR MG patients not under influence of immunosuppressive treatment. Absolute serum IgG1 was increased in both MuSK and AChR MG patients compared to healthy donors. In addition, only MuSK MG patients on average had significantly increased and enriched serum IgG4. Although more MuSK MG patients had elevated serum IgG4, for most the IgG4 serum levels fell within the normal range. Correlation analyses suggest MuSK-specific antibodies do not solely explain the variation in IgG4 levels. In conclusion, although serum IgG4 levels are slightly increased, the levels do not support ubiquitous IgG4 responses in MuSK MG patients as the underlying cause of dominant IgG4 MuSK antibodies.


Subject(s)
Immunoglobulin G , Myasthenia Gravis , Humans , Autoantibodies
6.
J Neuroimmunol ; 370: 577930, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35905614

ABSTRACT

OBJECTIVE: To determine the effect of tetanus toxoid (TT) revaccination on circulating B-, T- and NK-cell compartments in myasthenia gravis (MG) patients. METHODS: Lymphocyte (sub)populations and differentiation stages were assessed by flow cytometry in 50 TT revaccinated MG patients. TT-specific proliferative responses were explored in PBMC cultures. RESULTS: In patients treated with azathioprine B- and NK cell numbers were strongly decreased. Lymphocyte (sub)populations remained unaffected upon TT revaccination. t All patients showed a significant TT-induced proliferative response. CONCLUSION: TT revaccination is effective in MG patients with stable disease irrespective of their thymectomy status and medication and does not alter the composition of the lymphocyte compartment.


Subject(s)
Myasthenia Gravis , Tetanus , Humans , Immunization, Secondary , Immunosuppression Therapy , Leukocytes, Mononuclear , Myasthenia Gravis/drug therapy , Myasthenia Gravis/surgery , Thymectomy
7.
J Immunol ; 206(12): 2828-2838, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34108260

ABSTRACT

Differentially and functionally distinct T cell subsets are involved in the development of complications after allogeneic hematopoietic stem cell transplantation (HSCT), but little is known about factors regulating their recovery after HSCT. In this study, we investigated associations between immune-regulating cytokines, T cell differentiation, and clinical outcomes. We included 80 children undergoing allogeneic HSCT for acute leukemia using bone marrow or peripheral blood stem cells grafted from a matched sibling or unrelated donor. Cytokines (IL-7, IL-15, IL-18, SCF, IL-6, IL-2, and TNF-α) and active anti-thymocyte globulin (ATG) levels were longitudinally measured along with extended T cell phenotyping. The cytokine profiles showed a temporary rise in IL-7 and IL-15 during lymphopenia, which was strongly dependent on exposure to active ATG. High levels of IL-7 and IL-15 from graft infusion to day +30 were predictive of slower T cell recovery during the first 2 mo post-HSCT; however, because of a major expansion of memory T cell stages, only naive T cells remained decreased after 3 mo (p < 0.05). No differential effect was seen on polarization of CD4+ T cells into Th1, Th2, or Th17 cells or regulatory T cells. Low levels of IL-7 and IL-15 at day +14 were associated with acute graft-versus-host disease grades II-IV in ATG-treated patients (p = 0.0004 and p = 0.0002, respectively). Children with IL-7 levels comparable to healthy controls at day +14 post-HSCT were less likely to develop EBV reactivation posttransplant. These findings suggest that quantification of IL-7 and IL-15 may be useful as biomarkers in assessing the overall T cell depletion and suggest a potential for predicting complications after HSCT.


Subject(s)
Hematopoietic Stem Cell Transplantation/adverse effects , Interleukin-15/analysis , Interleukin-7/analysis , Leukemia, Myeloid, Acute/therapy , Lymphopenia/therapy , Memory T Cells/immunology , Adolescent , Adult , Child , Child, Preschool , Humans , Infant , Interleukin-15/immunology , Interleukin-7/immunology , Leukemia, Myeloid, Acute/immunology , Lymphocyte Depletion , Lymphopenia/immunology , Middle Aged , Retrospective Studies , Young Adult
8.
Bone Marrow Transplant ; 56(9): 2203-2211, 2021 09.
Article in English | MEDLINE | ID: mdl-33941871

ABSTRACT

The use of HLA-mismatched (un)related donors is historically associated with a higher incidence of transplant-related complications and mortality. However, the use of such donors may overcome the limited availability of HLA-matched donors for patients with ß-thalassemia major (TM) and sickle cell disease (SCD). We investigated hematopoietic stem cell transplantation (HSCT) outcomes of pediatric TM and SCD patients treated with a mismatched donor using a treosulfan-based conditioning in combination with ATG and post-transplant cyclophosphamide (PT-CY) and compared these results to the clinical outcome of patients treated by matched donor HSCT without PT-CY. Thirty-eight children (n = 24 HLA-identical or 10/10-matched donors; n = 14 HLA-mismatched donors), who received a non-depleted bone marrow graft were included. Event-free survival (EFS) and GvHD were not higher in the mismatched PT-Cy group as compared to the matched group. Moreover, despite delayed neutrophil engraftment (day +22 vs. +26, p = 0.002) and immune recovery in the mismatched PT-Cy group, this did not result in more infectious complications. Therefore, we conclude that in the absence of an HLA-identical or a matched unrelated donor, HSCT with a mismatched unrelated or haploidentical donor in combination with ATG plus PT-CY can be considered a safe and effective treatment option for pediatric hemoglobinopathy patients.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Hemoglobinopathies , Child , Cyclophosphamide/therapeutic use , Hemoglobinopathies/therapy , Humans , Transplantation Conditioning
9.
J Exp Med ; 217(11)2020 11 02.
Article in English | MEDLINE | ID: mdl-32865561

ABSTRACT

The autosomal recessive immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome is a genetically heterogeneous disorder. Despite the identification of the underlying gene defects, it is unclear how mutations in any of the four known ICF genes cause a primary immunodeficiency. Here we demonstrate that loss of ZBTB24 in B cells from mice and ICF2 patients affects nonhomologous end-joining (NHEJ) during immunoglobulin class-switch recombination and consequently impairs immunoglobulin production and isotype balance. Mechanistically, we found that ZBTB24 associates with poly(ADP-ribose) polymerase 1 (PARP1) and stimulates its auto-poly(ADP-ribosyl)ation. The zinc-finger in ZBTB24 binds PARP1-associated poly(ADP-ribose) chains and mediates the PARP1-dependent recruitment of ZBTB24 to DNA breaks. Moreover, through its association with poly(ADP-ribose) chains, ZBTB24 protects them from degradation by poly(ADP-ribose) glycohydrolase (PARG). This facilitates the poly(ADP-ribose)-dependent assembly of the LIG4/XRCC4 complex at DNA breaks, thereby promoting error-free NHEJ. Thus, we uncover ZBTB24 as a regulator of PARP1-dependent NHEJ and class-switch recombination, providing a molecular basis for the immunodeficiency in ICF2 syndrome.


Subject(s)
DNA End-Joining Repair/genetics , Face/abnormalities , Immunoglobulin Class Switching/genetics , Mutation , Primary Immunodeficiency Diseases/genetics , Repressor Proteins/genetics , Transcription Factors/genetics , Animals , B-Lymphocytes/immunology , DNA Breaks , Face/pathology , HEK293 Cells , Humans , Immunoglobulin Switch Region , Mice , Poly (ADP-Ribose) Polymerase-1/metabolism , Primary Immunodeficiency Diseases/blood , Primary Immunodeficiency Diseases/pathology , Repressor Proteins/metabolism , Transcription Factors/metabolism , Transfection
10.
Hematol Oncol Stem Cell Ther ; 13(2): 61-65, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32202242

ABSTRACT

Antithymocyte globulin (ATG) is a widely accepted part of the conditioning regimen applied in the setting of hematopoietic stem cell transplantation (HSCT) to prevent graft rejection and graft-versus-host disease. Although weight-based dosing of ATG has been introduced to optimize ATG dosing, substantial variance in clearance of active ATG, the actual lymphocyte binding component, remains a challenge. Therefore, further research regarding ATG pharmacokinetics and pharmacodynamics in different HSCT settings and in patients with different types of underlying diseases is required.


Subject(s)
Anemia, Sickle Cell/therapy , Antilymphocyte Serum/therapeutic use , Hematopoietic Stem Cell Transplantation/methods , Transplantation Conditioning/methods , Transplantation, Haploidentical/methods , Animals , Antilymphocyte Serum/pharmacology , Europe , Female , Germany , History, 21st Century , Humans , Male
12.
Front Immunol ; 10: 315, 2019.
Article in English | MEDLINE | ID: mdl-30894854

ABSTRACT

Anti-thymocyte globulin (ATG) is a lymphocyte depleting agent applied in hematopoietic stem cell transplantation (HSCT) to prevent rejection and Graft-vs.-Host Disease (GvHD). In this study, we compared two rabbit ATG products, ATG-Genzyme (ATG-GENZ), and ATG-Fresenius (ATG-FRES), with respect to dosing, clearance of the active lymphocyte binding component, post-HSCT immune reconstitution and clinical outcome. Fifty-eigth pediatric acute leukemia patients (n = 42 ATG-GENZ, n = 16 ATG-FRES), who received a non-depleted bone marrow or peripheral blood stem cell graft from an unrelated donor were included. ATG-GENZ was given at a dosage of 6-10 mg/kg; ATG-FRES at 45-60 mg/kg. The active component of ATG from both products was cleared at different rates. Within the ATG-FRES dose range no differences were found in clearance of active ATG or T-cell re-appearance. However, the high dosage of ATG-GENZ (10 mg/kg), in contrast to the low dosage (6-8 mg/kg), correlated with prolonged persistence of active ATG and delayed T-cell reconstitution. Occurrence of serious acute GvHD (grade III-IV) was highest in the ATG-GENZ-low dosage group. These results imply that dosing of ATG-GENZ is more critical than dosing of ATG-FRES due to the difference in clearance of active ATG. This should be taken into account when designing clinical protocols.


Subject(s)
Antilymphocyte Serum/immunology , Graft vs Host Disease/immunology , T-Lymphocytes/immunology , Animals , Hematopoietic Stem Cell Transplantation/methods , Humans , Leukemia, Myeloid, Acute/immunology , Lymphocyte Depletion/methods , Rabbits , Stem Cells/immunology , Transplantation Conditioning/methods , Unrelated Donors
13.
Clin Case Rep ; 6(12): 2416-2423, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30564340

ABSTRACT

We present a patient who was diagnosed with severe hypogammaglobulinemia after her newborn child presented with two episodes of meningitis. The patient had no history or symptoms suggestive of immunodeficiency. Thus far, a cause for the immunodeficiency has not been found, even after extensive immunological evaluation.

14.
Front Immunol ; 9: 1238, 2018.
Article in English | MEDLINE | ID: mdl-29915589

ABSTRACT

Immunoglobulin G (IgG) fragment crystallizable (Fc) N-glycosylation has a large influence on the affinity of the antibody for binding to Fcγ-receptors (FcγRs) and C1q protein, thereby influencing immune effector functions. IgG Fc glycosylation is known to be partly regulated by genetics and partly by stimuli in the microenvironment of the B cell. Following allogeneic hematopoietic stem cell transplantation (HSCT), and in the presence of (almost) complete donor chimerism, IgG is expected to be produced by, and glycosylated in, B cells of donor origin. We investigated to what extent IgG glycosylation in patients after transplantation is determined by factors of the donor (genetics) or the recipient (environment). Using an IgG subclass-specific liquid chromatography-mass spectrometry method, we analyzed the plasma/serum IgG Fc glycosylation profiles of 34 pediatric patients pre-HSCT and at 6 and 12 months post-HSCT and compared these to the profiles of their donors and age-matched healthy controls. Patients treated for hematological malignancies as well as for non-malignant hematological diseases showed after transplantation a lower Fc galactosylation than their donors. Especially for the patients treated for leukemia, the post-HSCT Fc glycosylation profiles were more similar to the pre-HSCT recipient profiles than to profiles of the donors. Pre-HSCT, the leukemia patient group showed as distinctive feature a decrease in sialylation and in hybrid-type glycans as compared to healthy controls, which both normalized after transplantation. Our data suggest that IgG Fc glycosylation in children after HSCT does not directly mimic the donor profile, but is rather determined by persisting environmental factors of the host.


Subject(s)
Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/immunology , Immunoglobulin G/immunology , Adolescent , Antibody Specificity/immunology , Case-Control Studies , Child , Child, Preschool , Female , Glycosylation , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cells/metabolism , Humans , Immunoglobulin Fc Fragments/immunology , Immunoglobulin G/metabolism , Infant , Male , Tissue Donors
15.
Biol Blood Marrow Transplant ; 24(4): 772-778, 2018 04.
Article in English | MEDLINE | ID: mdl-29277513

ABSTRACT

Autoimmune or alloimmune cytopenia (AIC) is a known rare complication of hematopoietic stem cell transplantation (SCT). AIC after SCT is considered difficult to treat and is associated with high morbidity and mortality. In this retrospective study in pediatric patients we evaluated incidence, outcome, potential risk factors, and current treatment strategies. A nested matched case-control study was performed to search for biomarkers associated with AIC. Of 531 consecutive SCTs at our center between 2000 and 2016, 26 were complicated by the development of AIC (cumulative incidence, 5.0%) after a median of 5 months post-SCT. Autoimmune hemolytic anemia was the most common AIC with 12 patients (46%). We identified nonmalignant disease, alemtuzumab serotherapy pre-SCT, and cytomegalovirus (CMV) reactivation as independently associated risk factors. The cytokine profile of patients at the time of AIC diagnosis appeared to skew toward a more pronounced Th 2 response compared with control subjects at the corresponding time point post-SCT. Corticosteroids and intravenous immunoglobulin as first-line treatment or a wait-and-see approach led to resolution of AIC in 35% of cases. Addition of step-up therapies rituximab (n = 15), bortezomib (n = 7), or sirolimus (n = 3) was associated with AIC resolution in 40%, 57%, and 100% of cases, respectively. In summary, we identified CMV reactivation post-SCT as a new clinical risk factor for the development of AIC in children. The cytokine profile during AIC appears to favor a Th 2 response. Rituximab, bortezomib, and sirolimus are promising step-up treatment modalities.


Subject(s)
Autoimmune Diseases , Hematopoietic Stem Cell Transplantation , Adolescent , Adrenal Cortex Hormones/administration & dosage , Adult , Alemtuzumab/administration & dosage , Allografts , Autoimmune Diseases/etiology , Autoimmune Diseases/immunology , Autoimmune Diseases/mortality , Autoimmune Diseases/therapy , Bortezomib/administration & dosage , Child , Child, Preschool , Cytomegalovirus/immunology , Cytomegalovirus Infections/etiology , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/mortality , Cytomegalovirus Infections/therapy , Female , Humans , Immunoglobulins, Intravenous/administration & dosage , Infant , Infant, Newborn , Male , Retrospective Studies , Risk Factors , Rituximab/administration & dosage , Th2 Cells/immunology
17.
Transplant Direct ; 3(1): e124, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28349124

ABSTRACT

BACKGROUND: The optimal immunosuppressive regimen in simultaneous pancreas-kidney transplant (SPKT) recipients that prevents acute rejection episodes (AREs) and allows optimal outcome remains elusive. METHODS: This cohort study assessed incidence and time to AREs in 73 consecutive SPKT recipients receiving alemtuzumab induction and steroid-free maintenance with tacrolimus and mycophenolate mofetil. A cohort with single high-dose antithymocyte globulin (ATG; n = 85) and triple therapy served as controls. In addition, we provided mechanistic insights in AREs after alemtuzumab depletion, including composition and alloreactivity of lymphocytes (flow cytometry and mixed lymphocyte reaction) plasma alemtuzumab levels (enzyme-linked immunosorbent assay), and maintenance drug exposure. RESULTS: Overall number of AREs at 3 years was significantly lower with alemtuzumab versus ATG induction (26.0% vs 43.5%; adjusted hazard ratio, 0.38; P = 0.029). Most AREs (94.6%) with ATG occurred within the first month, whereas 84.2% of AREs with alemtuzumab occurred beyond 3 months. Patients with and without an ARE in the steroid-free alemtuzumab group showed no differences in composition of lymphocytes, or in alemtuzumab levels. Of note, more than two thirds of these AREs were preceded by empiric tacrolimus and/or mycophenolate mofetil dose adjustments due to viral infections, leukopenia, or gastrointestinal symptoms. CONCLUSIONS: Alemtuzumab induction resulted in a significant lower incidence of AREs. Empiric dose adjustments beyond 3 months in the absence of steroids carry a significant risk for subsequent rejection in SPKT recipients.

19.
J Immunol ; 197(1): 78-84, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27226093

ABSTRACT

Knowledge of human NK cells is based primarily on conventional CD56(bright) and CD56(dim) NK cells from blood. However, most cellular immune interactions occur in lymphoid organs. Based on the coexpression of CD69 and CXCR6, we identified a third major NK cell subset in lymphoid tissues. This population represents 30-60% of NK cells in marrow, spleen, and lymph node but is absent from blood. CD69(+)CXCR6(+) lymphoid tissue NK cells have an intermediate expression of CD56 and high expression of NKp46 and ICAM-1. In contrast to circulating NK cells, they have a bimodal expression of the activating receptor DNAX accessory molecule 1. CD69(+)CXCR6(+) NK cells do not express the early markers c-kit and IL-7Rα, nor killer cell Ig-like receptors or other late-differentiation markers. After cytokine stimulation, CD69(+)CXCR6(+) NK cells produce IFN-γ at levels comparable to CD56(dim) NK cells. They constitutively express perforin but require preactivation to express granzyme B and exert cytotoxicity. After hematopoietic stem cell transplantation, CD69(+)CXCR6(+) lymphoid tissue NK cells do not exhibit the hyperexpansion observed for both conventional NK cell populations. CD69(+)CXCR6(+) NK cells constitute a separate NK cell population with a distinct phenotype and function. The identification of this NK cell population in lymphoid tissues provides tools to further evaluate the cellular interactions and role of NK cells in human immunity.


Subject(s)
Killer Cells, Natural/immunology , Lymphocyte Subsets/immunology , Lymphoid Tissue/immunology , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , CD56 Antigen/metabolism , Cell Separation , Cells, Cultured , Flow Cytometry , Hematopoietic Stem Cell Transplantation , Humans , Immunophenotyping , Interferon-gamma/metabolism , Lectins, C-Type/metabolism , Natural Cytotoxicity Triggering Receptor 1/metabolism , Receptors, CXCR6 , Receptors, Chemokine/metabolism , Receptors, Virus/metabolism
20.
Am J Hum Genet ; 98(5): 1020-1029, 2016 05 05.
Article in English | MEDLINE | ID: mdl-27153398

ABSTRACT

Facioscapulohumeral dystrophy (FSHD) is associated with somatic chromatin relaxation of the D4Z4 repeat array and derepression of the D4Z4-encoded DUX4 retrogene coding for a germline transcription factor. Somatic DUX4 derepression is caused either by a 1-10 unit repeat-array contraction (FSHD1) or by mutations in SMCHD1, which encodes a chromatin repressor that binds to D4Z4 (FSHD2). Here, we show that heterozygous mutations in DNA methyltransferase 3B (DNMT3B) are a likely cause of D4Z4 derepression associated with low levels of DUX4 expression from the D4Z4 repeat and increased penetrance of FSHD. Recessive mutations in DNMT3B were previously shown to cause immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome. This study suggests that transcription of DUX4 in somatic cells is modified by variations in its epigenetic state and provides a basis for understanding the reduced penetrance of FSHD within families.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/genetics , Epigenetic Repression/genetics , Muscular Dystrophy, Facioscapulohumeral/genetics , Mutation/genetics , Penetrance , Tandem Repeat Sequences/genetics , Adolescent , Adult , Aged , Amino Acid Sequence , Child , Child, Preschool , Chromatin/genetics , DNA (Cytosine-5-)-Methyltransferases/chemistry , DNA Methylation , Female , Humans , Infant , Male , Middle Aged , Pedigree , Protein Conformation , Sequence Homology, Amino Acid , DNA Methyltransferase 3B
SELECTION OF CITATIONS
SEARCH DETAIL
...