Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
J Neuroimmunol ; 390: 578344, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38640826

ABSTRACT

BACKGROUND: Targeting ACC1 (acetyl coenzyme A carboxylase 1) to restore the balance between T-helper 17 (Th17) cells and regulatory T cells (Tregs) through metabolic reprogramming has emerged as a promising strategy for reducing neuroinflammation following stroke. We examined the roles of potential miRNAs in regulating ACC1 expression in Tregs and treating ischemic stroke. METHODS: The expression of miR-24-3p in CD4+T cells of mice was confirmed. Then the protective effects of Ago-24-3p in a mouse model of prolonged occlusion of the distal middle cerebral artery (dMCAO) were examined. We analyzed the infiltration of Tregs and CD3+T cells into the brain and evaluated the improvement of neurological deficits induced by Ago-24-3p using the Modified Garcia Score and foot fault testing. RESULTS: Our investigation revealed that miR-24-3p specifically targets ACC1. Elevated levels of miR-24-3p have been demonstrated to increase the population of Tregs and enhance their proliferation and suppressive capabilities. Conversely, targeted reduction of ACC1 in CD4+T cells has been shown to counteract the improved functionality of Tregs induced by miR-24-3p. In a murine model of dMCAO, administration of Ago-24-3p resulted in a substantial reduction in the size of the infarct within the ischemic brain area. This effect was accompanied by an upregulation of Tregs and a downregulation of CD3+T cells in the ischemic brain region. In ACC1 conditional knockout mice, the ability of Ago-24-3p to enhance infiltrating Treg cells and diminish CD3+T cells in the ischemic brain area has been negated. Furthermore, its capacity to reduce infarct volume has been reversed. Furthermore, we demonstrated that Ago-24-3p sustained improvement in post-stroke neurological deficits for up to 4 weeks after the MCAO procedure. CONCLUSIONS: MiR-24-3p shows promise in the potential to reduce ACC1 expression, enhance the immunosuppressive activity of Tregs, and alleviate injuries caused by ischemic stroke. These discoveries imply that miR-24-3p could be a valuable therapeutic option for treating ischemic stroke.


Subject(s)
Acetyl-CoA Carboxylase , Brain Ischemia , MicroRNAs , T-Lymphocytes, Regulatory , Th17 Cells , Animals , Mice , Acetyl-CoA Carboxylase/genetics , Brain Ischemia/immunology , Infarction, Middle Cerebral Artery , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/metabolism
2.
Cancer Cell Int ; 24(1): 130, 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38584256

ABSTRACT

BACKGROUND: Fatty acids synthesis and metabolism (FASM)-driven lipid mobilization is essential for energy production during nutrient shortages. However, the molecular characteristics, physiological function and clinical prognosis value of FASM-associated gene signatures in hepatocellular carcinoma (HCC) remain elusive. METHODS: The Gene Expression Omnibus database (GEO), the Cancer Genome Atlas (TCGA), and International Cancer Genome Consortium (ICGC) database were utilized to acquire transcriptome data and clinical information of HCC patients. The ConsensusClusterPlus was employed for unsupervised clustering. Subsequently, immune cell infiltration, stemness index and therapeutic response among distinct clusters were decoded. The tumor immune dysfunction and exclusion (TIDE) algorithm was utilized to anticipate the response of patients towards immunotherapy, and the genomics of drug sensitivity in cancer (GDSC) tool was employed to predict their response to antineoplastic medications. Least absolute shrinkage and selection operator (LASSO) regression analysis and protein-protein interaction (PPI) network were employed to construct prognostic model and identity hub gene. Single cell RNA sequencing (scRNA-seq) and CellChat were used to analyze cellular interactions. The hub gene of FASM effect on promoting tumor progression was confirmed through a series of functional experiments. RESULTS: Twenty-six FASM-related genes showed differential expression in HCC. Based on these FASM-related differential genes, two molecular subtypes were established, including Cluster1 and Cluster2 subtype. Compared with cluster2, Cluster1 subtype exhibited a worse prognosis, higher risk, higher immunosuppressive cells infiltrations, higher immune escape, higher cancer stemness and enhanced treatment-resistant. PPI network identified Acetyl-CoA carboxylase1 (ACACA) as central gene of FASM and predicted a poor prognosis. A strong interaction between cancer stem cells (CSCs) with high expression of ACACA and macrophages through CD74 molecule (CD74) and integrin subunit beta 1 (ITGB1) signaling was identified. Finally, increased ACACA expression was observed in HCC cells and patients, whereas depleted ACACA inhibited the stemness straits and drug resistance of HCC cells. CONCLUSIONS: This study provides a resource for understanding FASM heterogeneity in HCC. Evaluating the FASM patterns can help predict the prognosis and provide new insights into treatment response in HCC patients.

3.
Elife ; 122023 11 02.
Article in English | MEDLINE | ID: mdl-37917548

ABSTRACT

Invariant natural-killer T (iNKT) cells play pathogenic roles in allergic asthma in murine models and possibly also humans. While many studies show that the development and functions of innate and adaptive immune cells depend on their metabolic state, the evidence for this in iNKT cells is very limited. It is also not clear whether such metabolic regulation of iNKT cells could participate in their pathogenic activities in asthma. Here, we showed that acetyl-coA-carboxylase 1 (ACC1)-mediated de novo fatty-acid synthesis is required for the survival of iNKT cells and their deleterious functions in allergic asthma. ACC1, which is a key fatty-acid synthesis enzyme, was highly expressed by lung iNKT cells from WT mice that were developing asthma. Cd4-Cre::Acc1fl/fl mice failed to develop OVA-induced and HDM-induced asthma. Moreover, iNKT cell-deficient mice that were reconstituted with ACC1-deficient iNKT cells failed to develop asthma, unlike when WT iNKT cells were transferred. ACC1 deficiency in iNKT cells associated with reduced expression of fatty acid-binding proteins (FABPs) and peroxisome proliferator-activated receptor (PPAR)γ, but increased glycolytic capacity that promoted iNKT-cell death. Furthermore, circulating iNKT cells from allergic-asthma patients expressed higher ACC1 and PPARG levels than the corresponding cells from non-allergic-asthma patients and healthy individuals. Thus, de novo fatty-acid synthesis prevents iNKT-cell death via an ACC1-FABP-PPARγ axis, which contributes to their homeostasis and their pathogenic roles in allergic asthma.


Subject(s)
Asthma , Natural Killer T-Cells , Respiratory Hypersensitivity , Humans , Animals , Mice , Respiratory Hypersensitivity/metabolism , Respiratory Hypersensitivity/pathology , Asthma/pathology , Homeostasis , Cell Death
4.
Cell Rep ; 42(4): 112319, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37002924

ABSTRACT

Protein post-translational modifications (PTMs) participate in important bioactive regulatory processes and therefore can help elucidate the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Here, we investigate the involvement of PTMs in ketogenic diet (KD)-improved fatty liver by multi-omics and reveal a core target of lysine malonylation, acetyl-coenzyme A (CoA) carboxylase 1 (ACC1). ACC1 protein levels and Lys1523 malonylation are significantly decreased by KD. A malonylation-mimic mutant of ACC1 increases its enzyme activity and stability to promote hepatic steatosis, whereas the malonylation-null mutant upregulates the ubiquitination degradation of ACC1. A customized Lys1523ACC1 malonylation antibody confirms the increased malonylation of ACC1 in the NAFLD samples. Overall, the lysine malonylation of ACC1 is attenuated by KD in NAFLD and plays an important role in promoting hepatic steatosis. Malonylation is critical for ACC1 activity and stability, highlighting the anti-malonylation effect of ACC1 as a potential strategy for treating NAFLD.


Subject(s)
Diet, Ketogenic , Non-alcoholic Fatty Liver Disease , Humans , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/metabolism , Acetyl-CoA Carboxylase/pharmacology , Liver/metabolism , Lysine/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Protein Processing, Post-Translational
5.
Front Pharmacol ; 14: 1129010, 2023.
Article in English | MEDLINE | ID: mdl-36843935

ABSTRACT

Metabolic adaptation is an emerging hallmark of tumors. De novo fatty acid synthesis is an important metabolic process to produce metabolic intermediates for energy storage, biosynthesis of membrane lipids and generation of signaling molecules. Acetyl-CoA carboxylase 1 (ACC1) is a critical enzyme in the fatty acid synthesis, which carboxylates acetyl-CoA carboxylic acid to form malonyl-CoA. The role of acetyl-CoA carboxylase 1 in fatty acid synthesis makes it a promising therapeutic target for various metabolic diseases such as non-alcoholic fatty liver disease, obesity and diabetes. Tumors have a high energy flow and a strong dependence on fatty acid synthesis. Thus, acetyl-CoA carboxylase inhibition has become a potential choice for anti-tumor therapy. In this review, we first introduced the structure and expression pattern of Acetyl-CoA carboxylase 1. We also discussed the molecular mechanisms of acetyl-CoA carboxylase 1 in the initiation and progression of various cancer types. Furthermore, acetyl-CoA carboxylase1 inhibitors has also been discussed. Collectively, we summarized the interplay between acetyl-CoA carboxylase 1 and tumorigenesis, indicating acetyl-CoA carboxylase 1 as a promising therapeutic target for tumor management.

6.
J Biol Chem ; 299(1): 102720, 2023 01.
Article in English | MEDLINE | ID: mdl-36410440

ABSTRACT

Cancer cells, including those of prostate cancer (PCa), often hijack intrinsic cell signaling to reprogram their metabolism. Part of this reprogramming includes the activation of de novo synthesis of fatty acids that not only serve as building blocks for membrane synthesis but also as energy sources for cell proliferation. However, how de novo fatty acid synthesis contributes to PCa progression is still poorly understood. Herein, by mining public datasets, we discovered that the expression of acetyl-CoA carboxylase alpha (ACACA), which encodes acetyl-CoA carboxylase 1 (ACC1), was highly expressed in human PCa. In addition, patients with high ACACA expression had a short disease-free survival time. We also reported that depletion of ACACA reduced de novo fatty acid synthesis and PI3K/AKT signaling in the human castration-resistant PCa (CRPC) cell lines DU145 and PC3. Furthermore, depletion of ACACA downregulates mitochondrial beta-oxidation, resulting in mitochondrial dysfunction, a reduction in ATP production, an imbalanced NADP+/NADPhydrogen(H) ratio, increased reactive oxygen species, and therefore apoptosis. Reduced exogenous fatty acids by depleting lipid or lowering serum supplementation exacerbated both shRNA depletion and pharmacological inhibition of ACACA-induced apoptosis in vitro. Collectively, our results suggest that inhibition of ectopic ACACA, together with suppression of exogenous fatty acid uptake, can be a novel strategy for treating currently incurable CRPC.


Subject(s)
Acetyl-CoA Carboxylase , Fatty Acids , Mitochondria , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Acetyl-CoA Carboxylase/metabolism , Fatty Acids/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Phosphatidylinositol 3-Kinases/genetics , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Cell Line, Tumor
7.
Adv Sci (Weinh) ; : e2204711, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36307901

ABSTRACT

Superenhancers drive abnormal gene expression in tumors and promote malignancy. However, the relationship between superenhancer-associated long noncoding RNA (lncRNA) and abnormal metabolism is unknown. This study identifies a novel lncRNA, fatty acid synthesis-related lncRNA (FASRL), whose expression is driven by upstream stimulatory factor 1 (USF1) through its superenhancer. FASRL promotes hepatocellular carcinoma (HCC) cell proliferation in vitro and in vivo. Furthermore, FASRL binds to acetyl-CoA carboxylase 1 (ACACA), a fatty acid synthesis rate-limiting enzyme, increasing fatty acid synthesis via the fatty acid metabolism pathway. Moreover, the expression of FASRL, USF1, and ACACA is increased, and their high expression indicates a worse prognosis in HCC patients. In summary, USF1 drives FASRL transcription via a superenhancer. FASRL binding to ACACA increases fatty acid synthesis and lipid accumulation to mechanistically exacerbate HCC. FASRL may serve as a novel prognostic marker and treatment target in HCC.

8.
Int J Oncol ; 61(3)2022 Sep.
Article in English | MEDLINE | ID: mdl-35894141

ABSTRACT

Pyruvate dehydrogenase kinase 4 (PDK4) is an important regulator of energy metabolism. Previously, knockdown of PDK4 by specific small interfering RNAs (siRNAs) have been shown to suppress the expression of Κirsten rat sarcoma viral oncogene homolog (KRAS) and the growth of lung and colorectal cancer cells, indicating that PDK4 is an attractive target of cancer therapy by altering energy metabolism. The authors previously reported that a novel small molecule, cryptotanshinone (CPT), which inhibits PDK4 activity, suppresses the in vitro three­dimensional (3D)­spheroid formation and in vivo tumorigenesis of KRAS­activated human pancreatic and colorectal cancer cells. The present study investigated the molecular mechanism of CPT­induced tumor suppression via alteration of glutamine and lipid metabolism in human pancreatic and colon cancer cell lines with mutant and wild­type KRAS. The antitumor effect of CPT was more pronounced in the cancer cells containing mutant KRAS compared with those containing wild­type KRAS. CPT treatment decreased glutamine and lipid metabolism, affected redox regulation and increased reactive oxygen species (ROS) production in the pancreatic cancer cell line MIAPaCa­2 containing mutant KRAS. Suppression of activated KRAS by specific siRNAs decreased 3D­spheroid formation, the expression of acetyl­CoA carboxylase 1 and fatty acid synthase (FASN) and lipid synthesis. The suppression also reduced glutathione­SH/glutathione disulfide and increased the production of ROS. Knockdown of FASN suppressed lipid synthesis in MIAPaCa­2 cells, partially promoted ROS production and mildly suppressed 3D­spheroid formation. These results indicated that CPT reduced tumorigenesis by inhibiting lipid metabolism and promoting ROS production in a mutant KRAS­dependent manner. This PDK4 inhibitor could serve as a novel therapeutic drug for KRAS­driven intractable cancers via alteration of cell metabolism.


Subject(s)
Colorectal Neoplasms , Pancreatic Neoplasms , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Line, Tumor , Cell Transformation, Neoplastic/metabolism , Colorectal Neoplasms/pathology , Glutamine/metabolism , Humans , Lipids , Lipogenesis , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Phenanthrenes , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Pancreatic Neoplasms
9.
Article in Chinese | MEDLINE | ID: mdl-35634673

ABSTRACT

Objective: To investigate the mechanism that hypoxia promotes the migration of lung adenocarcinoma A549 cells. Methods: A549 cells were cultured and cells that knockdown of acetyl-CoA carboxylase 1 (ACC1) were obtained by transfection with lentivirus, and cells that knockdown of sterol regulatory element-binding proteins-1 (SREBP-1) were obtained by treated with si-RNA. A549 cells were treated with hypoxia combined with hypoxia inducible factor-1α (HIF-1α) inhibitor PX-478 (25 µmol); Hypoxia combined with linoleic acid (LA) (20 µmol) treated A549 cells with ACC1 knockdown, and A549 cells with SREBP-1 knockdown were treated by hypoxia. Transwell migration assay was used to detect cell migration. Western blot was conducted to detect HIF-1α, ACC1 and epithelial mesenchymal transition (EMT) related proteins, Vimentin, E-Cadherin and SREBP-1; Real-time fluorescent quantitative polymerase chain reaction (RT-qPCR) was performed to detect the changes of ACC1 and SREBP-1 mRNA in A549 cells after hypoxia and HIF-1α inhibitor PX-478 (25 µmol) treatment. Each experiment was repeated three times. Results: Compared with the normoxic control group, hypoxia promoted the migration of A549 cells (P<0.01), and up-regulated the expressions of ACC1, HIF-1α (all P<0.01) and SREBP-1 (P<0.05). PX-478 (25 µmol) inhibited the migration of A549 cells induced by hypoxia and down-regulated the expression of SREBP-1 (all P<0.05). ACC1 mRNA and SREBP-1 mRNA levels were increased after hypoxia treatment of A549 cells (all P<0.05). The levels of ACC1 mRNA and SREBP-1 mRNA were decreased after A549 cells treated with hypoxia combined with PX-478 (25 µmol) for 24 h (P<0.05, P<0.01). Knockdown of SREBP-1 in A549 cells was obtained by transfection with si-RNA. Transwell migration assay showed the number of cell migration in si-SREBP-1 group was less than that in normoxia control group (P<0.01). The si-SREBP-1 group and the si-NC group were treated with hypoxia. Compared with the control group, the number of cell migration in the si-SREBP-1 group was decreased (P<0.01), however, the difference was not statistically significant compared with the normoxia si-SREBP-1 group (P>0.05). Western blot showed that the expression of ACC1 in the si-SREBP-1 group was lower than that in the control group (P<0.01). Compared with the control group, the expression of ACC1 was decreased after si-SREBP-1 group treated with hypoxia (P<0.01). Knockdown of ACC1 inhibited the migration of A549 cells (P<0.05). After knockdown of ACC1, the migration number of A549 cells under normoxia and 5% O2 conditions had no significant difference (P>0.05). Application of LA under hypoxia condition rescued ACC1-knockdown induced inhibitory effect on hypoxia-promoted A549 cell migration (P<0.05). Conclusion: Hypoxia promotes migration of lung adenocarcinoma A549 cells by regulating fatty acid metabolism through HIF-1α/SREBP-1/ACC1 pathway.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , A549 Cells , Acetyl-CoA Carboxylase , Cell Hypoxia/physiology , Cell Line, Tumor , Humans , Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit , RNA/metabolism , RNA, Messenger/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism
10.
J Adv Res ; 37: 169-184, 2022 03.
Article in English | MEDLINE | ID: mdl-35499057

ABSTRACT

Introduction: The prognosis for cervical cancer (CC) patients with lymph node metastasis (LNM) is extremely poor. Lipid droplets (LDs) have a pivotal role in promoting tumor metastasis. The crosstalk mechanism between LDs and LNM modulated in CC remains largely unknown. Objectives: This study aimed to construct a miRNA-dependent progonostic model for CC patients and investigate whether miR-532-5p has a biological impact on LNM by regualting LDs accumulation. Methods: LASSO-Cox regression was applied to establish a prognostic prediction model. miR-532-5p had the lowest P-value in RNA expression (P < 0.001) and prognostic prediction (P < 0.0001) and was selected for further study. The functional role of the prognostic miR-532-5p-correlated competing endogenous RNA (ceRNA) network was investigated to clarify the crosstalk between LDs and LNM. The underlying mechanism was determined using site-directed mutagenesis, dual luciferase reporter assays, RNA immunoprecipitation assays, and rescue experiments. A xenograft LNM model was established to evaluate the effect of miR-532-5p and orlistat combination therapy on tumor growth and LNM. Results: A novel 5-miRNAs prognostic signature was constructed to better predict the prognosis of CC patient. Further study demonstrated that miR-532-5p inhibited epithelial-mesenchymal transition and lymphangiogenesis by regulating LDs accumulation. Interestingly, we also found that LDs accumulation promoted cell metastasis in vitro. Mechanistically, we demonstrated a miR-532-5p-correlated ceRNA network in which LINC01410 was bound directly to miR-532-5p and effectively functioned as miR-532-5p sponge to disinhibit its target gene-fatty acid synthase (FASN). Combined therapy with miR-532-5p and FASN inhibitor-orlistat further inhibited tumor growth and LNM in vivo. Conclusion: Our findings highlight a LD accumulation-dependent mechanism of miR-532-5p-modulated LNM and support treatment with miR-532-5p/orlistat as novel strategy for treating patients with LNM in CC.


Subject(s)
MicroRNAs , Uterine Cervical Neoplasms , Cell Line, Tumor , Cell Proliferation , Female , Humans , Lipid Droplets/metabolism , Lymphatic Metastasis , MicroRNAs/genetics , MicroRNAs/metabolism , Orlistat , Prognosis , Uterine Cervical Neoplasms/genetics
11.
Int J Mol Sci ; 23(3)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35162967

ABSTRACT

Dysregulation of de novo lipogenesis (DNL) has recently gained strong attention as being one of the critical factors that contribute to the assessment of non-alcoholic fatty liver disease (NAFLD). NAFLD is often diagnosed in patients with dyslipidemias and type 2 diabetes; thus, an interesting correlation can be deduced between high hematic free fatty acids and glucose excess in the DNL dysregulation. In the present study, we report that, in a cellular model of NAFLD, the coexistence of elevated glucose and FFA conditions caused the highest cellular lipid accumulation. Deepening the molecular mechanisms of the DNL dysregulation-RT-qPCR and immunoblot analysis demonstrated increased expression of mitochondrial citrate carrier (CiC), cytosolic acetyl-CoA carboxylase 1 (ACACA), and diacylglycerol acyltransferase 2 (DGAT2) involved in fatty acids and triglycerides synthesis, respectively. XBP-1, an endoplasmic reticulum stress marker, and SREBP-1 were the transcription factors connected to the DNL activation. Quercetin (Que), a flavonoid with strong antioxidant properties, and noticeably reduced the lipid accumulation and the expression of SREBP-1 and XBP-1, as well as of their lipogenic gene targets in steatotic cells. The anti-lipogenic action of Que mainly occurs through a strong phosphorylation of ACACA, which catalyzes the committing step in the DNL pathway. The high level of ACACA phosphorylation in Que-treated cells was explained by the intervention of AMPK together with the reduction of enzymatic activity of PP2A phosphatase. Overall, our findings highlight a direct anti-lipogenic effect of Que exerted through inhibition of the DNL pathway by acting on ACACA/AMPK/PP2A axis; thus, suggesting this flavonoid as a promising molecule for the NAFLD treatment.


Subject(s)
Acetyl-CoA Carboxylase/metabolism , Fatty Acids/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Quercetin/pharmacology , AMP-Activated Protein Kinases/metabolism , Acetyl-CoA Carboxylase/genetics , Gene Expression Profiling , Hep G2 Cells , Humans , Lipogenesis , Models, Biological , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Phosphorylation , Protein Phosphatase 2/metabolism , Signal Transduction
12.
FEBS Open Bio ; 12(5): 1006-1016, 2022 05.
Article in English | MEDLINE | ID: mdl-35032368

ABSTRACT

Autophagy can affect the invasion and metastasis of carcinoma. Our previous study has shown that invasion and epithelial-mesenchymal transition in salivary adenoid cystic carcinoma (SACC) can be promoted by the metabolic reprogramming of free fatty acids (FFAs). However, the effect of FFA metabolism on autophagy in SACC remains unknown. In this study, we showed that overexpression of paired related homeobox 1 (PRRX1) reduced the number of autophagosomes and decreased the expression of LC3 and Beclin-1 in SACC patients and SACC-83 cells in vitro. Moreover, PRRX1-mediating FFA reprogramming triggered to autophagy via regulating acetyl-CoA carboxylase 1 (ACC1), leading to invasion and migration in SACC.


Subject(s)
Carcinoma, Adenoid Cystic , Salivary Gland Neoplasms , Acetyl-CoA Carboxylase/genetics , Autophagy , Carcinoma, Adenoid Cystic/genetics , Carcinoma, Adenoid Cystic/metabolism , Carcinoma, Adenoid Cystic/pathology , Cell Line, Tumor , Fatty Acids , Genes, Homeobox , Homeodomain Proteins/genetics , Humans , Salivary Gland Neoplasms/genetics , Salivary Gland Neoplasms/metabolism , Salivary Gland Neoplasms/pathology
13.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-927900

ABSTRACT

Objective: To investigate the mechanism that hypoxia promotes the migration of lung adenocarcinoma A549 cells. Methods: A549 cells were cultured and cells that knockdown of acetyl-CoA carboxylase 1 (ACC1) were obtained by transfection with lentivirus, and cells that knockdown of sterol regulatory element-binding proteins-1 (SREBP-1) were obtained by treated with si-RNA. A549 cells were treated with hypoxia combined with hypoxia inducible factor-1α (HIF-1α) inhibitor PX-478 (25 μmol); Hypoxia combined with linoleic acid (LA) (20 μmol) treated A549 cells with ACC1 knockdown, and A549 cells with SREBP-1 knockdown were treated by hypoxia. Transwell migration assay was used to detect cell migration. Western blot was conducted to detect HIF-1α, ACC1 and epithelial mesenchymal transition (EMT) related proteins, Vimentin, E-Cadherin and SREBP-1; Real-time fluorescent quantitative polymerase chain reaction (RT-qPCR) was performed to detect the changes of ACC1 and SREBP-1 mRNA in A549 cells after hypoxia and HIF-1α inhibitor PX-478 (25 μmol) treatment. Each experiment was repeated three times. Results: Compared with the normoxic control group, hypoxia promoted the migration of A549 cells (P<0.01), and up-regulated the expressions of ACC1, HIF-1α (all P<0.01) and SREBP-1 (P<0.05). PX-478 (25 μmol) inhibited the migration of A549 cells induced by hypoxia and down-regulated the expression of SREBP-1 (all P<0.05). ACC1 mRNA and SREBP-1 mRNA levels were increased after hypoxia treatment of A549 cells (all P<0.05). The levels of ACC1 mRNA and SREBP-1 mRNA were decreased after A549 cells treated with hypoxia combined with PX-478 (25 μmol) for 24 h (P<0.05, P<0.01). Knockdown of SREBP-1 in A549 cells was obtained by transfection with si-RNA. Transwell migration assay showed the number of cell migration in si-SREBP-1 group was less than that in normoxia control group (P<0.01). The si-SREBP-1 group and the si-NC group were treated with hypoxia. Compared with the control group, the number of cell migration in the si-SREBP-1 group was decreased (P<0.01), however, the difference was not statistically significant compared with the normoxia si-SREBP-1 group (P>0.05). Western blot showed that the expression of ACC1 in the si-SREBP-1 group was lower than that in the control group (P<0.01). Compared with the control group, the expression of ACC1 was decreased after si-SREBP-1 group treated with hypoxia (P<0.01). Knockdown of ACC1 inhibited the migration of A549 cells (P<0.05). After knockdown of ACC1, the migration number of A549 cells under normoxia and 5% O2 conditions had no significant difference (P>0.05). Application of LA under hypoxia condition rescued ACC1-knockdown induced inhibitory effect on hypoxia-promoted A549 cell migration (P<0.05). Conclusion: Hypoxia promotes migration of lung adenocarcinoma A549 cells by regulating fatty acid metabolism through HIF-1α/SREBP-1/ACC1 pathway.


Subject(s)
Humans , A549 Cells , Acetyl-CoA Carboxylase , Adenocarcinoma of Lung , Cell Hypoxia/physiology , Cell Line, Tumor , Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit , Lung Neoplasms , RNA/metabolism , RNA, Messenger/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism
14.
Acta Anatomica Sinica ; (6): 317-322, 2022.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1015320

ABSTRACT

Objective To explore the effect of acetyl-CoA carboxylase 1(ACC1) on cell proliferation, migration and invasion of human glioma cell line U87. Methods Western blotting was performed to examine endogenous ACC1 expression in human glioma cell lines U87, U251 and U373. ACC1 overexpression plasmid and the plasmid vector were transiently transfected into U87 cells. The level of ACC1 in control and ACC1 overexpression cells was examined by Western blotting. The effect of ACC1 on U87 cells migration and invasion was detected by Transwell assay. The effect of ACC1 on U87 cells scratch healing ability was detected by scratch test. The effect of ACC1 on U87 cells proliferation was investigated by MTT assay. Western blotting was conducted to detect the level changes of proteins. Results Among three human glioma cell lines U87, U251 and U373, endogenous ACC1 level in U87 cells was lower than that in other two cell lines. ACC1 overexpression inhibited U87 cell proliferation, as well as cell migration, invasion and scratch healing ability (P < 0.05). Vimentin, fibronectin, urokinase type plasminogen activator (uPA), Bcl-2, cyclin B, cyclin D and p-STAT3 were down-regulated (P< 0.05), P21 was up-regulated (P < 0.05) after ACC1 overexpression. Conclusion These results suggest that ACC1 suppresses the proliferation, migration and invasion of human glioma cells, probably by inhibiting STAT3 activity.

15.
Front Cell Dev Biol ; 9: 618492, 2021.
Article in English | MEDLINE | ID: mdl-34552920

ABSTRACT

OBJECTIVE: We proposed that the deficit of ACC1 is the cause of patient symptoms including global developmental delay, microcephaly, hypotonia, and dysmorphic facial features. We evaluated the possible disease-causing role of the ACACA gene in developmental delay and investigated the pathogenesis of ACC1 deficiency. METHODS: A patient who presented with global developmental delay with unknown cause was recruited. Detailed medical records were collected and reviewed. Whole exome sequencing found two variants of ACACA with unknown significance. ACC1 mRNA expression level, protein expression level, and enzyme activity level were detected in patient-derived cells. Lipidomic analysis, and in vitro functional studies including cell proliferation, apoptosis, and the migratory ability of patient-derived cells were evaluated to investigate the possible pathogenic mechanism of ACC1 deficiency. RNAi-induced ACC1 deficiency fibroblasts were established to assess the causative role of ACC1 deficit in cell migratory disability in patient-derived cells. Palmitate supplementation assays were performed to assess the effect of palmitic acid on ACC1 deficiency-induced cell motility deficit. RESULTS: The patient presented with global developmental delay, microcephaly, hypotonia, and dysmorphic facial features. A decreased level of ACC1 and ACC1 enzyme activity were detected in patient-derived lymphocytes. Lipidomic profiles revealed a disruption in the lipid homeostasis of the patient-derived cell lines. In vitro functional studies revealed a deficit of cell motility in patient-derived cells and the phenotype was further recapitulated in ACC1-knockdown (KD) fibroblasts. The cell motility deficit in both patient-derived cells and ACC1-KD were attenuated by palmitate. CONCLUSION: We report an individual with biallelic mutations in ACACA, presenting global development delay. In vitro studies revealed a disruption of lipid homeostasis in patient-derived lymphocytes, further inducing the deficit of cell motility capacity and that the deficiency could be partly attenuated by palmitate.

16.
Zhonghua Gan Zang Bing Za Zhi ; 29(2): 163-168, 2021 Feb 20.
Article in Chinese | MEDLINE | ID: mdl-33685086

ABSTRACT

Objective: To investigate the role of 1, 25-dihydroxyvitamin D3 [1.25(OH) (2)D(3)] in liver lipid metabolism so as to provide the clues for elucidating the mechanism of non-alcoholic fatty liver. Methods: 26 SD rats were randomly divided into control group (methionine-choline-sufficient diet, MCS), model group (methionine-choline-deficiency diet, MCD) and intervention group [MCD+1.25(OH) (2)D(3)]. The intervention, control, and model group was given 3 ng/100 g 1.25(OH) (2)D(3) peanut oil solution per day by gavage according to body mass. After 4 weeks the experiment was ended up, and the blood was collected from the inferior vena cava to detect alanine aminotransferase (ALT) and aspartate aminotransferase (AST). The liver tissue was collected to observe the liver morphological and pathological changes (oil red O and HE staining). The changes in the level of liver total triglyceride (TG) content and liver lipid metabolism-related genes [fatty acid transfer protein (FAT/CD36), acetyl-coenzyme A carboxylase (ACC1)] mRNA and protein were detected. One-way analysis of variance was used to compare the means between groups. Results: Oil red O staining and HE staining showed that lipid droplet-vacuoles were significantly increased in the liver tissue of the model group than that of the intervention group. The liver TG content (2.23 ± 0.98) µmol/g of the intervention group was significantly lower than that of the model group (3.53 ± 1.06) µmol/g (F = 5.930, P = 0.035). The ALT content of the intervention group (35.99±9.54) U/L was significantly lower than that of the model group (57.65 ± 19.42) U/L (F = 13.790, P = 0.034). The AST content of the intervention group (16.9 ± 3.73) U/L was significantly lower than that of the model group (27.81 ± 13.31) U/L (F = 3.084, P = 0.046). The relative expression levels of mRNA and protein (mRNA: 1.21 ± 0.61, protein: 1.54 ± 0.75) of FAT/CD36 in the intervention group were significantly lower than those of the model group (mRNA: 2.31 ± 0.81, protein: 2.83 ± 1.42) (mRNA: F = 8.370, P = 0.001, protein: F = 7.212, P = 0.043). The relative expression level of mRNA and protein of ACC1 (mRNA: 0.89 ± 0.54, protein: 0.28 ± 0.11) were also significantly lower than those in model group (mRNA: 1.39 ± 0.19, protein: 0.47 ± 0.24) (mRNA: F = 3.948, P = 0.036, protein: F = 10.933, P = 0.048). Conclusion: 1.25(OH) (2)D(3) can reduce liver fat deposition in rats fed with MCD by inhibiting the expression of fat / CD36 and ACC1.


Subject(s)
Lipid Metabolism , Non-alcoholic Fatty Liver Disease , Animals , Choline/metabolism , Diet , Liver/metabolism , Methionine/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Rats , Rats, Sprague-Dawley
17.
Eur J Pharmacol ; 891: 173686, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33121949

ABSTRACT

Adipogenesis, the maturation process of preadipocytes, is closely associated with the development of obesity and other complex metabolic syndromes. Herein, we investigated the effect of 7- methoxy-3-methyl-5-((E)- prop-1-enyl)-2-(3,4,5-trimethoxyphenyl)-2,3-dihydrobenzofuran (TM), a benzofuran, isolated from the mace of Myristica fragrans Houtt on adipogenesis in 3T3-L1 preadipocytes to extrapolate whether this compound has any anti-obesity potential. For this, 3T3-L1 preadipocytes were induced to differentiate in the presence of various concentrations of TM (1, 5, 10 µM) and analyzed for triglyceride (TG) accumulation and the expression of proteins and genes involved in lipogenesis and lipolysis associated with adipogenesis. Results showed that TM significantly reduced TG accumulation and expression of marker proteins of adipocyte differentiation (peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein α, and fatty acid-binding protein 4) and increased the secretion of glycerol in a dose-dependent manner. There was a significant dose-dependent decrease in the expression of fatty acid synthase, stearoyl-CoA desaturase-1, sterol regulatory element-binding transcription factor 1c, and acetyl-CoA carboxylase 1 and an increase in carnitine palmitoyltransferase 1, acyl-CoA oxidase, and peroxisome proliferator-activated receptor α in TM treated cells. The phosphorylation of cAMP-activated protein kinase was also increased, which in turn activated the phosphorylation of acetyl-CoA carboxylase in mature adipocytes. Also, there was an increase in glucose uptake by TM, suggesting its insulin-sensitizing potential. This is the first report on the anti-obesity effects of TM from Myristica fragrans on adipogenesis and lipid metabolism in 3T3-L1 adipocytes and demands detailed in vivo study for developing TM as anti-obesity therapeutics.


Subject(s)
Adipocytes/drug effects , Adipogenesis/drug effects , Anti-Obesity Agents/pharmacology , Benzofurans/pharmacology , Lipid Metabolism/drug effects , Myristica , Plant Extracts/pharmacology , 3T3-L1 Cells , Adipocytes/metabolism , Adipogenesis/genetics , Animals , Anti-Obesity Agents/isolation & purification , Benzofurans/isolation & purification , Gene Expression Regulation , Glucose/metabolism , Lipid Metabolism/genetics , Lipogenesis/drug effects , Lipolysis/drug effects , Mice , Myristica/chemistry , Plant Extracts/isolation & purification , Signal Transduction , Triglycerides/metabolism
18.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1015923

ABSTRACT

Acetyl-CoA carboxylase (ACC) is the rate limiting enzyme of fatty acid synthesis pathway. Studies have shown that ACC1 is implicated in a variety of metabolic diseases and cancer. However, the role and mechanism of action of ACC1 in clear cell renal cell carcinoma (ccRCC) have not been reported. In this study, 786-O and Caki-1 clear cell renal carcinoma cells were used as research objects to investigate the effect of abnormal expression of ACC1 on their proliferation and unravel the underlying mechanism. Red oil-O-staining results showed that the lipid content of 786-O and Caki-1 cells was significantly higher than that of human kidney 2 (HK2) cells. By searching TCGA database, we found that the expression of ACC1 proteins in ccRCC was significantly higher than that in normal renal tissues (P < 0.001). Plus, ACC1 protein expression in all clinical TNM stages was significantly higher than that in normal tissues, and the higher the expression of ACC1, the higher the pathological grade. Furthermore, high expression of ACC1 mRNA is positively correlated with poor prognosis in ccRCC patients. Western blotting analysis showed that the expression of ACC1 in 786-O and Caki-1 cells was significantly higher than that in HK2 cells. The results of red oil-O-staining showed that knocking down ACC1 could significantly reduce the lipid content of 786-O and Caki-1 cells. The results of CCK-8 assays and clonogenicity analysis showed that knocking down ACC1 could significantly reduce the proliferation and colony forming ability of 786-O and Caki-1 cells. Flow cytometry analysis showed that after knocking down ACC1, the cell cycle was blocked at the G

19.
Acta Anatomica Sinica ; (6): 258-262, 2021.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1015477

ABSTRACT

Objective To investigate the mechanism of hypoxia to promote human lung adenocarcinoma A549 cells migration through acetyl-CoA carboxylase 1 (ACCI). Methods Lung adenocarcinoma A549 cells were treated with hypoxia (5% 02 ). Transwell migration assay was used to detect cell migration ability. Western blotting was used to detect ACCI expression and epithelial-mesenchymal transition (EMT) related protein expression. Results Compared with the normoxia (control group), hypoxia treatment promoted the migration of A549 cells (P<0.01), ACCI expression was up- regulated after hypoxia treatment (P<0.01), and vimentin expression was detected to increase significantly (P<0.05), E- cadherin expression decreased (P<0.01) ; Compared with the control group, migration of A549 cells was inhibited (P<0.05), vimentin expression was down-regulated (P<0.05), and E-cadherin expression increased after knocking down ACC1(P<0.01). After ACCI was knocked down, the differences between the numbers of migration of A549 cells under normoxia and 5% 0

20.
J Tradit Complement Med ; 10(3): 188-197, 2020 May.
Article in English | MEDLINE | ID: mdl-32670813

ABSTRACT

Prior research argues for a role of increased de novo fatty acid synthesis in pathogenesis of prostate adenocarcinoma, which remains a leading cause of cancer-associated mortality in American men. A safe and effective inhibitor of fatty acid synthesis is still a clinically unmet need. Herein, we investigated the effect of ethanol extract of Withania somnifera root (WRE) standardized for one of its components (withaferin A) on fatty acid synthesis using LNCaP and 22Rv1 human prostate cancer cells. Withania somnifera is a medicinal plant used in the Ayurvedic medicine practiced in India. Western blotting and confocal microscopy revealed a statistically significant decrease in protein levels of key fatty acid metabolism enzymes including ATP citrate lyase (ACLY), acetyl-CoA carboxylase 1 (ACC1), fatty acid synthase (FASN), and carnitine palmitoyltransferase 1A (CPT1A) in WRE-treated cells compared with solvent control. The mRNA levels of ACLY, ACC1, FASN, and CPT1A were also lower in WRE-treated cells in comparison with control. Consequently, WRE treatment resulted in a significant decrease in intracellular levels of acetyl-CoA, total free fatty acids, and neutral lipid droplets in both LNCaP and 22Rv1 cells. WRE exhibited greater potency for fatty acid synthesis inhibition at equimolar concentration than cerulenin and etomoxir. Exposure to WRE results in downregulation of c-Myc and p-Akt(S473) proteins in 22Rv1 cell line. However, overexpression of only c-Myc conferred protection against clonogenic cell survival and lipogenesis inhibition by WRE. In conclusion, these results indicate that WRE is a novel inhibitor of fatty acid synthesis in human prostate cancer cells.

SELECTION OF CITATIONS
SEARCH DETAIL