Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(3)2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33573037

ABSTRACT

Plants as sessile organisms face daily environmental challenges and have developed highly nuanced signaling systems to enable suitable growth, development, defense, or stalling responses. Moonlighting proteins have multiple tasks and contribute to cellular signaling cascades where they produce additional variables adding to the complexity or fuzziness of biological systems. Here we examine roles of moonlighting kinases that also generate 3',5'-cyclic guanosine monophosphate (cGMP) in plants. These proteins include receptor like kinases and lipid kinases. Their guanylate cyclase activity potentiates the development of localized cGMP-enriched nanodomains or niches surrounding the kinase and its interactome. These nanodomains contribute to allosteric regulation of kinase and other molecules in the immediate complex directly or indirectly modulating signal cascades. Effects include downregulation of kinase activity, modulation of other members of the protein complexes such as cyclic nucleotide gated channels and potential triggering of cGMP-dependent degradation cascades terminating signaling. The additional layers of information provided by the moonlighting kinases are discussed in terms of how they may be used to provide a layer of fuzziness to effectively modulate cellular signaling cascades.


Subject(s)
Cyclic GMP/metabolism , Plant Proteins/metabolism , Plants/metabolism , Protein Kinases/metabolism , Signal Transduction , Guanylate Cyclase/chemistry , Guanylate Cyclase/metabolism , Models, Molecular , Plant Proteins/chemistry , Plants/chemistry , Protein Kinases/chemistry , Proteolysis
2.
Plant Mol Biol ; 107(4-5): 337-353, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33389562

ABSTRACT

KEY MESSAGE: Identification of the subfamily X leucine-rich repeat receptor-like kinases in the recently sequenced moss and hornwort genomes points to their diversification into distinct groups during early evolution of land plants. Signal transduction mediated through receptor-ligand interactions plays key roles in controlling developmental and physiological processes of multicellular organisms, and plants employ diverse receptors in signaling. Leucine-rich repeat receptor-like kinases (LRR-RLKs) represent one of the largest receptor classes in plants and are structurally classified into subfamilies. LRR-RLKs of the subfamily X are unique in the variety of their signaling roles; they include receptors for steroid or peptide hormones as well as negative regulators of signaling through binding to other LRR-RLKs, raising a question as to how they diversified. However, our understanding of diversification processes of LRR-RLKs has been hindered by the paucity of genomic data in non-seed plants and limited taxa sampling in previous phylogenetic analyses. Here we analyzed the phylogeny of LRR-RLK X sequences collected from all major land plant lineages and show that this subfamily diversified into six major clades before the divergence between bryophytes and vascular plants. Notably, we have identified homologues of the brassinosteroid receptor, BRASSINOSTEROID INSENSITIVE 1 (BRI1), in the genomes of Sphagnum mosses, hornworts, and ferns, contrary to earlier reports that postulate the origin of BRI1-like LRR-RLKs in the seed plant lineage. The phylogenetic distribution of major clades illustrates that the current receptor repertoire was shaped through lineage-specific gene family expansion and independent gene losses, highlighting dynamic changes in the evolution of LRR-RLKs.


Subject(s)
Anthocerotophyta/genetics , Genetic Variation , Genome, Plant/genetics , Plant Proteins/genetics , Protein Kinases/genetics , Sphagnopsida/genetics , Amino Acid Sequence , Computer Simulation , Evolution, Molecular , Genomics/methods , Phylogeny , Plant Proteins/chemistry , Plant Proteins/classification , Protein Domains , Protein Kinases/chemistry , Protein Kinases/classification , Sequence Homology, Amino Acid , Signal Transduction/genetics
3.
Front Plant Sci ; 8: 1456, 2017.
Article in English | MEDLINE | ID: mdl-28890722

ABSTRACT

Heterotrimeric G proteins function in development, biotic, and abiotic stress responses, hormone signaling as well as sugar sensing. We previously proposed that discrimination of these various external signals in the G protein pathway is accomplished in plants by membrane-localized receptor-like kinases (RLKs) rather than G-protein-coupled receptors. Arabidopsis thaliana Regulator of G Signaling protein 1 (AtRGS1) modulates G protein activation and is phosphorylated by several RLKs and by WITH-NO-LYSINE kinases (WNKs). Here, a combination of in vitro kinase assays, mass spectrometry, and computational bioinformatics identified and functionally prioritized phosphorylation sites in AtRGS1. Phosphosites for two more RLKs (BRL3 and PEPR1) were identified and added to the AtRGS1 phosphorylation profile. Bioinformatics analyses revealed that RLKs and WNK kinases phosphorylate plant RGS proteins within regions that are conserved across eukaryotes and at a high frequency. Four phospho-sites among 14 identified are proximal to equivalent mammalian phosphosites that impact RGS function, including: pS437 and pT267 in GmRGS2, and pS339 and pS436 in AtRGS1. Based on these analyses, we propose that pS437 and pS436 regulate GmRGS2 and AtRGS1 protein interactions and/or localization, whereas pT267 is important for modulation of GmRGS2 GAP activity and localization. Moreover, pS339 most likely affects AtRGS1 activation.

4.
Methods Mol Biol ; 1564: 49-61, 2017.
Article in English | MEDLINE | ID: mdl-28124246

ABSTRACT

Pathway cross-communication cannot be simply tackled by studying isolated signaling systems. Yet understanding how signal transduction pathways attenuate or reinforce each other in vivo is a challenging task. In plants, biosynthesis and signaling of brassinosteroids (BRs) finely regulate growth and defense programs through a complex array of mechanistic and physiological interactions. Conversely, induction of defenses also impacts on the BR biosynthesis at the transcriptional level. In this chapter, we present an experimental framework to study the physiological connection between BR-controlled growth and defenses. We focus on the signaling pathways regulated by the two archetypal cell surface receptors, BRASSINOSTEROID INSENSITIVE1 (BRI1) and FLAGELLIN-SENSITIVE2 (FLS2), to illustrate the signaling nexus of BRs and plant immunity. In Arabidopsis thaliana, these pathways provide one of the very few systems in which the tools and mechanistic details exist to study cross talk at the molecular level.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Brassinosteroids/pharmacology , Gene Expression Regulation, Plant , Plant Growth Regulators/pharmacology , Plant Immunity/genetics , Protein Kinases/genetics , Steroids, Heterocyclic/pharmacology , Arabidopsis/drug effects , Arabidopsis/growth & development , Arabidopsis/immunology , Arabidopsis Proteins/immunology , Biological Assay , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/immunology , Protein Kinases/immunology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/immunology , Reactive Oxygen Species/immunology , Reactive Oxygen Species/metabolism , Receptor Cross-Talk/immunology , Seedlings/drug effects , Seedlings/genetics , Seedlings/growth & development , Seedlings/immunology , Signal Transduction
5.
Plant Signal Behav ; 4(2): 126-8, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19649188

ABSTRACT

The alpha subunit of heterotrimeric G-proteins (G alpha) is involved in a broad range of aspects of the brassinosteroid (BR) response, such as the enhancement of lamina bending. However, it has been suggested from epistatic analysis of d1 and d61, which are mutants deficient for G alpha and the BR receptor BRI1, that G alpha and BRI1 may function via distinct pathways in many cases. In this study, we investigated further the genetic interaction between G alpha and BRI1. We report the analysis of transformants of T65d1 and T65d1/d61-7 into which were introduced a constitutively active form of G alpha, Q223L. The application of 24-epi-brassinolide (24-epiBL) to T65d1 expressing Q223L still resulted in elongation of the coleoptile and, in fact, it was enhanced over the wild-type plant (WT) level in a concentration dependent manner. In T65d1/d61-7 expressing Q223L, the seed size was enlarged over that of d61-7 due to activation of G alpha. These results suggest that Q223L is able to augment the BR response in response to 24-epiBL and also that Q223L functions independently of BRI1 in the process of determining seed morphology, given that Q223L was functional in the BRI1-deficient mutant, d61-7.

SELECTION OF CITATIONS
SEARCH DETAIL